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Abstract

Given six colors, a color cube is one where each face is single-colored and
each color appears on some face. The Color Cubes puzzle is a variation
of a classic problem due to P. MacMahon: one starts with an arbitrary
collection of color cubes of unit length and tries to find a subset that can
be arranged into an nxn xn cube where each face is a single color. In this
paper we determine the minimum size of a set of cubes that, regardless
of its composition, guarantees the construction of an n x n x n cube’s
frame, its corners and edges. We do this for all n, and find that for n > 4
one has the best possible result, that as long as there are enough cubes
to build a frame it can always be done. Part of our analysis involves
the Sg action on the set of color cubes. In addition to the problem
simplification it provides, this action also gives another way to visualize
the outer automorphism of Sg.
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1 Introduction

Given a palette of six colors, a pleasant combinatorial argument shows that there
are 30 distinct ways to color a cube so that each cube face is one color and all six
colors appear on some face. The resulting set of 30 cubes can be used to construct
a number of puzzles:

1. Select one color cube. Find eight other color cubes with distinct colorings that
can be assembled into a 2 x 2 x 2 larger version of the selected cube.

2. Proceed as above, but select the cubes so that all touching internal faces have
matching colors as well.

3. Find 27 distinct color cubes that can be used to construct a 3 x 3 x 3 cube
where each face is one color.

Percy MacMahon asked all three questions in [16, pp. 42-46]. Solutions to the first
two problems appear in MacMahon’s text, and a solution to the third appears on
the website [14]. MacMahon (1854 — 1929) may be best known for authoring one of
the first books on enumerative combinatorics [15] and for serving as the President
of the London Mathematical Society. However, he also had a proclivity towards
mathematical recreations, and his cube puzzles in particular have become classic—
they appear in Martin Gardner’s writings a number of times, including in “Thirty
Color Cubes” (Chapter 6 of [9]) and “The 24 Color Squares and the 30 Color Cubes”
(Chapter 16 of [10]).

The work in this paper is motivated by the third problem on the list. It is also an
extension of results in [4], where one takes n® arbitrary color cubes and determines
when it is possible to construct an n x n x n cube with single-color faces. (This is
the formal Color Cubes puzzle.) The following is the main theorem from [4].

Theorem 1.1. Let n > 2. Given n® arbitrary color cubes, it is always possible to
solve the Color Cubes puzzle.

As noted in [4], there is another way to look at this puzzle that is a better indicator
of its difficulty. Under the assumption that every color appears on every cube, any
cube can be used to make up the (n —2) x (n —2) x (n — 2) interior of the n x n xn
cube as well as the (n — 2) x (n — 2) interior of its six faces. The only cubes that
cannot be chosen arbitrarily are those that lie on its corners and edges, the frame of
the n x n x n cube. Therefore, once a cube’s frame has been constructed the Color
Cubes puzzle is solved. The number of cubes in the frame grows linearly with n, so
it is an interesting question to determine the minimum number of cubes necessary
to complete a frame. The focus of this paper is Conjecture 5.4 in [4], which posits
that for n sufficiently large, when there are enough cubes to fill in a frame then one
can actually construct it. Our main results, which are the best possible, are:

Theorem A. When n = 2 or 3, any set of 24 color cubes is sufficient to build a
frame.
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Theorem B. When n > 4, any set of 12n — 16 color cubes is sufficient to build a
frame.

The proof of the minimum number of cubes needed to guarantee construction of
the frame depends on the frame’s size, so we consider separately the cases n = 2,
n = 3, and n > 4. The proof for the case n = 2 already exists in the literature as a
paper by Haraguchi [11], and is essentially computational. We include an alternative
proof that also relies on some computer searches, but which we feel is more explicit.
Many of the arguments in this paper and [11] both involve a particular arrangement
of the 30 distinct color cubes—what we call the tableau—due to John H. Conway.
During our proof of the n = 2 case we investigate the Sz action induced by color
permutation on the tableau and determine a number of its properties. This action
allows us to simplify many of our arguments. As a bonus, the Sy action on the tableau
provides another concrete demonstration of the action of an outer automorphism of
SG-

The Color Cubes puzzle is just one of a number of cube stacking puzzles. A
particular instance of the Color Cubes puzzle with n = 2 is known as Eric Cross’s
“Eight Blocks to Madness,” where one tries to arrange a collection of eight cubes into
a 2 x 2 x 2 cube. Another well-known cube stacking puzzle is Instant Insanity®, a 4-
color puzzle whose elegant graph theoretic solution is presented in many introductory
texts on combinatorics (see [6], for example).

This paper is organized as follows. In the next section we introduce notation and
a formal statement of the Color Cubes puzzle. In Section 3 we describe the tableau
and some of its properties. We also analyze the Sg action on the tableau and show
that it is related to the outer automorphism of Ss. In Section 4 we cover the case
n = 2, in Section 5 the case n = 3, and in Section 6 the cases n > 4 . In Section
7 we address the complexity of a generalization of the Color Cubes puzzle with n
colors, and show that it can be solved in polynomial time. We conclude with some
open questions in Section 8.

2 Definitions and Problem Statement

In what follows, we will assume that all cubes are colored with six colors unless
we explicitly state otherwise. To distinguish between different cubes, we set up an
equivalence and say that cubes that have the same coloring up to direct isometry of
R3 are of the same variety. As mentioned in the Introduction, there are 30 distinct
varieties of color cubes. A solution is an arrangement of n3 cubes that forms an
n X n x n cube with single-color faces. A corner solution is a set of eight cubes,
appropriately oriented, that fills the corner positions of a solution. We say that an
n X n x n solution is modeled on a cube if the solution and its model are of the
same variety. We note that a solution and its corner solution are always of the same
variety.

We also track relative positions of face colors on the cube. The unordered pair of
colors that are opposite each other on a cube form an opposite pair. Similarly, the
unordered pair of colors on faces that share an edge of a cube are an adjacent pair.
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We call the three colors on the faces that meet at the corner of cube a corner triple.
Since order matters for corner triples, we read the colors clockwise around the corner.
Furthermore, two corner triples are equivalent if one is a cyclic permutation of the
other. That is, (2,3,6) ~ (6,2,3) ¢ (6,3,2). Corner triples are mirror image corner
triples if they contain the same colors but are not equivalent. On a given cube, every
possible unordered pair of distinct colors appears either as an adjacent pair or an
opposite pair. Therefore, every cube contains 12 of the 15 possible adjacent pairs,
and 8 of the 40 possible corner triples.

