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Abstract

A strong edge coloring of a graph is a proper edge coloring in which every
color class is an induced matching. The strong chromatic index of a graph
is the minimum number of colors needed to obtain a strong edge coloring.
In an analogous way, we can define the list version of strong edge coloring
and list version of strong chromatic index. In this paper we prove that if
G is a graph with maximum degree at most four and maximum average
degree less than 3, then the list strong chromatic index is at most 3Δ+1,
where Δ is the maximum degree of G. In addition, we prove that if G
is a planar graph with maximum degree at least 4 and girth at least 7,
then the list strong chromatic index is at most 3Δ.

1 Introduction

A proper edge coloring of a graph is an assignment of colors to the edges such that
adjacent edges receive distinct colors. The chromatic index χ′(G) of a graph G is
the minimum number of colors needed to obtain a proper edge coloring of G. We
denote the minimum and maximum degrees of vertices in G by δ(G) and Δ(G),
respectively. The well-known result on edge coloring is Vizing’s theorem, which says
that Δ(G) ≤ χ′(G) ≤ Δ(G) + 1.

An edge coloring is a strong edge coloring if every color class is an induced match-
ing. That is, an edge coloring is strong if for each edge uv, the color of uv is distinct
from the colors of the edges (other than uv) incident with NG(u) ∪ NG(v), where
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NG(u) and NG(v) respectively denote the neighborhood of u and v in G. The strong
chromatic index χ′

s(G) of a graph G is the minimum number of colors needed to ob-
tain a strong edge coloring of G. The concept of strong edge coloring was introduced
by Fouquet and Jolivet [8, 9].

For a graph with maximum degree at most two, we can easily obtain the following
result.

Proposition 1. If G is a graph with maximum degree one, then χ′
s(G) ≤ 1. If G is

a graph with maximum degree two, then χ′
s(G) ≤ 5.

In 1985, Erdős and Nešetřil constructed graphs with strong chromatic index
5
4
Δ(G)2 when Δ(G) is even, and 1

4
(5Δ(G)2−2Δ(G)+1) when Δ(G) is odd. Inspired

by their construction, they proposed the following strong edge coloring conjecture
during a seminar in Prague.

Conjecture 1 (Erdős and Nešetřil [6]). If G is a graph with maximum degree Δ,
then

χ′
s(G) ≤

{
5
4
Δ2, if Δ is even;

1
4
(5Δ2 − 2Δ + 1), if Δ is odd.

Andersen [1] and Horák et al. [13] independently confirmed the conjecture for
Δ = 3. Kostochka et al. [15] proved that the strong chromatic index of a subcubic
planar multigraph without loops is at most 9. Some other classes of graphs have
been investigated, such as degenerate graphs [4, 5, 18, 22, 23] and Halin graphs
[3, 16, 17, 20, 21].

The degree of a vertex v in G, denoted by deg(v), is the number of incident edges
of v in G. A vertex of degree k, at most k and at least k is called a k-vertex, k−-
vertex and k+-vertex, respectively. A kt-vertex is a k-vertex adjacent to exactly t
vertices of degree two. Two distinct edges e1 = uv and e2 are within distance two,
if e2 is incident with at least one vertex in NG(u) ∪ NG(v). The girth of a graph G
is the length of a shortest cycle in G; if G has no cycle we define the girth of G to
be ∞.

The maximum average degree mad(G) of a graph G is the largest average degree
of its subgraphs, that is,

mad(G) = max
H⊆G

{
2|E(H)|
|V (H)|

}
.

Hocquard et al. [11, 12] studied the strong chromatic index of subcubic graphs
in terms of maximum average degree. The following result was proved in [11] and it
is the best result in the literature.

Theorem 1.1 (Hocquard et al. [11]). If G is a subcubic graph, then

(a) χ′
s(G) ≤ 6 when mad(G) < 7

3
;

(b) χ′
s(G) ≤ 7 when mad(G) < 5

2
;
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(c) χ′
s(G) ≤ 8 when mad(G) < 8

3
;

(d) χ′
s(G) ≤ 9 when mad(G) < 20

7
.

In 1990, Faudree et al. [7] studied the strong edge coloring of planar graphs. They
gave an upper bound on the strong chromatic index in the following theorem.

Theorem 1.2 (Faudree et al. [7]). If G is a planar graph, then χ′
s(G) ≤ 4χ′(G) ≤

4Δ(G) + 4.

