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Abstract

Let P,, X P, be the strong product of two paths P,, and P,. In 2013,
Klesc et al. conjectured that the crossing number of P,, X P, is equal to
(m—1)(n—1) —4 for m > 4 and n > 4. In this paper we show that
the above conjecture is true except when m = 4 and n = 4, and that the
crossing number of Py X Py is four.

1 Introduction

Let G and H be two disjoint graphs. The strong product G X H of G and H is
the graph with vertex set V(G) x V(H) and edge set {(u,v)(z,y) : u =z and vy €
E(H), orv=y and uzx € E(G), or ux € E(G) and vy € E(H)}.

Suppose that j is a positive integer. Let P; be a path with j vertices. In 2013,
Klesc et al. [1] firstly studied the crossing number of the strong product of two graphs.
They showed that the crossing number of P; X P, is equal to n — 3 if n > 3, and
they established

Lemma 1.1 [1]  The crossing number of P,, X P, is at most (m — 1)(n — 1) — 4
form >4 and n > 4.

Subsequently, Kles¢ et al. conjectured that the crossing number of P, X P, is
equal to (m — 1)(n — 1) — 4 for m > 4 and n > 4. In this paper we shall show
that the above conjecture is true except for m = 4 and n = 4, and that the crossing
number of Py X P, is four.

The arrangement of the paper is as follows. In Section 2, we give some lemmas
and show that the crossing number of a subgraph of P, X P is at least eight. In
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Section 3, we first show using induction on n that the crossing number of a subgraph
Wy, of P,KP, is equal to 3(n—1)—4 for n > 5. Then we prove using induction on m
that the crossing number of a subgraph W, ,, of P,, X P, is equal to (m—1)(n—1)—4
for m > 4 and n > 4 and (m,n) # (4,4). Subsequently, we determine the crossing
number of P,, X P, when m > 4 and n > 4 and (m,n) # (4,4). In Section 4 we
show that the crossing number of Py X Pj is four.

The rest of this section is contributed to some terminology for crossing numbers
and graph theory.

Let G be a graph. By a drawing of (G, we mean a drawing of G in the plane in
which: no edge has a vertex as an interior point; no two adjacent edges cross each
other; no two edges cross each other more than once; and no three edges cross in a
common point.

Suppose that ® is a drawing of a graph. The number of edge crossings in ¢
is denoted by cr(®). The crossing number of a graph G, denoted by cr(G), is the
minimum number of edges crossings over all drawings of G. A drawing ¥ of G is
optimal if cr(V) = cr(G).

A graph G’ is a subdivision of G if G’ is isomorphic to G or G’ can be obtained
from G by inserting vertices of degree two in some edges. Obviously, cr(G’) = cr(G)
if G’ is a subdivision of G. A graph H is a minor of G if H is isomorphic to a graph
obtained from a subgraph F' of G by contracting some edges in E(F'). A vertex of
G is called a branch vertex if its degree is at least three in G. The complete graph
with n vertices is denoted by K.

By Kuratowski’s theorem [2], a graph is planar if and only if it contains no
subdivision of either the complete graph K5 or the complete bipartite graph K ;.
Hence, if a graph G has a subgraph isomorphic to a subdivision of K5 or K33, then
cr(G) > 1.

2 Basic lemmas and the crossing number of the graph in
Figure 10

Let P, = wqus ... u, and P, = 2125 ... 2, be two paths, where m > 4 and n > 4. For
brevity, the vertex (u;, z;) in P, X P, is labeled by w; ;. It is easy to find that there
are many induced subgraphs in P,, X P, such that each is isomorphic to K,. For
example, the graph P;X P; has twelve induced subgraphs in which each is isomorphic
to K,. But Ky is a planar graph. In order to give a lower bound for the crossing
number of P,, X P,, we need a nonplanar graph which contains K, as subgraph. We
shall define this graph in next paragraph. The drawing of P, X P5 shown in Figure 1
can be generalized to obtain a drawing of P, X P, with (m —1)(n —1) —4 crossings.