In general, we will denote a generic cube by c¢. One variety that very closely
resembles ¢ is its mirror image c¢*; the varieties ¢ and ¢* together form a pair of
marror cubes. Mirror cubes have the same opposite and adjacent pairs, but have
mirror image corner triples. We have the following useful characterization.

Lemma 2.1. The varieties ¢ and ¢* are related through the exchange of an opposite
pair. Therefore, ¢ and c¢* are the only two varieties with the same opposite pairs.

Proof. The first claim follows by visualizing a mirror placed parallel to some face
of a variety c. For the second claim, if two varieties have the same opposite pairs,
then they can be oriented so at least two of the opposite pairs are in the same
orientation. U

As mentioned in the Introduction, the Color Cubes puzzle is solved once the frame
is complete. In an n x n X n cube, the n-frame consists of 12(n —2) +8 = 12n — 16
cubes. We incorporate this definition into a more refined version of our puzzle.

The Color Cubes Puzzle (Frame Version): Given a set of cubes, determine
whether it is possible to construct some n-frame.

The solution to the Color Cubes puzzle in [4] involved the construction of a frame
given an arbitrary collection of n® cubes. Since the number of cubes in the frame
grows linearly with n, starting with n® cubes seems generous. In fact, since there
are only 30 distinct cube varieties, when 12n — 16 < (g—g}, the pigeonhole principle
guarantees a solution for the frame using just one variety of cube. This happens for
n > 19. We are interested in the other direction, determining small sets of cubes

that can still be used to build a frame.

Definition 2.2. Let the frame number, denoted by fr(n), be the smallest value so that
given a set of fr(n) cubes, one is guaranteed to be able to build an n-frame, regardless
of the set’s component cube varieties.

Knowing the value of fr(n) gets to the heart of the Color Cubes puzzle, so that’s
where we focus our attention.

3 The cube tableau and automorphisms of Sg

We describe the tableau, an arrangement attributed to J. H. Conway [14], of the
30 cube varieties into a 6 x 6 matrix with blank diagonal entries. A copy of this
tableau can be found in the Appendix. Each of the 30 slots contains the net of a



E. BERKOVE ET AL./ AUSTRALAS. J. COMBIN. 68 (1) (2017), 71-93 75

cube variety, and under each net are three pairs of numbers in braces which represent
the variety’s opposite faces. J. H. Conway used the tableau to provide a complete
answer to puzzle 2 in the Introduction [14]. In Conway’s notation, tableau rows are
labeled A through F and tableau columns are labeled a through f, giving tableau
entries the following “coordinates.”

Ab Ac Ad Ae Af

Ba Bc Bd Be Bf
Ca Cb Cd Ce Cf
Da Db Dc De Df
Ea Eb Ec Ed Ef

Fa Fb Fec¢ Fe Fe

The collection of the 30 distinct cube varieties contains a great deal of structure,
much of which is visible in the tableau. P. Cameron describes the construction of
the tableau in a WordPress blog dealing with Sg, where he also lists some of its
properties [5].

1. Each of the 15 possible color pairs appears exactly once in each row and each
column of the tableau. Geometrically, this means that two colors are an oppo-
site pair on exactly one variety per row and per column.

2. The varieties exhibit mirror symmetry across the diagonal line of the tableau.
(In Conway’s nomenclature, varieties Xy and Yx are mirror cubes.) This can
also be seen in the tableau in the Appendix by Lemma 2.1, since mirror cubes
have the same opposite pairs.

3. There are 15 combinations of six colors into three sets of two, and all 15 are
represented in the nets above the diagonal and in the nets below the diagonal.

There is a natural Sg action on the tableau that arises from permuting the six face
colors. Furthermore, the action provides a way to visualize the outer automorphism
of Sg. Following Cameron and using terminology that goes back to Sylvester [18],
we call an unordered pair of distinct colors a duad and a collection of three duads
a syntheme. A collection of five synthemes such that each of the 15 duads appears
exactly once is a pentad. There are six distinct pentads. Duads, synthemes, and
pentads correspond to opposite pairs, the three opposite pairs in a cube, and the
collection of such pairs in each row and column of the tableau, respectively.

Lemma 3.1. A permutation of the color palette induces a permutation that sends
rows to rows and columns to columns. Once the permutation is determined on the
top row of the tableau, the action on the rest of the tableau is uniquely determined.

Proof. A color permutation of the palette takes pentads to pentads, so it is sufficient
to show that a row isn’t taken to a column. Since all permutations in Sg are generated
by transpositions, we will show that applying a transposition sends rows to rows.
Let (ai, az) be the transposition. There is precisely one variety in each row with the
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duad {aq, as} as part of its syntheme; fix a row and call this variety ¢. By Lemma
2.1, exchanging colors a; and as on ¢ has the geometric effect of sending it to its
mirror image ¢*. That means that ¢’s row pentad is sent either to the row pentad
of ¢* or the column pentad of ¢*. Take another variety d in ¢’s row with syntheme
{ar1a3}{asas}{asas}. Applying (a1, az) to d yields the syntheme {asas}{aia4}{asas},
which by Lemma 2.1 is not the same as d*. Since d* is part of ¢*’s column pentad and
already contains the duad {asae}, (a1, as) must send d to ¢*’s row pentad. Finally,
since the tableau has mirror symmetry across the diagonal, once the action on the
rows is determined, so is the action on the columns. O

Lemma 3.2. Consider the set of permutations of the color palette that fix a distin-
guished variety in the top row of the tableau. This set is isomorphic to Sy, and it
acts faithfully on the non-distinguished cubes in the top row.

Proof. The stabilizer of the distinguished variety is its group of direct isometries
in R3 which is isomorphic to S;, and by Lemma 3.1, any palette permutation that
fixes the distinguished variety sends its row to itself. A simple check shows that at
least one element of the stabilizer acts non-trivially on the tableau. Further, if a
permutation fixes every variety in the first row, by Lemma 3.1 it fixes every variety
in the tableau and must be in the tableau stabilizer, which is a normal subgroup of
Sg. The only possible non-trivial normal subgroup, Ag, is clearly too large to be this
stabilizer. We conclude that the action is faithful. O

Corollary 3.3. Let o be the map that takes o € Sg to its action on the six pentads
via permutation of the color palette. Then o is an outer automorphism of Sg.