By a similar argument, we can get the following result.

Theorem 1.3. If G is a planar graph with girth at least 7, then χ′
s(G) ≤ 3χ′(G) ≤

3Δ(G) + 3.

The famous Four Color Theorem is used in the proof of Theorem 1.2. Theorem 1.3
was proved by using Grötzsch’s theorem [10], which says that the chromatic number
of a triangle-free planar graph is at most 3. If someone wants to improve the upper
bounds to 4Δ(G) and 3Δ(G) in Theorems 1.2 and 1.3 respectively by adding some
additional conditions, then all are attributed to the Δ(G)-edge-coloring problem on
planar graphs, and thus we do not address them here.

Hudák et al. [14] also proved the following two results.

Theorem 1.4 (Hudák et al. [14]). If G is a planar graph with girth at least 6, then
χ′
s(G) ≤ 3Δ(G) + 5.

Theorem 1.5 (Hudák et al. [14]). If G is a planar graph with girth at least 7, then
χ′
s(G) ≤ 3Δ(G).

Bensmail et al. [2] and the authors (in the first version of the current paper, see
http://arxiv.org/abs/1402.5677v1) independently improved the upper bound in
Theorem 1.4 to 3Δ(G) + 1.

Theorem 1.6 (Bensmail et al. [2]). If G is a planar graph with girth at least 6, then
χ′
s(G) ≤ 3Δ(G) + 1.

Similar to all the other kinds of coloring parameters, we can define the list strong
edge coloring and list strong chromatic index χ′

slist. In fact, most of the results for
strong edge coloring are also true for list strong edge coloring, since the proofs just
indicate the numbers of forbidden colors and available colors for uncolored edges in
each step.

Ma et al. [19] investigated the list strong edge coloring of subcubic graphs, and
gave the following results.

Theorem 1.7 (Ma et al. [19]). If G is a subcubic graph, then

(a) χ′
slist(G) ≤ 6 when mad(G) < 15

7
;

(b) χ′
slist(G) ≤ 7 when mad(G) < 27

11
;
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(c) χ′
slist(G) ≤ 8 when mad(G) < 13

5
;

(d) χ′
slist(G) ≤ 9 when mad(G) < 36

13
.

Zhu et al. [24] improved the above result to the following.

Theorem 1.8 (Zhu et al. [24]). If G is a subcubic graph, then

(a) χ′
slist(G) ≤ 7 when mad(G) < 5

2
;

(b) χ′
slist(G) ≤ 8 when mad(G) < 8

3
;

(c) χ′
slist(G) ≤ 9 when mad(G) < 14

5
.

In Section 2, we prove that if G is a graph with mad(G) < 3 and Δ(G) ≤ 4,
then χ′

slist(G) ≤ 3Δ(G) + 1. In Section 3, we prove that if G is a planar graph with
maximum degree at least 4 and girth at least 7, then χ′

slist(G) ≤ 3Δ(G).

2 Graphs with maximum average degree less than 3 and
maximum degree at most 4

In this section, we prove the following result with restriction on maximum average
degree and maximum degree.

Theorem 2.1. If G is a graph with mad(G) < 3 and Δ(G) ≤ 4, then χ′
slist(G) ≤

3Δ(G) + 1.

Note that Andersen [1] and Horák et al. [13] independently proved that the strong
chromatic index of a subcubic graph is at most 10. However, none of their proofs is
true for the list strong chromatic index.

Corollary 1. If G is a planar graph with girth at least 6 and Δ(G) ≤ 4, then
χ′
slist(G) ≤ 3Δ(G) + 1.

Here, we do not prove Theorem 2.1 directly, but alternately prove the corre-
sponding result for original strong chromatic index, because the following proof can
be trivially extended to the list strong chromatic index and it is easy for writing.

Theorem 2.2. If G is a graph with mad(G) < 3 and Δ(G) ≤ 4, then χ′
s(G) ≤

3Δ(G) + 1.

Proof. Let G be a minimum counterexample to the theorem. The minimum means
that every proper subgraph H of G admits a strong edge coloring with at most
3Δ(H) + 1 colors. By the minimality, the graph G is connected and δ(G) ≥ 1. By
Proposition 1, the maximum degree is at least three.