Let Ty be the graph shown in Figure 2. Obviously, 75 has a subgraph isomorphic
to K33. So cr(Ts) > 1. It is easy to find that there are many subgraphs in P, X P,
such that each is isomorphic to a subdivision of Tj.
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Figure 1  The graph P, X P;
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Figure 2  The graph Tj

Lemma 2.1 Let F' be a graph isomorphic to a subdivision of Tgs. Let @ be a
subgraph of F which is isomorphic to a subdivision of K4. Then at least one edge of
Q 1is crossed in any drawing of F.

Proof Suppose that ¢ is a drawing of F. Since F' is isomorphic to a subdivision
of Ty, ® has at least one crossing.

Suppose that vy, vy, v3 and v, are the four branch vertices of (). If some edge of
Q@ is crossed by some other edge of (), then we have the desired result. Otherwise,
the drawing of ® restricted in ) divides the plane into four regions in which one is
unbounded and its closure contains three branch vertices of (). Also, the boundary
of each of the other three regions contains three branch vertices of ). Let F’ be the
graph obtained from F' by deleting all edges in F(Q). Then F’ is a connected graph.
Suppose that vs and vg are the other two branch vertices of F. By the Jordan Curve
Theorem, no matter which regions vs and vg are in, at least one edge of () is crossed

: /
by some edge in F". O
1
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Figure 3 The graph H;
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Lemma 2.2 Let Hy be the graph shown in Figure 3. Then cr(Hy) = 2.

Proof Let @ be the subgraph of H; induced by the four vertices x1, x9, x5 and z4.
Then @ is isomorphic to K. It is easy to find that H; has a subgraph isomorphic
to Ty which contains ). By Lemma 2.1, some edge in ) has at least one crossing in
any drawing of H;. For any edge e in @), it can be checked that H; — e has a minor
isomorphic to K5. So cr(H;) > cr(K5)+ 1 > 2. Also, Figure 3 exhibits a drawing of

H, with two crossings. Hence cr(H;) = 2. [
x4 T2 al X2 X1 X9
z \
Y13 4 Y13 T\ T3 T4
\
/'
Yol —2 L6 Yok —- T | Ts Zg
X7 8 X7 8 Z7 8

(1) (2) (3)
Figure 4 Three graphs Hy, H3 and Hy

Lemma 2.3  Let Hy be the graph shown in Figure 4(1). Then cr(Hs) > 3.

Proof Suppose that ® is an optimal drawing of H,. Let () be the subgraph of
Hy induced by the four vertices x1, xo, x3, and x4. Clearly, () is isomorphic to Kjy,
and H, has a subgraph isomorphic to a subdivision of Ti which contains (). By
Lemma 2.1, some edge e in () has at least one crossing in ®. If e is some edge in
E(Q)\{z2z3, xox4, X324}, it is easy to find that Hy—e contains a subgraph isomorphic
to Hy. If eis xox3 or 2924, then Hy—e contains the path xxxg and the path x3xizy.
So Hy — e has a subgraph isomorphic to a subdivision of Hy. If e is the edge z3x4,
then Hy — e contains the path xsxix4 and the path zzroxs. Hence Hy — e has a
subgraph isomorphic to a subdivision of Hy. So cr(Hy) > cr(Hy) +1 > 3. =

Lemma 2.4  Let Hs be the graph shown in Figure 4(2). Then cr(Hs) > 3.

Proof Let @ be the subgraph of Hs induced by the four vertices zy, xs, x3, and
x4. Proceeding the similar argument to that in the proof of Lemma 2.3, one can
show that cr(Hjz) > 3. .

Lemma 2.5  Let H, be the graph shown in Figure 4(3). Then cr(Hy) > 3.

Proof Suppose that cr(Hy) = k, and that ® is an optimal drawing of H,.