Proof. Given a transposition (aj,as), since every row and column in the tableau
contains exactly one cube with the duad {aj,as}, each of these cubes gets sent
to a different row, the row containing its mirror image. Therefore, the effect of
(a1, az) on the tableau is to swap three pairs of rows. This map cannot be an inner
automorphism since it does not preserve cycle structure. O

To our knowledge Lemmas 3.1 and 3.2, and Corollary 3.3 have not appeared in
print. Together, they show that the tableau provides a particularly nice demonstra-
tion of the action of the outer automorphism of Sg. The Sg action on the tableau
joins other recent results of this type [13], and we believe it deserves to be better
known.

There are additional relationships between varieties in the rows and columns
which we will use in subsequent sections. Before we state these results we recall two
lemmas from [4].

Lemma 3.4. [}, Lemma 2.6] Two cubes share exactly nine, ten, or twelve adja-
cent pairs according to whether they share exactly zero, one, or three opposite pairs,
respectively.

Lemma 3.5. [/, Lemma 2.7] Given two varieties:

1. If they have no opposite pairs in common, then they share zero or two corner
triples.
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2. If they have one opposite pair in common, then they share exactly two corner
triples.

3. If they have three opposite pairs in common, then they share zero or eight corner
triples.

The proof of Lemma 3.5, which we summarize here, follows from the description of
how a variety c is related to the other 29 cube varieties. There are eight varieties that
arise from choosing a corner triple of ¢ and cyclically permuting its colors clockwise
and counterclockwise. These varieties share two corner triples but no opposite pairs
with c¢. Their mirror images form eight new varieties which share no corner triples
and no opposite pairs with c. There are twelve varieties that come from exchanging
an adjacent pair on c. These varieties all share two adjacent corners and one opposite
pair with c¢. The last variety is ¢*, which shares three opposite pairs and no corner
triples with c¢. This characterization also provides additional structure to the tableau,
as well as a means for its construction.

Corollary 3.6. Fix a distinguished variety ¢ in position Ab in the tableau. Then
1. The variety Ba s c*.

2. The eight varieties related to variety ¢ by cyclically permuting a corner followed
by a mirror image are in column b and row A.

3. The eight varieties related to variety ¢ by cyclically permuting a corner are in
column a and row B.

4. The twelve varieties related to variety ¢ by edge flipping are in columns ¢, d,
and e, and rows C and D, and F.

Proof. Since the tableau has mirror symmetry, ¢* is in position Ba. Column b and
row A are pentads containing variety c, so these eight varieties share no corners
with ¢. From the characterization in Lemma 3.5 and the discussion afterwards,
these varieties are formed from ¢ by cyclically permuting a corner followed by a
mirror image. By checking cases, one finds that the varieties that are formed using a
clockwise cyclic permutation constitute one pentad, and the varieties that are formed
using a counterclockwise cyclic permutation form the other. Using mirror symmetry,
column a and row B are formed from c by cyclically permuting a corner. That leaves
the last twelve varieties in the claimed positions. O

Corollary 3.7. Let Xy be an arbitrary variety in the tableau. Then the varieties
that share no corners with variety Xy are precisely the variety Yz, the varieties in
row X, and the varieties in column y.

Proof. The variety Yx is the mirror image of Xy, so shares no corner triples with
it. The statement about the varieties in row X and column y follows from Corollary
3.6, once we note by Lemma 3.1 that there is a permutation of the color palette that
moves variety Xy to the distinguished position. O
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4 Building a 2 x 2 x 2 solution: fr(2) =24

In this section we calculate fr(2). This calculation is also a main result, Theorem 3,
in Haraguchi’s paper [11]. Haraguchi uses mirror symmetry of the tableau and the
existence of pentads along with constraint programming and integer programming
to provide what he describes as a “computer-assisted proof” of the value of fr(2). In
addition, his Theorem 2 is the same as our example below of a collection of 23 cubes
without a corner solution. Our proofs also incorporate some computational results
(namely Lemmas 4.1 and 4.2), but most differ from those in [11] in that they utilize
properties of the tableau to a greater extent, and provide a more detailed look into
why sets of 24 cubes always have solutions.

In [4] it was (incorrectly) conjectured that fr(2) = 23. Using properties of the
tableau from Section 3, one can quickly construct a counterexample. We first describe
a way to keep track of the cubes in an arbitrary set using the tableau. A set may
contain many cubes of one variety; if variety Xy occurs k times in the set, put k into
Xy’s position in the tableau. We call k£ the multiplicity of the variety; if £ > 8 then
there is a corner solution modeled on Xy. If variety Xy is not part of the set, we put
a dot in its position in the tableau.

Consider the following collection of 23 cubes, which is also given in Theorem 2
n [11]. Within the five cubes of one row pentad, take seven copies of three varieties
and one copy of the other two. By Lemma 3.1 there is a color automorphism that
moves one variety with multiplicity seven to position Ab in the tableau. By Lemma
3.2 there is another automorphism that puts the row A into the following form:

T 7T 7T 1 1

This collection cannot be used to build a corner solution modeled on any variety in
the top row of the tableau since no two varieties in this row share corners. One also
can’t build a corner solution modeled on any variety Xa in column a. Variety Xa
shares no corners with variety Ax, and Lemma 3.5 implies that the other varieties
in row A can contribute at most two corners to the frame. However, at least one
variety only appears once in the collection. In a similar way, a variety Xy in columns
b through f shares no corners with variety Ay, and the remaining four cube varieties
are insufficient to construct a corner solution.

We claim that fr(2) = 24. Our argument uses partitions of the set of 24 cubes into
k subsets, where the size of a subset determines a variety’s multiplicity. Depending on
context we write our partitions in one of two forms, as 5433212 or (5,4,4,4,3,2,1,1).
Both tell us that the set of 24 cubes is divided into eight distinct varieties, one variety
with multiplicity 5, three with multiplicity 4, etc. Once we fix a partition, we still
need to assign varieties to the multiplicities, and with a set of 30 possibilities the
number of ways to do this is quite large. For example, the number of cases we have to
check to ensure that the partition 5433212 of 24 cubes always has a solution is about
1.97 x 10%. Instead of checking them all, we determine conditions on the structure
of the partition that will always yield a solution. This is the focus of the next two
lemmas.
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Lemma 4.1. Any collection that contains ten distinct varieties always has a corner
solution.