Claim 1. The minimum degree of G is at least two.
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Proof. Suppose that a 1-vertex v is adjacent to a vertex u. The graph G − v has
a strong edge coloring with at most 3Δ(G) + 1 colors. Note that the edge uv has
at most 3Δ(G) colored edges within distance two. Thus, we can assign an available
color to uv, which is a contradiction.

Claim 2. Every 2-vertex is adjacent to a 4-vertex.

Proof. Suppose that a 2-vertex v is adjacent to two 3−-vertices u and w. By the
minimality of G, the graph G− v has a strong edge coloring with at most 3Δ(G)+1
colors. Both uv and wv have at most 3Δ(G)− 1 colored edges within distance two,
thus both have at least two available colors, a contradiction.

Since mad(G) < 3, we have the following inequality:∑
v ∈V (G)

(deg(v)− 3) < 0,

which implies Δ(G) = 4 by Claims 1 and 2.

Claim 3. Let v1 be a 2-vertex with NG(v1) = {v, w1}. If v is adjacent to at least two
2-vertices, then w1 is a 4-vertex.

Proof. Suppose to the contrary that w1 is a 3−-vertex and v is adjacent to another
2-vertex v2. By the minimality of G, the graph G− v1 admits a strong edge coloring
with at most 3Δ(G) + 1 colors. The edge vv1 has at most 2Δ(G) + 4 colored edges
within distance two, and the edge v1w1 has at most 2Δ(G) + 3 colored edges within
distance two. Hence, the edge vv1 has at least one available color and v1w1 has at
least two available colors. Thus, we can color vv1 and v1w1 in this order, which is a
contradiction.

Claim 4. There is no 44-vertex in G.

Proof. Suppose that v is a 44-vertex with NG(v) = {v1, v2, v3, v4}. By the minimality
of G, the graph G− v admits a strong edge coloring with at most 3Δ(G) + 1 colors.
Note that every edge vvi has at most Δ(G) + 3 colored edges within distance two,
thus each edge has at least 2Δ(G)− 2 ≥ 4 available colors, a contradiction.

Claim 5. If a 2-vertex is adjacent to a 43-vertex, then the other neighbor is a 41-
vertex.

Proof. Let v be a 43-vertex with three 2-neighbors v1, v2 and v3. Let w1 be the other
neighbor of v1. By contradiction and Claims 3 and 4, the vertex w1 is a 42- or 43-
vertex. By the minimality of G, the graph G−v1 admits a strong edge coloring with
at most 3Δ(G) + 1 colors. Now, we remove the color on edge vv2 and denote the
resulting coloring by σ. The edge v1w1 has at most 2Δ(G) + 4 colored edges within
distance two, thus it has at least one available color, so we can assign a color to v1w1.
After v1w1 was colored, both vv1 and vv2 have at least two available colors, so we
can assign colors to them, which is a contradiction.
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Next, we use the discharging method to get a contradiction and complete the
proof. We assign an initial charge deg(v) − 3 to every vertex v, and then design
appropriate discharging rules and redistribute charges among vertices, such that the
final charge of every vertex is nonnegative, which derives a contradiction.

The Discharging Rules:

(R1) Every 41-vertex sends 1 to the adjacent 2-vertex.

(R2) Every 42-vertex sends 1
2
to every adjacent 2-vertex.

• Let v be a 4-vertex. If v is a 40-vertex, then the final charge is 4−3 = 1. If
v is a 41-vertex, then the final charge is 4− 3− 1 = 0. If v is a 42-vertex, then
the final charge is 4 − 3 − 2 × 1

2
= 0. If v is a 43-vertex, then the final charge

is 4− 3 = 1. By Claim 4, there is no 44-vertex.

• The final charge of every 3-vertex is zero.

• Let v be a 2-vertex. If v is adjacent to a 41-vertex, then the final charge is
at least 2− 3 + 1 = 0.

By Claim 5, if v is adjacent to a 43-vertex, then it is adjacent to a 41-vertex,
but this case has been treated above. So we may assume that v is not adjacent
to any 41- or 43-vertex. By Claim 2, the 2-vertex v is adjacent to a 4-vertex.
By Claim 3 and the excluded cases, the vertex v is adjacent to two 42-vertices,
and then the final charge is 2− 3 + 2× 1

2
= 0.

3 Planar graphs with girth at least 7

The following is the main result in this section.

Theorem 3.1. Let G be a planar graph with maximum degree at most Δ, where
Δ ≥ 4. If G has girth at least 7, then χ′

slist(G) ≤ 3Δ.