For i = 1,2, 3, let Q; be the subgraph of H, induced by the four vertices xo;_ 1,
Toi, Toir1 and To;1o. Then each (); is isomorphic to K. It is easy to find that
H, contains a subgraph isomorphic to a subdivision of Ty which contains @);. By
Lemma 2.1, some edge e; in ()1 has at least one crossing in ®. Let ®] be the drawing
obtained from ® by deleting e;. Then cr(®]) < k — 1. It is easy to find that Hy — e,
contains a subgraph which is isomorphic to a subdivision of Tg which contains Q3.
By Lemma 2.1, some edge ey in (3 has at least one crossing in ®). Let @, be the
drawing obtained from ®) by deleting e;. Then cr(®)) < k — 2.
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We observe that Hy — e; — es has the following properties.
(1) It contains the path zszizy or zzzemy.
(2) It contains the path zszrze or T5T8T6.

Without loss of generality, suppose that Hy — e; — e, contains the path x3zixy.
If Hy — ey — ey contains xsx7xg, then Hy — e; — e; contains a subgraph isomorphic
to Ksg if the cycle xsxsxsxexs is considered. Otherwise, Hy; — e; — ey contains
r5x8xg. Moreover, Hy — e; — ey contains xryxg. In this case Hy — ey — ey contains a
subgraph isomorphic to a subdivision of K33 if the cycle zszsz4z623 is considered.

So Hy — e; — eg is nonplanar. Thus, k > 3. O
Ty
Y1 2 3
Y2 T3
Ty

Figure 5 The graph Hj

Lemma 2.6  Let H; be the graph shown in Figure 5. Then cr(Hs) = 4.

Proof Suppose that cr(Hs) = k, and suppose that ® is an optimal drawing of Hs.

Let @ be the induced subgraph of Hjs by the four vertices i, ¥ys, 2 and x3.
Obviously, @) is isomorphic to K4, and H; has a subgraph isomorphic to a subdivision
of T which contains ). By Lemma 2.1, some edge e in () has at least one crossing
in . Let & be the drawing obtained from ® by deleting e. If e is some edge in
{y122, Y123, Y22, Yox3 }, then Hs — e has a subgraph isomorphic to a subdivision of
Hj4 defined in Lemma 2.5. Thus, we have that k& > 4 in this case. Otherwise, we
consider the edge y1y5. If it has at least one crossing in ®, then we take it as e. So
H; — e is isomorphic to Hy defined in Lemma 2.3. Then k& > 4. If y;y, has not any
crossing in @, then e is exactly xox3 in @. So Hs — e is isomorphic to Hz defined in
Lemma 2.4. So k > 4. Also, Figure 5 exhibits a drawing of Hs with four crossings.

Hence cr(Hs) = 4. [
L1 €2
p L4
Te
Z7 8

Figure 6 The graph G
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Lemma 2.7  Let Gy be the graph shown in Figure 6. Then cr(G1) = 1.

Proof Suppose that cr(G;) = k, and that ¥ is an optimal drawing of G;.

For i = 1,2,3, let Q; be the induced subgraph of G; by the four vertices xo; 1,
X9, Toir1 and x9; 0. Then each @); is isomorphic to K. Moreover, GG; has a subgraph
isomorphic to a subdivision of T which contains ;. By Lemma 2.1, some edge in
(21 has at least one crossing in W. We now apply the following operations.

(1) 1If some edge in {x1xa, X174, Tox3, T2x4} has at least one crossing in W, then it
is deleted and turn to (4). Otherwise, turn to (2).

(2) Suppose that the edge zy23 has at least one crossing in W. Notice that xomxy
and xox3 are not successive if the edges incident with x5 are oriented in clockwise or
anticlockwise in ¥, otherwise, we redraw xyx3 near to the path xyxsx3, obtaining a
drawing of G; with at most k& — 1 crossings, a contradiction. Now x;z3 is redrawn
near to ryxox3 such that it crosses exactly zozy. Delete zoxy and turn to (4). If 223
has not any crossing in ¥, turn to (3).