Proof. The proof is by computer search, written in Mathematica. One builds the
cube-corner bipartite graph, where one set of vertices is the set of 30 possible cubes
and the other set is the 40 possible corners. Edges in the cube-corner graph connect
varieties in the first vertex set with their corners in the second. The algorithm
proceeds by choosing a subset of ten varieties from the 30 possible. Rather than
work with the entire bipartite graph each time, for each subset the algorithm loops
through all 30 possible corner solutions, building the subgraph of the cube-corner
graph where one set of vertices is the subset of ten varieties, and other set is the
set of eight corners from the variety of the potential corner solution. Mathematica
then determines a maximum matching, where a matching of size eight means the
distinguished corner solution can be assembled from the subset. For every fixed
subset, the algorithm always finds a variety that yields a maximum matching. O

At first glance, it appears that the proof of Lemma 4.1 requires checking (fg) ~
3.0 x 107 cases, but we can use the tableau to reduce this number somewhat. Given
ten distinct varieties in the tableau, at least two are in the same row. This row can
be moved to the top of the tableau using the Sg action, and furthermore we may
assume that the two varieties are Ab and Ac. This leaves (28) ~ 3.1 x 105 cases,

8
about one tenth of the previous number. This shorter computation still requires

almost four hours of CPU time using a 2.70 GHz Intel Core i7-3740QM CPU with a
64-bit operating system and 8 GB of memory.

The result in Lemma 4.1 implies that it is sufficient to consider subsets of 24 cubes
comprised of between four and nine different varieties, a total of 354 partitions. We
use the next lemma, which is also proven by computer search and is a small extension
of a result in [4], to show that the vast majority of these contain a subset that forms
a corner solution, regardless of the varieties that appear.

Lemma 4.2. (See [}], Lemma 4.1.) Given the following sets of cubes, one can
always construct a corner solution.

o 18 cubes consisting of two varieties with multiplicity 7 and any four other va-
rieties.

e 16 cubes consisting of two varieties with multiplicity 6 and two varieties with
multiplicity 2.

e 19 cubes consisting of two varieties with multiplicity 5 and three varieties with
multiplicity 3.

e 16 cubes consisting of three varieties with multiplicity 4 and two varieties with
multiplicity 2.

e 18 cubes consisting of six varieties with multiplicity 3.

e 1/ cubes consisting of seven varieties with multiplicity 2.
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We note that Lemma 4.1 in [4] erroneously claimed that one can always construct
a corner solution from two varieties with multiplicity 4 and four with multiplicity 2.
The correct statement is above, that three varieties with multiplicity 4 and two with
multiplicity 2 suffices. Interested readers may contact the first author for copies of
the code that was used to prove Lemmas 4.1 and 4.2.

Lemma 4.2 immediately implies the existence of a corner solution for all but
25 partitions. (One partition for which the lemma does not apply, for example, is
753221%.) The next three lemmas provide tools to handle many of these remaining
cases.

Lemma 4.3. Given a set of eight cubes consisting of four varieties from any pentad,
each with multiplicity 2, one can always construct a corner solution.

Proof. Taking mirror images if necessary, we may assume the pentad is a row pentad.
Then by Lemmas 3.1 and 3.2 we may assume that the varieties are in the top row
(row A) and in columns b through e of the tableau, like so:

2 2 2 2

By Corollary 3.7, each of these varieties shares exactly two corners with varieties Bf,
Cf, Df, or Ef. Furthermore, the corners are distinct, since the top row is a pentad.
So there are at least four possible corner solutions. O

The next result is taken from [4] and has a slightly different flavor, focusing on
how many corners of a solution can be filled.

Lemma 4.4. (See [}/, Lemma 4.4.) Fiz a variety c. Given k < 4 distinct varieties
that share corners with ¢, one can always use these varieties for k distinct corners
in a solution modeled on c.

Lemma 4.5. Given a decreasing partition (a1, aq, . .., a,) with ay > 4, ifay =7 and
as +mn > 13, then there is a subset of eight cubes that forms a corner solution. The
same is true if a; = 6 and as +n > 14.

Proof. For simplicity, we will refer to the variety with multiplicity a; as variety i. The
main idea of this proof is to determine conditions when there are enough varieties
that share corners with variety 2 to complete a corner solution modeled on it.

By using the Sg action, we may assume that variety 1, which appears 7 times, is in
position Ab in the tableau. Then by Corollary 3.7, there is automatically a solution
unless the remaining cube varieties are among the nine in row A, column b, and the
mirror variety Ba. Therefore, variety 2 is either in a pentad with variety 1 (we may
assume it is the row pentad) or is variety 1*. By using a color automorphism, we may
further assume that variety 2 is in position Ac or Ba as in the diagrams below. Boxes
represent the cube varieties that do not automatically result in a corner solution as
noted in Corollary 3.7.
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Case Ac Case Ba

Case Ac: Variety 2 shares two corners with variety 1* and all the varieties in the
column’s boxed positions. By Lemma 4.4, when k < 4 of these varieties are present,
then they can be used to construct k distinct corners of a corner solution modeled
on variety 2. Since ay > 4 and there are only five slots in the top row of the tableau,
we can always build a corner solution when as + (n —5) > 8.

Case Ba: Here, variety 2 shares two corners with every boxed variety, so as +
(n — 2) > 8 (equivalently, as + n > 10) varieties guarantees a corner solution. This
condition automatically holds when as +mn > 13.

Finally, if a; = 6, then one variety with multiplicity 1 can be in the dotted
positions in the tableau without yielding a corner solution. Now there are 7 distinct
corners available to build a corner solution modeled on variety 1, and we'’re in the
prior case. 0

We apply Lemma 4.5 to the 25 partitions and end up with nine remaining cases
to consider:

75312, 752413, 65313, 743%21%, 65%41%, 5111, 73213, 6433213, 5%41°

These cases can all be handled by ad hoc methods, although broadly speaking the
techniques are similar to those in the proof of Lemma 4.5. The main difference is
that we consider when multiple copies of a variety contribute more than one corner
to a solution. In general, one places variety 1 in position Ab. Variety 2 is then in
either position Ac or Ba. The case of position Ba is usually easy to analyze. When
a; = 7 (respectively, 6), we apply the condition from the Ba case of Lemma 4.5 and
confirm that as +n > 10 (respectively, 11) holds. Also, Lemma 4.3 implies that
if there are four varieties in the same pentad with multiplicity greater than 1 then
there is a solution, so we avoid that situation too. Keeping these observations in
mind, we sketch arguments for the two most involved of the remaining cases. The
other seven cases are similar, but easier.