Similar to the previous section, we do not prove the above result directly, but
alternatively prove the following corresponding result for original strong chromatic
index. Note that the following result has been proved in [14] by using Grötzsch’s
theorem. It is well known that Grötzsch’s theorem is not true for the list vertex
coloring, so the proofs due to Hudák et al. [14] cannot be extended to the proof for
Theorem 3.1.

Theorem 3.2. Let G be a plane graph with maximum degree at most Δ, where
Δ ≥ 4. If G has girth at least 7, then χ′

s(G) ≤ 3Δ.

Proof. Let G be a minimum counterexample to the theorem. The minimum means
that every proper subgraph H of G has a strong edge coloring with at most 3Δ
colors. By the minimality, the graph G is connected and δ(G) ≥ 1.
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Claim 1. Every 1-vertex v is adjacent to a 4+-vertex u; if u is a 4-vertex, then it is
adjacent to three Δ-vertices.

Proof. Suppose that a 1-vertex v is adjacent to a vertex u. The graph G− v admits
a strong edge coloring with at most 3Δ colors. If uv has at most 3Δ − 1 colored
edges within distance two, then we can extend the coloring to G, a contradiction.
Hence, the edge uv has at least 3Δ colored edges within distance two, which implies
the claim.

Claim 2. Every 2-vertex is adjacent to a 4+-vertex.

Proof. Suppose that a 2-vertex v is adjacent to two 3−-vertices u and w. By the
minimality of G, the graph G − v admits a strong edge coloring with at most 3Δ
colors. Both uv and wv have at most 2Δ+2 ≤ 3Δ−2 colored edges within distance
two, thus each of them has at least two available colors, a contradiction.

Claim 3. Every vertex is adjacent to at least one 3+-vertex.

Proof. Suppose that v is a τ -vertex with NG(v) = {v1, v2, . . . , vτ} and it is not
adjacent to 3+-vertices. By the minimality of G, the graph G − v admits a strong
edge coloring with at most 3Δ colors. Note that every edge vvi has at most Δ+τ−1 ≤
2Δ−1 colored edges within distance two, thus each has at least Δ+1 available colors,
a contradiction.

Claim 4. If a 2-vertex v is adjacent to a 4-vertex u and a 2-vertex w, then u is a
41-vertex.

Proof. Suppose that u is not a 41-vertex. The graph G − v admits a strong edge
coloring with at most 3Δ colors. The edge uv has at most (2Δ + 2) + 1 = 2Δ + 3
colored edges within distance two, so we can assign a color to it. After the edge uv
was colored, the edge wv has at most Δ+4 colored edges within distance two, so we
also can assign an available color to it.

Claim 5. If a 2-vertex v is adjacent to a 4-vertex u and a 3-vertex w, then u is not
a 43-vertex.

Proof. Suppose to the contrary that u is a 43-vertex. The graph G−v admits a strong
edge coloring with at most 3Δ colors. The edge wv has at most 2Δ+3 colored edges
within distance two, so we can assign a color to it. After wv was colored, the edge
uv has at most (Δ + 4) + 3 = Δ+ 7 < 3Δ colored edges within distance two, so we
also can assign an available color to it.

Claim 6. Let v1 be a 2-vertex with NG(v1) = {v, w1}. If v is a 32-vertex, then w1 is
a 5+-vertex or 41-vertex.
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Proof. By contradiction and Claim 3, suppose that w1 is a 3−-vertex or 42-vertex or
43-vertex. By the minimality of G, the graph G − v1 admits a strong edge coloring
with at most 3Δ colors. Let v be adjacent to another 2-vertex v2. Now, we remove
the color on edge vv2 and denote the resulting coloring by σ. The edge v1w1 has at
most 1+(2Δ+2) = 2Δ+3 ≤ 3Δ−1 colored edges within distance two, thus we can
assign an available color to v1w1. After the edge v1w1 was colored, the edge vv1 has
at most (Δ+ 1)+ 4 = Δ+5 colored edges within distance two, and vv2 has at most
(Δ + 1) + Δ = 2Δ + 1 colored edges within distance two. Thus, both vv1 and vv2
have at least three available colors, and we can extend σ to a strong edge coloring of
G, which is a contradiction.

Claim 7. Suppose that a k-vertex v is adjacent to exactly one 3+-vertex. If u is a
neighbor of v and it is a 2−-vertex, then it is a 2-vertex, and the other neighbor of u
is a 4+-vertex.