(3) The edge w3z, has at least one crossing in W. A similar argument as the one
used in (2) shows that we may redraw z3z4 near to the path zzzoxy such that it
crosses exactly x1xy. Delete x5 and turn to (4).

(4) Let ¥ be the obtained drawing, and let G the obtained graph. Then cr(¥}) <
k — 1, and G’ contains the edge z1z4 or the path xzo1y.

Since G| contains the edge xoxg, it is easy to find that G| has a subgraph iso-
morphic to a subdivision of Ty which contains (J3. By Lemma 2.1, some edge in (3
has at least one crossing in W}. An argument similar to the one used for @); shows
that there is a drawing W), which is obtained from W} by deleting some edge e in
E(Q3) \ {zsx6, 527} and cr(V,) < k — 2. Let GY be the graph obtained from G by
deleting e. Then G contains the edge x7x¢ or the path zrzszs.

Since G| contains one of x1x4 and zyxoxy and one of z7x¢ and x7xsxg, G has a
subgraph isomorphic to a subdivision o which contains (). emma 2.1, some
b h hic t bd f T which t By L 2.1,
edge in () has at least one crossing in W,,. We consider two cases.

Case 1: G contains one of z125 and z7xs. Without loss of generality, suppose that
G| contains x1xy. If some edge in E(Q2) \ {z375} has at least one crossing in W5,
then it is deleted. Otherwise, x3zs must has at least one crossing in ¥,. We now
redraw x3xs near to xsxyxs. Notice that each of x4r3 and x4x5 has not any crossing
in U,. But zzzs may crosses some edges in {z4z1, x429, x426}. If this case occur,
then we delete those edges. Thus, the new drawing of x3xs has not any crossing.
Let % be the obtained drawing in the above procedure, and let G} be the obtained
graph. Then cr(¥}) < k—3, and G contains one of 71792877 and zyzowsw6w7. Thus
G, has a subgraph isomorphic to a subdivision of the graph Hj defined in Lemma
26. Sok—3>4. Thus k > 7.

Case 2. G contains none of x;xs and x7xg. In this case, G7 is isomorphic to the
graph shown in Figure 7(1).



DENGJU MA / AUSTRALAS. J. COMBIN. 68 (1) (2017), 35-47 41

ol X9
XT3 4
A4
2 4
5 L6 Tg 5
X7 Ts

(1) (2)
Figure 7 Two graphs defined in Case 2

If some edge in E(Q2) \ {z325} has at least one crossing in W), then it is deleted.
The graph obtained has a subgraph isomorphic to a subdivision of Hj defined in
Lemma 2.6. Following a similar argument to that in Case 1, we have £ > 7. If not,
then z3xs has at least one crossing in W). Since each edge in E(Qs) \ {325} is not
crossed, the drawing of W) restricted in E(Q2) is shown in Figure 7(2).

We observe that none of x5 and zg is in the interior of the region whose boundary
is the cycle x3x xgr3. Otherwise, the existence of the path xoxgzs in G, and Jordan
Curve Theorem show that one edge of the cycle x3z4x623 must be crossed. Similarly,
none of x5 and zg is in the interior of the region whose boundary is the cycle z4x51624.
Let F} be the region whose boundary is the cycle z3x zsx3, let F, the unbounded
region in Figure 7(2). If xo and zg are in F} and Fy, respectively, then zozg must
intersect x3xs. In this case, xoxg is deleted. Clearly, the obtained drawing has at most
k — 3 crossings, and the obtained graph has a subgraph isomorphic to a subdivision
of Hj defined in Lemma 2.6. So k > 7. If x5 and xg are in the same region, there are
two cases to consider. If they are in Fi, then xgrg must intersect x3xs. In this case,
xgxg is deleted. Then the obtained graph has a subgraph isomorphic to a subdivision
of Hs. Thus, k > 7. If they are in F5, then zox4 must intersect zsxs. Similarly, we
have that k > 7. Notice that Figure 6 exhibits a drawing of G; with four crossings.
Hence cr(Gy) = 7. .