1. The partition 73%213: Let a; = 7 and as = 3 as in the Case Ac. We note
that all varieties in positions Ac — Af in row A share two distinct corners with
all varieties in positions Cb — Fb in column b. By Lemma 4.3, four distinct
varieties with multiplicity at least 2 in variety 1’s row or column pentad are
sufficient to build a corner solution. The only other possibilities, up to order
in the row and column, are below. (Variety 9 can be in either of the boxed
positions.)
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7T 3 3 1 0O 7 3 3 1 0O
9 e 3 S
3 3
3 2
1 1
O O
Case 1 Case 2

In both cases, the three varieties in positions Cb, Db, and Eb can contribute
five distinct corners to a corner solution modeled on the variety in position
Ac, which has multiplicity 3. These are enough copies to complete the corner
solution.

2. The partition 5*1%. In this case, there can be up to two varieties in dotted
positions in the tableau. However, if one of those varieties has multiplicity 5
then there is a corner solution modeled on that variety; variety 1 shares two
corners with it, as do all except for two varieties in variety 1’s row and column
pentads. Similarly, if variety 2 is in position Ba then there is a solution; arguing
as in Lemma 4.5, ag +n = 13 > 12. Therefore, the three remaining varieties
with multiplicity 5 are in variety 1’s row or column. If they are all in the same
pentad, then Lemma 4.3 implies a solution. Otherwise, the remaining varieties
split two and one (say into variety 1’s row and column respectively). Then
the two varieties in variety 1’s row provide three corners for a corner solution
modeled on the variety in the column.

Since there are corner solutions for all possible partitions we have the main result
of this section and the first part of Theorem A. (See also Theorem 3 from [11].)

Theorem 4.6 (Theorem A, part 1). Given any set of 24 cubes, there is always a
subset from which one can construct a corner solution. Consequently, fr(2) = 24.

5 Building a 3 x 3 x 3 solution: fr(3) =24

In contrast to the 2 x 2 x 2 case, determining fr(n) for n > 2 requires knowledge of
more than the corner solution. This is reflected in the proofs in this section, which
have a different flavor than the case n = 2. In order to determine how to fill the edges
of the frame, we need to know a bit more about how cube varieties are related to each
edge. This is the subject of the next few results, which describe how to construct
partial frames given cubes of a particular type, how to place cubes into edges of
the frame, and how cubes that share an opposite pair are related. In addition, these
results provide a number of conditions which, when satisfied, guarantee the existence
of a corner solution. We use these results both in this section and in Section 6.

Lemma 5.1. Given a corner solution and k(n—2) cubes that share k edge pairs with
the corner solution, then it is possible to place all k(n — 2) cubes into the n-frame.
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Proof. By Lemma 3.4, k£ = 9,10, or 12. Consider a bipartite graph where one set
of vertices, {u}, represents the k(n — 2) cubes, and the other set of vertices, {v},
represents the 12(n — 2) edge positions on the frame. One connects vertices u and
v whenever u can be used to fill position v in the frame. By hypothesis, all vertices
u have degree k(n — 2). Therefore, by Hall’s theorem there is a matching of size
k(n — 2), the size of the vertex set {u}. This is the required assignment. O

Lemma 5.2. Fiz ¢, one of the six cube varieties that share one opposite pair. The
variety ¢ shares no corners with c*, and shares exactly two unique corners with each
of the other four varieties.

Proof. Assume that the opposite pair are the colors 5 and 6 (with 5 facing up), and
that the colors around the girth of ¢ are given by the cyclic permutation (1234). The
cyclic permutations for the other five varieties are (1243), (1324), (1342), (1423),
and (1432). In the girth, the first four share exactly one ordered adjacent pair with
¢, namely {1,2}, {4, 1}, {3,4}, and {2, 3} respectively. Each ordered adjacent pair
gives rise to a pair of corners that match ¢’s. The last cube is c¢*. O

Corollary 5.3. Take four copies of ¢ and two copies each of two other varieties that
share the same opposite pair. If the two other varieties are not c*, then the eight
cubes can be assembled into a corner solution modeled on c. The same is true for six
copies of ¢ and two cubes that are not of the same variety as c*.

Lemma 5.4. Given seven cubes each of varieties ¢ and ¢* along with one cube of
any other variety, one can find a subset of eight cubes that forms a corner solution
modeled on either variety ¢ or variety c*.

Proof. In the tableau, assume that c is the distinguished variety. By Corollary 3.7,
any variety that isn’t ¢ or ¢* shares two corners with either c or c*. O

Lemma 5.5. [4, Lemma 3.2] Given 15 cubes that share one opposite pair, it is always
possible to find a subset of eight that forms a corner solution.

Proof. A sketch is as follows: Find the variety, ¢, that occurs with largest multiplicity
in the set of 15. If variety ¢ occurs seven times, then a set of seven copies each of ¢
and ¢* does not have a subset that forms a corner solution, but the set formed by
adding any other variety does by Lemma 5.4. The cases where variety c occurs few
than seven times are similar, and have lower thresholds. O

From Section 4 we know that fr(2) = 24, so fr(3) > 24. We now show that this
inequality is sharp, which is the second part of Theorem A. We base our proof on
the technique used in Theorem 3.4 of [4].

Theorem 5.6 (Theorem A, part 2). The frame of a 3 X 3 X 3 puzzle can always be
completed given 24 arbitary cubes, so fr(3) = 24.
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Proof. Given 24 cubes, there is always a 2 x 2 x 2 solution by Theorem 4.6. If we
can place twelve of the remaining 16 cubes into the twelve edge positions (which
we also identify as adjacent pairs) then we have a solution. We assume this is not
possible and show that we can find a different corner solution whose frame can be
completed. Denote by S, the set of 16 remaining cubes. Label the twelve edges of the
corner solution as e; through ey, and let n; denote the number of cubes in S; that
have e; as an adjacent pair. We may assume that the edges {e;} are labeled so that
ni,ne,...Nnqo are in ascending order. We note that n; > i is a sufficient condition for
a solution to the frame-pick any cube that has adjacent pair e; as its representative
in the frame and continue the process in ascending order. If this cannot be done,
then there is a largest index j with n; < j.