Proof. If u is a 1-vertex, then uv has at most Δ + 2(k − 2) ≤ 3Δ − 4 edges (other
than uv) within distance two, so we can first color G− u and extend the coloring to
G, a contradiction. So we may assume that v is adjacent to exactly k− 1 vertices of
degree two.

Suppose that w is the other neighbor of u and it is a 3−-vertex. The graph
G − u admits a strong edge coloring with at most 3Δ colors. The edge uw has at
most 2Δ + (k − 1) ≤ 3Δ − 1 colored edges within distance two, so we can assign
an available color to uw. After the edge uw was colored, the edge uv has at most
Δ + 2(k − 2) + 3 ≤ 3Δ − 1 colored edges within distance two, so we also can
assign an available color to uv, and then we obtain a strong edge coloring of G, a
contradiction.

Claim 8. Let k ≥ 5 be an integer. Suppose that a k-vertex v is adjacent to exactly
two 3+-vertices. Then v is adjacent to at most k − 5 pendent vertices. Moreover, if
v is adjacent to exactly k − 5 pendent vertices, then one of the adjacent 2-vertex is
adjacent to a 4+- or 31-vertex.

Proof. Let � be the number of adjacent 1-vertices. Suppose to the contrary that
� ≥ k − 4 ≥ 1, and uv is a pendent edge incident with v. Note that uv has at most
2Δ + (� − 1) + 2(k − 2 − �) = 2Δ + 2k − �− 5 ≤ 3Δ edges (other than uv) within
distance two, a contradiction.

Suppose that v is adjacent to exactly k− 5 pendent vertices, and three 2-vertices
v1, v2, v3. Let NG(v1) = {v, w1}, NG(v2) = {v, w2} and NG(v3) = {v, w3}. Suppose
that all the vertices w1, w2 and w3 are 2- or 32-vertices. By the minimality, G − v1
has a strong edge coloring with at most 3Δ colors. Now, we remove the colors on
edges v2w2 and v3w3. The edge vv1 has at most 2Δ + (k − 3) + 2 ≤ 3Δ− 1 colored
edges within distance two, so we can assign an available color to vv1. After vv1 was
colored, we can assign available colors to v1w1, v2w2, v3w3 in this order.

From Euler’s formula, we have the following equality:∑
v ∈V (G)

(
5

2
deg(v)− 7

)
+

∑
f ∈F (G)

(deg(f)− 7) = −14. (1)
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Similar to the previous section, we use the discharging method to get a contra-
diction. We first assign an initial charge 5

2
deg(v)−7 to every vertex v and deg(f)−7

to every face f . We design appropriate discharging rules and redistribute charges
among vertices and faces, such that the final charge of every vertex and every face
is nonnegative, which leads to a contradiction.

The Discharging Rules:

(R1) Every 1-vertex receives 2 from its incident face.

(R2) Every 1-vertex receives 5
2
from the adjacent vertex.

(R3) Every 41-vertex sends 3 to the adjacent 2-vertex.

(R4) Every 42-vertex sends 3
2
to every adjacent 2-vertex.

(R5) Every 43-vertex sends 1 to every adjacent 2-vertex.

(R6) If a 2-vertex v is adjacent to a 5+-vertex u and a 2-vertex, then v receives 2
from u.

(R7) If a 2-vertex v is adjacent to a 42-vertex u and a 31-vertex w, then v receives
1
2
from w.

(R8) If a 2-vertex v is adjacent to a 5+-vertex u and a 31-vertex w, then v receives
3
2
from u and 1

2
from w.

(R9) If a 2-vertex v is adjacent to a 5+-vertex u and a 32-vertex w, then v receives
2 from u.

(R10) If a 2-vertex v is adjacent to a 5+-vertex u and a 4+-vertex w, then v receives
1 from u.

• If f is a face incident with t vertices of degree one, then the degree of f is at
least 7 + 2t, and then the final charge of f is at least (7 + 2t)− 7− 2t = 0 by
(R1).

• If v is a 1-vertex, then it receives 2 from incident face and 5
2
from the adjacent

vertex, and then the final charge is at least 5
2
−7+2+ 5

2
= 0 by (R1) and (R2).

• Let v be a 2-vertex. By Claim 1, the vertex v is not adjacent to 1-vertices.
By Claim 2, the vertex v is adjacent to a 4+-vertex.