Lemma 2.8  Let Gy be the graph shown in Figure 8. Then cr(Gs) > 7.

Proof Suppose that cr(Gy) = k, and that ¥ is an optimal drawing of Gs.

Let @1 be the subgraph of G5 induced by the four vertices xi, x5, 3 and xy.
Clearly, @), is isomorphic to Ky, and G4 has a subgraph isomorphic to a subdivision
of Ts which contains ();. By Lemma 2.1, some edge in £((Q)) has at least one crossing
in ¥. We now apply the operations to (); which are similar to those in the proof of
Lemma 2.7. If some edge in E(Q1) \ {z123, x324} has at least one crossing in ¥, then
it is deleted. Otherwise, one of x1x3 and z3x4 has at least one crossing in V. In this
case the edge is redrawn and some edge in {z129, zoz4} is deleted if necessary such
that at least one crossing is eliminated.

Let ¥} be the drawing so obtained, and let G% the graph. Then cr(¥)) < k — 1,
and GY contains one of the following three subgraphs.

(a) The path zjxexy. (b) The path zyz4zs. (c) {xsxe} U {z124}.
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Figure 8 The graph G,

Let @2 be the induced subgraph of G, by the four vertices x5, x¢, x7 and xs.
Obviously, () is isomorphic to K4, and G, has a subgraph isomorphic to a subdivision
of Ts which contains (Qo. By Lemma 2.1, some edge in £((),) has at least one crossing
in U). An argument similar to one used for (); shows that there is a drawing W/,
obtained form ¥ by deleting some edge e in E(Q2)\{zs5z6, 527} and cr(V)) < k—2.
Let G4 be the graph obtained. We observe that G4 contains one of the following
subgraphs.

(a) The path x7zszg. (b) The path xrzgrs. (¢) {xsrs} U {x7a6}.

Let @3 be the induced subgraph of G by the four vertices z3, x4, x5 and .
Then Q3 is isomorphic to Ky, and G4 has a subgraph isomorphic to a subdivision of
Ts which contains ()3. By Lemma 2.1, some edge in E(Q3) has at least one crossing
in W,. We consider two cases.

Case 1: GY contains one of zyx9 and x7xg. Without loss of generality, suppose that
G contains the edge zz5. If some edge e; in E(Q3)\{z3x5} has at least one crossing
in W4, then the drawing obtained from W), by deleting e; has at most k — 3 crossings.
Moreover, G — e; contains a subdivision of the graph Hj defined in Lemma 2.6,
since there is a path zyx9y; 2627 or X122y1 262827 in G — e1. So k > 7. If not, then
x3xs has at least one crossing in W;,. We now delete edges x4y, and z4y,. If 2924 was
not removed, then it is deleted. Next, x3xs can be drawn near to the path zsx,xs
such that it has at most one crossing. If x3x5 has one crossing, then it can be drawn
such that it crosses exactly xyx¢. Thus, the drawing obtained from W by deleting
x4xg has at most k£ — 3 crossings, and the obtained graph has a subgraph isomorphic
to a subdivision of the graph Hj defined in Lemma 2.6. So k£ > 7. If x3x5 has not
any crossing, we also let W, be the obtained drawing. Clearly, cr(¥}) < k — 3. So
k>T.

Case 2: GY contains none of z1x9 and x7xg. In this case, G is the graph shown in
Figure 9.