We bound the total number of adjacent pairs in two ways. On the low end, each
of the 16 cubes in S; shares at least nine adjacent pairs with the solution by Lemma
3.4. On the high end, the j edges ei,...,e; may occur no more than j — 1 times
each, whereas the 12 — j edges €;41,..., €12 can occur 16 times each. That is,

16 x 9 < Zn < () — 1)+ (12 — 5)(16).

When we solve this quadratic inequality over the integers, we find that j < 3 or j >
15. The latter case is impossible as j < 12. We conclude that if we cannot complete
the frame, it is because at most three edges cannot be matched. Although this is
consistent with the results of Lemma 5.1, we are now able to identify three situations
where there fails to be a solution: n; = 0; ny =ny = 1; or ny = ny = ng = 2.

Case 1: ny; = ny = ng = 2. If these adjacent pairs are from at least three cubes
then by Hall’s theorem we can pick representatives for the three edges ey, es, €3, and
complete the 3 x 3 x 3 frame. Otherwise, the adjacent pairs are from the same two
cubes, and the three pairs of adjacent colors are opposite on the other 14 cubes in
S, i.e., they form a syntheme. Therefore, Lemma 2.1 implies that the 14 cubes in
S, are of a variety and its mirror image. Let ¢, be a variety which occurs the most,
with multiplicity at least seven.

We claim that we can always construct a frame modeled on variety cp;. That
there is a corner solution modeled on cj; follows immediately if cj; occurs eight or
more times. Otherwise, cj); and cj; both have multiplicity seven, and Lemma 5.4
implies the existence of a corner solution. By Lemma 5.1, we can use the eight cubes
from the original corner solution to fill in eight edges of the 3-frame. From Lemma
3.4, we know that c); and cj; have the same adjacent pairs, so any of the remaining
copies of ¢y and/or ¢}, from S; complete the four unfilled frame edges.

Case 2: ny = ny = 1. As in Case 1, we may assume that the adjacent pairs e;
and e, are from the same cube. In addition, since two adjacent pairs are opposite
on the remaining 15 cubes in S7, e; and ey have no colors in common. Finally, we
note that two opposite pairs uniquely determine the colors of the final opposite pair.
This implies that the 15 cubes in S; again consist of a variety and its mirror image.
Let cps be the variety which occurs the most, with multiplicity at least eight. We
now proceed as in Case 1.
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Case 3: n; = 0. This is the most involved case. There is one adjacent pair, say
{1,2}, that is opposite on all 16 cubes in S;. We can build a corner solution from
eight cubes in S; by Lemma 5.5, and this corner solution will have {1,2} as an
opposite pair. Let Sy consist of the following 16 cubes: the eight from S; not used in
the new corner solution and the eight from the original corner solution. In particular,
|S1 NSy = 8. We repeat the edge enumerating process with the new corner solution
and S;. Each cube in S; N Sy shares at least ten adjacent pairs with the corner
solution by Lemma 3.4, so

8x9+8x10< > n < (§)(j— 1)+ (12— 5)(16).

i=1

This implies that 7 < 2. If there is no solution, then there are two new possibilities. If
Jj = 2, then ny = ny = 1, which was addressed in Case 2 above. The last possibility is
that again n; = 0. In this case, all 16 cubes in S, have one opposite pair in common.

We claim that the adjacent pair e; can contain neither color 1 nor color 2. Assume,
for example, that e; is the pair {1,z}. Then 1 and x are opposite in all cubes in
S,, particularly those from S;. This implies x is color 2, which is impossible since
{1,2} is an opposite pair in the new corner solution and cannot be e;. Therefore, we
may assume that e; is the adjacent pair {3,4}. Then all 16 cubes in Sy have {3,4}
as an opposite pair. In addition, at least eight cubes, including the ones from S,
have {1,2} and {3,4} as opposite pairs, and hence {5,6} as well. This subset of S5,
which we denote S5, consists of cubes of some variety and its mirror. Note that by
Lemma 3.4, the cubes in S3 all have the same adjacent pairs. Let cj; be the variety
that occurs most often in Ss.

We consider subcases based on the multiplicity of variety cj; in S3. We note that
by Lemma 5.1, any collection of nine cubes can be placed into edge positions in a
frame. Furthermore, by Lemma 3.4, any additional cube which shares an opposite
pair with the corner solution can be fit into a tenth edge position. Our approach for
the rest of the proof is to demonstrate the existence of a set of cubes from which we
can both construct a corner solution and fill in any of the two or three edge positions
that are not covered by Lemma 5.1.

Subcase: Six or more cubes of variety c;; in S3: By Lemma 5.2, all cubes in
Sy \ S5 share exactly two corners with cy,. If |S3 \ S3| > 2, then by Corollary 5.3
we can take two of these cubes and six copies of ¢j; to complete a corner solution
modeled on ¢j;. By Lemma 5.1, any nine cubes can be fit into the frame, and since
all cubes in Sy share at least one opposite pair with cj;, we can fill a tenth edge
position too. There are at least two unused cubes remaining from S5, which are
guaranteed to fill any of the remaining two edge positions in the frame.

Otherwise, |Ss \ S3] < 2, so at least 15 cubes in Sy are of varieties ¢y, and ¢}y,
and ¢y has multiplicity eight or more. Then it is easy to build a corner solution
modeled on variety ¢y, and complete the frame.

Subcase: Five cubes of variety c;; in S;5: Say we can find three cubes which,
with five copies of ¢j;, complete a corner solution modeled on ¢;;. Then nine edges
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of the frame can be filled by any collection of cubes, and the three cubes of variety
¢y from Ss fill in the remaining edges. By Lemma 5.2, a sufficient condition for this
corner solution to exist is for Sy \ S3 to have three cubes of two or more different
varieties.

If this does not happen, since |S3| < 10, Lemma 5.2 implies that Ss \ S5 contains
at least six cubes, all of some third variety ¢;. We build a frame modeled on this
variety. By Corollary 5.3, four cubes of variety c¢; and two each of cj; and ¢}, can
be used to construct a corner solution modeled on ¢;. We fit any eight cubes into
arbitrary edge positions of the frame. One cube each of c¢;; and cj, fill in edges nine
and ten, and two remaining copies of ¢; complete the frame.