If v is adjacent to a 41-vertex, then the final charge is at least 5
2
×2−7+3 = 1

by (R3). So we may assume that v is not adjacent to 41-vertices.

If v is adjacent to a 4+-vertex u and a 2-vertex w, then according to Claim 4
and excluded case, the vertex u is a 5+-vertex, and then the final charge of v
is 5

2
× 2− 7 + 2 = 0 by (R6).
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If v is adjacent to a 4-vertex u and a 3-vertex w, then according to Claim 5, 6
and excluded cases, the vertex u is a 42-vertex and w is a 31-vertex, and then
the final charge is 5

2
× 2− 7 + 3

2
+ 1

2
= 0 by (R4) and (R7).

If v is adjacent to a 5+-vertex u and a 31-vertex w, then the final charge is
5
2
× 2− 7 + 3

2
+ 1

2
= 0 by (R8).

If v is adjacent to a 5+-vertex u and a 32-vertex w, then the final charge is
5
2
× 2− 7 + 2 = 0 by (R9).

Now, we assume that v is adjacent to two 4+-vertices. If v is adjacent to two
42-vertices, then the final charge is 5

2
×2−7+ 3

2
+ 3

2
= 1 by (R4). If v is adjacent

to a 42-vertex and a 43-vertex, then the final charge is 5
2
× 2 − 7 + 3

2
+ 1 = 1

2

by (R4) and (R5). If v is adjacent to two 43-vertices, then the final charge is
5
2
× 2 − 7 + 1 + 1 = 0 by (R5). If v is adjacent to a 5+-vertex, then the final

charge is at least 5
2
× 2− 7 + 1 + 1 = 0 by (R10).

• Let v be a 3-vertex. By Claim 1, the vertex v is not adjacent to 1-vertices.
If v is a 30-vertex, then the final charge is 5

2
× 3 − 7 = 1

2
. If v is a 31-vertex,

then the final charge is at least 5
2
× 3 − 7− 1

2
= 0 by (R8) and (R7). If v is a

32-vertex, then the final charge is 5
2
× 3− 7 = 1

2
by (R9).

• Let v be a 4-vertex. If v is adjacent to a 1-vertex, then according to Claim 1
and (R2), the final charge is 5

2
×4−7− 5

2
= 1

2
. So we may assume that v is not

adjacent to 1-vertices. If v is a 41-vertex, then the final charge is 5
2
×4−7−3 = 0

by (R3). If v is a 42-vertex, then the final charge is 5
2
× 4 − 7 − 2 × 3

2
= 0 by

(R4). If v is a 43-vertex, then the final charge is 5
2
× 4− 7− 3× 1 = 0 by (R5).

No 4-vertex is adjacent to four 2-vertices. If v is adjacent to four 3+-vertices,
then the final charge is 5

2
× 4− 7 = 3.

• Let v be a k-vertex with k ≥ 5. If v is adjacent to at least three 3+-vertices,
then the final charge is at least 5

2
k − 7 − 5

2
(k − 3) = 1

2
. By Claim 3, we may

assume that v is adjacent to one or two 3+-vertices. If v is adjacent to exactly
one 3+-vertex, then v has the final charge at least 5

2
k−7− (k−1) = 3

2
k−6 > 0

by Claim 7 and (R10).

Assume that v is adjacent to exactly two 3+-vertices. Let � be the number
of adjacent 1-vertices. If 0 ≤ � ≤ k − 6, then the final charge of v is at least
5
2
k−7− 5

2
�−2(k−2−�) = 1

2
(k−�)−3 ≥ 0. By Claim 8, we have that � = k−5,

and v is adjacent to exactly three 2-vertices, one of which is adjacent to a 4+-
or 31-vertex. Thus, the final charge is at least

5
2
k−7− 5

2
(k−5)− 3

2
−2−2 = 0

by (R2), (R8), (R9) and (R10).

Corollary 2. If G is a planar graph with maximum degree at least 4 and girth at
least 7, then χ′

s(G) ≤ 3Δ(G).
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4 Concluding remark

We could not find an example regarding the tightness of the upper bounds we have
shown. So we expect that the upper bounds might be further improved.
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[6] P. Erdős, Problems and results in combinatorial analysis and graph theory,
Discrete Math. 72 (1-3) (1988), 81–92.
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