If some edge in F(Q3) \ {z3z5} has at least one crossing in W), then it is deleted.
The obtained graph has a subgraph isomorphic to a subdivision of the graph Hj
defined in Lemma 2.6. Hence, k > 7. Otherwise, x3x5 has at least one crossing in
U),. The drawing of U restricted in @3 is as in Figure 7(2). Let F} and F5 be the
regions whose boundaries are x3r rgrs and x rsr6r4, respectively. Proceeding the
similar argument as z5 and zg in Case (2) in the proof of Lemma 2.7, none of ; and
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Figure 9 The graph defined in Case 2

Let J be the graph obtained from G by deleting x5, x5, x4, =5, Ts, Ts, y1 and ys.
Then J is connected graph. It is easy to find that there are two internally disjoint
paths P, and P, from x; to 7 in J. Let F3 be the region whose boundary is the
cycle z3r4zrs73, and let Fy the unbounded region in Figure 7(2).

If 21 and z; are in F3 and Fj, respectively, it can be found that x3zs; has at least
two crossings if P, and P, are considered. We now delete x3x5. Then the obtained
graph has a subgraph isomorphic to a subdivision of the graph Hj defined in Lemma
24. So k> 7.

If z; and x; are in the same region, we consider two cases.

(a) Both z; and x; are in F3. Then zgr; must intersect xzxs by Jordan Curve
Theorem. If x3z; has at least two crossings, then it is deleted. Considering that
the obtained graph has a subgraph isomorphic to a subdivision of Hj, we have that
k > 7. If z3x5 has exactly one crossing, then it is produced by x3zs and zgx;. We
now consider the vertex xrg. We claim that xg must be in F5. For, if xg is in F}, then
xgrs must cross some edge in the cycle x3x xx3 by Jordan Curve Theorem. If zg is
in F}y, then the path xgysx4 must cross some edge in the cycle xsxsrgrs. If x5 is in
F3, then the edge xgrg must cross some edge in the cycle xsxyxsrs. So xg is in Fs.

We now discuss how many crossings are eliminated after z7xg has been deleted to
obtain G. If there are at least two crossings being eliminated, then W} has at most
k — 3 crossings. In this case, we delete x3x5. Considering that the obtained graph
has a subgraph isomorphic to a subdivision of Hj3 defined in Lemma 2.4, we have
that k > 7. If there is exactly one crossing being eliminated, then the crossing must
be produced by z7xs and x4x5. Now x7xg is added back in the primitive way. Next,
726 is newly drawn such that it is near to the path zgrsr;. We now delete all edges
incident with xg other than xgxg and zgx; in the interior of the region F;. Then
xrgx7 has exactly one crossing which is produced by xgx; and x4x5. Notice that x4z
has at least two crossings in this case. Next, x x5 is deleted. The obtained drawing
has at most k — 3 crossings, and the obtained graph has a subgraph isomorphic to a
subdivision of Hj defined in Lemma 2.6. Hence, we have k > 7.

(b) Both z; and x7 are in Fy. Then x4 must intersect xzxs. Next, we proceed
the similar argument as xgx;. The difference are that xg is replaced by xo, that x;xg
is replaced by xix9, and that Fy is replaced by Fi. So k > 7. O
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Lemma 2.9 Let Gj be the graph shown in Figure 10. Then cr(G) > 8.

Proof Suppose that cr(G3) = k, and that ¥ is an optimal drawing of Gj.

Let @ be the subgraph of G35 induced by the four vertices z1, =5, x3 and xy.
Obviously, @) is isomorphic to K, and (G5 has a subgraph isomorphic to a subdivision

of Ts which contains ). By Lemma 2.1, some edge in F((Q) has at least one crossing
in W.

Y1

T1 N2

Ty L3
; Yo

Figure 10  The graph Gj

If some edge in {129, r123, Tox4, x3x4} has at least one crossing in ¥, then the
edge is deleted. The obtained graph has a subgraph isomorphic to a subdivision of
(1 defined in Lemma 2.7. So k > 8. Otherwise, we consider xox3. If xox3 has at
least one crossing in W, then it is deleted. The obtained graph is isomorphic to G,
defined in Lemma 2.8. Thus, we have that k& > 8. If not, then z;z, has at least
one crossing in V. If we can redraw x;z4 so that it is not crossed, then we obtain
a drawing of G5 with less crossings that in ¥, a contradiction. Otherwise, xyx4 can
be redrawn such that it crosses exactly xox3. Since the graph obtained from Gj by
deleting xox3 is isomorphic to Gy, we have k > 8. 0

3 The crossing number of P, X P, for m > 4, n > 4 and

(m,n) # (4,4)

Let W, be the graph obtained from F,, X P, by deleting the four vertices w; 1,
W1,n; Wm,1 and Wm,n-

Lemma 3.1 c¢r(Wy,) >3(n—1)—4 forn > 5.