Subcase: Four cubes of variety c); in Ss: In this case ¢y and ¢}, both have
multiplicity 4 in S3. We assume first that there are cubes in Sy \ S5 which can be
used with the four copies of ¢); to build a corner solution modeled on ¢y;. Any eight
cubes will fill eight edges of the frame, and the four copies of ¢}, complete the final
four unfilled edges.

If we cannot find the four cubes, then by Lemma 5.2, the eight remaining cubes
in Sy are either all of a third variety co, or are seven of variety ¢, and one of variety
cs. Either way, by Corollary 5.3 we can construct a corner solution modeled on ¢,
using four copies of ¢y and two each of ¢j; and ¢};. Any nine cubes will fit into the
edge positions, and the three remaining copies of ¢, finish the frame. O

6 Building an n x n x n solution: fr(n) = 12n — 16 for n >4

In this section we prove Theorem B by showing that for n > 4 we can always build
a frame with the smallest possible number of cubes. In [4], this was possible by
tweaking the argument from Section 5. Unfortunately, that does not work in our
setting, since in [4] it was assumed that there were roughly n® cubes available to
build the frame, whereas here the number only grows linearly with n.

Theorem 6.1 (Theorem B). Ifn >4, then fr(n) = 12n — 16.

Proof. We proceed using induction. For the base case, we note that the 4-frame
contains 32 cubes. By Theorem 5.6, any collection of 24 cubes contains a 3 x 3 x 3
solution. Therefore, any collection with enough cubes for a 4-frame contains a subset
of 20 cubes that forms a 3-frame.

Now assume that we can build the frame for the (n —1) x (n —1) x (n — 1) cube.
The difference between an (n —1)-frame and an n-frame is twelve cubes, one for each
edge. If the 12 cubes cannot be inserted to extend the frame, we will show that it
is possible to construct another frame using a different corner solution. Referencing
Lemma 5.1, we see that we will be able to fit at least nine of the twelve cubes into
the frame. We proceed by cases.

Case 1: exactly eleven edges of the n-frame are complete. Assume that
the unfilled position in the frame is the adjacent pair {1,2}. In a worst case, the
unplaced cube ¢ shares only nine edges with the corner solution. Note that {1,2} is
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an opposite pair on variety ¢, so colors 1 and 2 are adjacent to the other four colors.
This implies that of the three edges which ¢ doesn’t share with the corner solution,
the adjacent pair {1,2} is the only one with either color 1 or 2. (In fact, the three
non-shared adjacent pairs form a syntheme.)

There are some quick potential ways to complete the frame. If a cube on one of
the nine edges that the frame shares with ¢ contains the adjacent pair {1,2}, move
it to the unfilled position and put c in its place to complete the puzzle. If such a
swap is not possible, then {1,2} must be an opposite pair in all 9(n — 2) cubes as
well as on the unused cube.

Next, assume there is a cube, ¢1, among the 2(n — 2) cubes on the other two non-
shared frame edges that has {1,2} as a (hidden) adjacent pair. Denote ¢;’s adjacent
pair contribution to the frame by {z,y} (with x,y # 1,2). If there is another cube,
¢2, on one of the nine shared edges that also has the adjacent pair {x,y}, put ¢; into
the {1,2} edge, replace ¢; with ¢y, and replace ¢y with ¢ to complete the frame.

If this cannot be done, then {z,y} is an opposite pair on each of the 9(n — 2)
cubes on the shared edges. Since {1,2} is already an opposite pair on these cubes,
by Lemma 3.5, it follows that all 9(n —2) cubes are of two mirror varieties, and have
the same adjacent pairs. Since n > 4, we can pick eight of one variety for a corner
solution. Start building the frame using the cubes from the first corner solution,
the two unshared edges, and the incomplete edge. This is possible by Lemma 5.1.
Complete the frame with the remainder of the 9(n — 2) cubes, any of which can be
used in any edge position.

The other possibility is that there is indeed no cube among the 2(n — 2) on the
other two edges that has {1, 2} as an adjacent pair, implying that {1, 2} is an opposite
pair on at least 11(n — 2) cubes and the unplaced cube. Denote this set of 11n — 21
cubes by S, and the remaining n — 3 cubes of the frame by 7. Now 11n — 21 > 23
for n > 4. Partition S into three subsets, each consisting of a variety and its mirror
image (which have the same adjacent pairs). One of these subsets will have size at
least eight, so at least one cube variety, say c3, has multiplicity no less than 4.

Assume first that there are at least two cubes in each of the other two subsets.
Then by Corollary 5.3, these can be assembled into a corner solution modeled on c3.
We note that

11n — 21
s

so after building the corner solution, there are enough cubes with the same adjacent
pairs as c3 to complete any two edges. Use Lemmas 3.4 and 5.1 to fill in as much as
possible of ten edges of the n-frame using cubes from 7" and the other subsets. Then
the remaining [H%-2] — 4 cubes can be used in any remaining open position in the
n-frame.

Next, assume that there is only one cube in one of the subsets of S. Move that
cube to T'; now S consists of four varieties in two subsets. Since 11n — 22 > 22 for
n > 4, there is at least one subset with 11 cubes and six of some variety, say c4. As
above,

-‘—422(n—2)f0rn24,

[Hn —21

5 -‘—422(n—2)f0rn24.
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As long as there are two cubes in the smaller subset, we can apply Corollary 5.3
to build a corner solution modeled on ¢;. The rest of the construction is as before.
Finally, if there is no more than one cube in the smaller subset, then 11n — 23 cubes
are one of two varieties. Use the one that appears most frequently for the corner
solution, and the construction of the n-frame is straightforward.

Case 2: exactly ten edges of the n-frame are complete. There are two cubes
of the twelve that remain to be placed. Since neither cube can be placed into the
edges, the colors that are adjacent in the unfilled positions of the frame are opposite
pairs on the two cubes. This implies that the two unfilled adjacent pairs do not share
a common color. In a worst case the two cubes share the same nine edges with the
corner solution. As in Case 1, if some cube in one of the nine corresponding edges
of the frame also has one of the missing adjacent pairs, then move it to the unfilled
position and put one of the two unused cubes in its place. This leaves one position
left to fill, which was covered in Case 1.

