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Abstract

An inequality for finite linear spaces in relation with clique partitions of
the complete graph Kn is given.

1 The inequality

For notions on finite linear spaces and clique partitions of graphs we refer the reader
to [1] and [2] respectively.

Let (P,L) be a (non-degenerate) finite linear space with v points and b lines. For
every point p let rp denote the number of lines containing p (the degree of p) and for
every line � let k� denote the size of �. By an m-point we mean a point of degree m.

Recently in [2] a lower bound for the sum of line sizes of a finite linear space has
been obtained.

Theorem 1.1. Let (P,L) be a non-degenerate finite linear space with v points, then
we have ∑

�∈L
k� ≥ 3v − 3 (1)

and equality holds if and only if (P,L) is a near-pencil.

As a consequence of Theorem 1.1 we obtain the following result.

Proposition 1.2. Let C be a clique partition of the complete graph Kn whose cliques

are of size at most n− 1. Then
∑

C∈C
|C| ≥ 3n− 3.
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In this note, a generalization of Theorem 1.1 is given.

Theorem 1.3. Let (P,L) be a non-trivial finite linear space on v points. Let m ≥ 2
denote the minimum point degree. Then

∑

�∈L
k� ≥ (v −m+ 1)(m+ 1).

The equality holds if and only if m = 2 and (P,L) is a near-pencil.

2 Proof of Theorem 1.3

In this section, (P,L) is a finite linear space with minimal point degree m. As for
any incidence structrure, in a finite linear space the following equality holds:

∑

p∈P
rp =

∑

�∈L
k�. (2)

Assume
∑

�∈L
k� ≤ (v−m+1)(m+1). Let x denote the number of points of degree

m. Then

xm+ (v − x)(m+ 1) ≤
∑

p∈P
rp =

∑

�∈L
k� ≤ (v −m+ 1)(m+ 1)

and so
x ≥ m2 − 1 ≥ 3.

If there are three non-collinear m-points, then the size of of each line is at most
m and thus m2 − 1 ≤ x ≤ v ≤ m(m − 1) + 1 and so m = 2, all the points
have degree m and the linear space (P,L) is the near-pencil on three points and so∑

�∈L
k� = (v − 1) · (m+ 1) = 6.

Hence we may assume that all the m-points are collinear and that there are points
of degree different from m. Let L be the line containing all the points of degree m.
Thus kL ≥ m2 − 1. Counting the number of points of the linear space via the lines
on an m-point, and since all lines other than L must have size at most m, we have

v ≤ kL + (m− 1)2 ≤ 2kL − 2(m− 1)

and so
v −m+ 1 ≤ 2kL − 3(m− 1).

Since the points outside L have degree at least kL, it follows that

kLm+ (v − kL)kL ≤
∑

p∈P
rp =

∑

�∈L
k� ≤ (2kL − 3(m− 1))(m+ 1)
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and so
(v − kL)kL ≤ 2kL + kLm− 3(m2 − 1),

v − kL ≤ m+ 2− 3(m2 − 1)

kL
,

v ≤ kL +m+ 1.

Thus
v −m+ 1 ≤ kL + 2,

from which it follows, since each line has size at least 2, that

kL + 2(b− 1) ≤ kL +
∑

�∈L � �=L

k� =
∑

�∈L
k� ≤ (kL + 2)(m+ 1),

and hence
2(b− 1) ≤ kLm+ 2(m+ 1).

Counting lines meeting, but different from, L gives b− 1 ≥ kL(m− 1); thus

2kLm− 2kL ≤ kLm+ 2(m+ 1)

so
kL(m− 2) ≤ 2(m+ 1).

But kL ≥ m2 − 1, and therefore

(m− 1)(m− 2) ≤ 2

and so either m = 2 or m = 3.

If m = 3 then kL = 8 = m2−1, v ≤ 12 and all the points of L have degree m = 3.
Moreover, from v ≥ kL +m− 1 it follows that v ≥ 10.

If v = 12, on each point of L there are L and two lines of length 3 contradicting
the fact that the four points outside L may give rise to at most six lines of length 3.

If v = 11, on each point of L there are L, one line of length 3 and one of lenght 2,
contradicting the fact that in such a case (P,L) has at most three lines of length 3.

If v = 10, (P,L) is the union of L and a line of length 2 disjoint from L and the two
points outside L have degree 9. Thus, 42 =

∑
p∈P rp =

∑
�∈L k� ≤ (10−3+1)·4 = 32,

a contradiction.

Hence m = 2 and (P,L) is the near-pencil on v = kL + 1 points and
∑

�∈L
k� =

3v − 3 = (v −m+ 1)(m+ 1). This completes the proof of Theorem 1.3. �

Let (P,L) be a finite linear space and let m be the minimum point degree. If

m = 3 then
∑

�∈L
k� =

∑

p∈P
rp ≥ 3v > 3v − 3 and if m = 2 then by Theorem 1.3

∑

�∈L
k� ≥ (v − 1)3, so Theorem 1.1 and Proposition 1.2 follow from Theorem 1.3.
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Let us end by observing that Theorem 2.5 of [2] can imply similar (and in some
cases better) bounds than Theorem [2]. For instance, if we take the dual of the linear
space (i.e. exchange the role of points and lines) and we assume that there is a point
of degree b−c (where b is the number of lines of the linear space and c is a constant),
then Inequality (8) in [2] gives a lower bound (2c + 1)b − c/2 − 5c2/2. In contrast,
Theorem 1.3 gives a lower bound less than 2cb− (c− 1)v− c2+1, which is worse for
large v.
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