Proof We use the induction on n. If n = 5, then cr(Wy,) > 8, since Wy, is
isomorphic to the graph defined in Lemma 2.9.

Assume that cr(Wy,) > 3(t — 1) — 4, where t > 5. Suppose that cr(Wy41) =k,
and that II is an optimal drawing of Wiy;i1. Let Q1 be the subgraph of Wy
induced by the four vertices wi 1, wa -1, w1+ and wy;. Obviously, () is isomorphic
to Ky, and Wy 41 has a subgraph isomorphic to a subdivision of Ts which contains
1. By Lemma 2.1, some edge in ), has at least one crossing in II. We now apply
the following operations which are similar to that in the proof of Lemma 2.7.

(1) If some edge in E(Q1) \ {w1t—1we -1, ws 1w} has at least one crossing in II,
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then it is deleted and turn to (4). Otherwise, turn to (2).

(2) Suppose that the edge wy—jws;—1 has at least one crossing in II. We can
redraw wi ;w21 near to the path w;, jw;we 1 such that it has at most one
crossing. If the new drawing of wy ;—1w2;—1 has no crossing, then a drawing of Wy ;1
with at most £ — 1 crossings is obtained, a contradiction. Otherwise,w; —1w2;—1 can
be redrawn near to w;;_jwz;—1 such that it crosses exactly w;wq;. Delete wy ws
and turn to (4). If wy,_jwe,—1 has not any crossing in II, turn to (3).

(3) The edge wq—1wq; has at least one crossing in W. A similar argument as the
one used in (2) shows that we may redraw wsy;_jws, near to the path wy; jw; ;wq;
such that it crosses exactly wy 1wy ¢. Delete wy,—jw;, and turn to (4).

(4) Let IT} be the obtained drawing, and let Wﬁll the obtained graph.

Then cr(Ilf) < k — 1, and VV4(’1t)Jrl contains the edge wi; jws,; or the path
W1,t—1W1,tW2 ¢

Let @) be the subgraph of Wﬁll induced by the four vertices wsz;—1, W34, War—1
and wg,. Next, we proceed the similar argument as (). Let I} be the drawing

so obtained, and let Wiihl be the graph corresponding to II,. Then cr(Il}) <

cr(Il)) =1 < k—2 and Wﬁll contains the edge wy w3, or the path wy 1wy sws .

Let Q3 be the induced subgraph of Wii{rl by the four vertices way, wat1, W3y

and ws ¢41. Obviously, 03 is isomorphic to Ky, and 1/1/4(7212Jrl has a subgraph isomorphic
to a subdivision of Ti which contains ()3. By Lemma 2.1, some edge in E(Q3) has
at least one crossing in II,. We now apply the following operations.

(a) If some edge in E(Qs3) \ {waiws,} has at least one crossing in II), then it is
deleted and turn to (c). Otherwise, turn to (b).

(b) The edge wq ws; is crossed in II,. We redraw this edge near to the path
Wa 4 Wa g1 w3 . If in such new drawing wsws, is not crossed, then turn to (c). Oth-
erwise, wp w3 can be drawn such that it crosses exactly the edge wg 141w341. Now
the edge wa11ws 41 is deleted, and turn to (c).

(c) Let II§ be the obtained drawing, and let VV4(’3t)Jrl be the obtained graph.