If such a swap cannot be done, then none of the 9(n—2) cubes from the completed
edges nor the two unused cubes have the two unfilled adjacent pairs in the corner
solution. These 9n — 16 cubes must therefore share the same two, and hence three,
opposite pairs. Call the set of these cubes S, and the remaining 3n — 8 cubes in the
frame the set T'. We note that each cube in S is one of two varieties of mirror cubes,
and all the cubes in S share the same adjacent pairs. Since 9n — 16 > 20 for n > 4,
at least ten of the 9n — 16 cubes are of one variety. Pick eight of these to make the
corner solution, then start filling in the edges of the frame using cubes from the set
T. Since |T| < 9(n — 2), by Lemma 5.1 all the cubes in 7" can be placed into the
new frame. The cubes from S share the same adjacent pairs as the corner solution,
so they can be used to complete the n-frame.

Case 3: exactly nine edges of the n-frame are complete. There are three
cubes of the twelve that remain to be placed. Since none of the three fit into the
existing frame, by Lemma 3.4 all three share the same nine adjacent pairs with the n-
frame. If some cube in the corresponding edges of the frame can be used to complete
an unfilled edge, swap it out and put one of the three unused cubes in its place. We
are now in Case 2, so there is a solution.

If no such swap is possible, then the 9(n — 2) cubes from the completed edges in
the frame and three unused cubes share the same three opposite pairs. We call the
set of these 9n — 15 cubes S, the remaining 3n — 9 cubes in the frame the set 7', and
proceed as in Case 2. U

7 Complexity

An analysis of the complexity of games is popular in the literature, and this popular-
ity extends to geometric puzzles as well. (See [1] and some of its references, or [12].)
Robertson and Munro showed in [17] that to determine a solution of the generalized
Instant Insanity puzzle with n cubes and n colors is an NP-complete problem. More
recent work by Demaine et al. in [8] studies variations of Instant Insanity with several
types of prisms; some of these puzzles are NP-complete to solve, while others can be
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solved in polynomial time. For the n-Color Cubes puzzle, one of the most restrictive
situations is to determine, given 12n — 16 n-color cubes, whether one can build some
n-frame. We show that this problem can be answered in polynomial time. We thank
Adam Hesterberg for sketching out the following argument, based on matching.

Given a palette of n colors, there are O(n%) distinct cube varieties. For a fixed
variety, we can construct a bipartite matching problem. One set of vertices is the
set of 12n — 16 cubes, and the other set of vertices consists of the 12n — 16 frame
positions, both edges and corners, required to build a frame modeled on the fixed
variety. We draw an edge between sets if the cube in the first set contains the edge
or corner in the second set. The bipartite graph has O(n) vertices, and since it may
happen that a cube can be used in every position in the frame (if it is a cube of that
variety), there are O(n?) edges. There is a solution to the n-Color Cubes puzzle if the
graph has a perfect matching, that is, a maximum matching of size 12n — 16. The
complexity of matching algorithms is well-studied, and it is known that this type
of bipartite matching is solvable in polynomial time [7, Section 27.3]. The result
follows.

8 Open Questions and Final Remarks

Although MacMahon’s original questions on the set of color cubes are now nearly
a century old, they are still generating fruitful investigations. In this section we
describe a number of open questions for the interested reader to pursue. We start
with the tableau, whose associated Sg action made it very useful in reducing the
number and type of cases we needed to consider in this paper. We believe that there
is additional structure in the tableau still to be realized that would further reduce
the amount of computation required to complete the arguments. This motivates our
first problem.

Problem 8.1. Refine the analysis of the Sg action on the tableau, and determine
which of the results in Lemma 4.2 follow from this finer understanding.

The Color Cubes puzzle whose solution is in this paper is just one member of a
larger family of related puzzles. A pretty generalization in the spirit of MacMahon’s
Problem 2 in the Introduction is to determine if it is possible to solve the 3 x 3 x 3
puzzle so that all of the internal faces also have matching colors. Another way to
generalize the problem is by changing the number of colors. There are two variations
of this problem, depending on whether £ < 6 or kK > 6. When k£ < 6, one might start
by assuming a regularity condition, and say that a k-color cube is one where each
cube face has a single color and all k colors appear on at least one face of the cube.

Define g(n, k) to be the minimum number of k-color cubes required to fill all
necessary positions in an n X n X n color cubes puzzle. For k£ < 6 colors, the
necessary positions are the frame. When k£ > 6, there are too many colors for all of
them to appear on each cube, although we can still apply a regularity condition that
no color appear more than once on a face of any cube. We note, however, that the
successful construction of a frame no longer implies that the rest of the n x n x n
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cube can be completed; the necessary positions have to be expanded to include the
six (n — 2) x (n — 2) face centers as well.

Problem 8.2. Forn > 1, determine g(n, k), the minimum number of cubes colored
with k colors required to solve the n x n x n k-Color Cubes puzzle.

These calculations have been completed for all n in the cases k = 2 and £ = 3 in
[2], and £ = 4 in [3]. In particular, the results in [2] show that g(n,3) = 16n — 17
for n > 4. The case kK = 5 is open, and may be the most challenging of the cases
with & < 6, in large part because of the large number of distinct cubes. The total
number of distinct cubes up to rigid rotation can be determined with the aid of a
Polya counting argument, and are given in Table 1 for k£ < 6.

Number of Colors 2 3 4 5 6
Distinct Cube Varieties | 8 30 68 75 30

Table 1: Distinct Cube Varieties on k& Colors (k < 6)

We define fr(n, k) to be the frame analog of fr(n) using k colors. Although
g(n, k) = fr(n, k) for k < 6, we expect that g(n, k) > fr(n, k) for k > 6 and sufficiently
large n (probably n = 3!). In addition, we also believe that for fixed n, g(n,k) —
fr(n, k) should increase with k, the number of colors. This leads into the third
problem.

Problem 8.3. Determine asymptotic bounds, both upper and lower, on the sizes of

fr(n, k) and/or g(n, k).

Finally, for all values of k, there are analogous problems that arise when the
regularity condition is relaxed. This means that some colors might not appear or
certain (or any) cubes, and for & > 6, a color may also appear more than once
on a cube. We expect that removing the regularity condition makes the puzzles
considerably more difficult.
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Appendix: The Cube Tableau
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