Then cr(Wﬁ)Jrl) < cr(Wﬁ)Jrl) —1<k-—3,and Wiihl has a subgraph isomorphic
to a subdivision of W, ;. By the inductive assumption, cr(W,;) > 3(t — 1) — 4. This
implies that & > 3t —4. So cr(Wy 1) > 3t —4. Therefore, cr(Wy,,) > 3(n—1) —4.4

Lemma 3.2 c¢r(W,,,) > (m—1)(n—1) —4 form >4 and n > 5.

Proof We use the induction on m. By Lemma 3.1, cv(W,,,,) > (m—1)(n—1) —4
if m = 4. Assume that cr(W,,,) > (m —1)(n — 1) — 4 if m = ¢. Suppose that
cr(Wyg1,) = k, and that II is an optimal drawing of W, 1.

Let @} (Q),_,, respectively) be the induced subgraph of W, ,, by the four vertices
Wy—11, Wy—12, W1 and Wy (Wy—1n-1, Wg—1n, Wgn—1 and wy,, respectively). For
i=1,2,...,n =3, let Q;,, be the induced subgraph of W, , by the four vertices
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Wy it1; Wqit2, Wertit1 and wgyrie. It is obvious that Q; is isomorphic to K, for
ji=12....,n—1.

We start with Q] and deal with it as ()1 in the proof of Lemma 3.1. If some edge
in B(Q)) \{wg—11w4—12, ws—1 2wy 2} has at least one crossing in I1, then it is deleted.
Otherwise, one of wy_; 1w,—1,2 and w,_; 2w, 2 has at least one crossing. In this case
the edge is redrawn and some edge in {wy_11wy 1, We1wW, 2} is deleted if necessary
such that at least one crossing is eliminated.

After ] has been dealt with, the obtained graph has a subgraph isomorphic to
a subdivision of T which contains (5. By Lemma 2.1, some edge in @)}, has at least
one crossing in the present drawing. We now deal with )5 in the similar way to that
of @1 in the proof of Lemma 3.1. If some edge in E(Q}) \ {wg 2wy 3, Wy 3wy+1,3} has
at least one crossing in the present drawing, then it is deleted. Otherwise, one of
WqoWgq 3 and wyswqi13 has at least one crossing in the present drawing. In this case
the edge is redrawn and some edge in {w, 2Wq 1.2, Wer12W4+13} is deleted if necessary
such that at least one crossing is eliminated.

For i = 3,...,n— 2, Q) is dealt with as Q5. At last, Q/,_; is dealt with in the
similar way to (3 in the proof of Lemma 3.1. Let G be the obtained graph after
removing at least one crossing for each of @Q;, i € {1,2,...,n — 1}. Then G has a
subgraph isomorphic to a subdivision of the graph W, ,,. Thus, cr(G) < k—(n—1). By
the inductive assumption, cr(G) > (¢—1)(n—1)—4. This implies that k > ¢(n—1)—4.

So ct(Wyt1,n) > q(n — 1) — 4. Therefore, cr(W,,,,) > (m —1)(n — 1) — 4. [
Wi ,2 W 4
wWi,3
W\
w2 2,1 ¥ 3 Wa 4
w31 W32 Lws
’ 3,3
4l4
Wy 2
W4 1 w

Figure 11 A drawing of P, X P,
Since P,, X P, is isomorphic to P, X P,,, we have that cr(P,,XP,) = cr(P,X P,,).
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Theorem 3.3 ¢r(P,XP,)=(m—1)(n—1)—4 for m >4, n>4 and (m,n) #
(4,4).

Proof The theorem follows from Lemmas 1.1 and 3.2. O

4 The crossing number of P, X P,

Theorem 4.1 ¢r(PyX Py) = 4.

Proof The drawing of Py X P, shown in Figure 11 implies that cr(Py X Py) < 4.
Since P, X P, has a subgraph isomorphic to a subdivision of Hj defined in Lemma
2.6, cr(P; X Py) > 4. Hence cr(Py X Py) = 4. [
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