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Abstract

Let Pm � Pn be the strong product of two paths Pm and Pn. In 2013,
Klešč et al. conjectured that the crossing number of Pm � Pn is equal to
(m − 1)(n − 1) − 4 for m ≥ 4 and n ≥ 4. In this paper we show that
the above conjecture is true except when m = 4 and n = 4, and that the
crossing number of P4 � P4 is four.

1 Introduction

Let G and H be two disjoint graphs. The strong product G � H of G and H is
the graph with vertex set V (G)× V (H) and edge set {(u, v)(x, y) : u = x and vy ∈
E(H), or v = y and ux ∈ E(G), or ux ∈ E(G) and vy ∈ E(H)}.

Suppose that j is a positive integer. Let Pj be a path with j vertices. In 2013,
Klešč et al. [1] firstly studied the crossing number of the strong product of two graphs.
They showed that the crossing number of P3 � Pn is equal to n − 3 if n ≥ 3, and
they established

Lemma 1.1 [1] The crossing number of Pm � Pn is at most (m − 1)(n − 1) − 4
for m ≥ 4 and n ≥ 4.

Subsequently, Klešč et al. conjectured that the crossing number of Pm � Pn is
equal to (m − 1)(n − 1) − 4 for m ≥ 4 and n ≥ 4. In this paper we shall show
that the above conjecture is true except for m = 4 and n = 4, and that the crossing
number of P4 � P4 is four.

The arrangement of the paper is as follows. In Section 2, we give some lemmas
and show that the crossing number of a subgraph of P4 � P5 is at least eight. In
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Section 3, we first show using induction on n that the crossing number of a subgraph
W4,n of P4�Pn is equal to 3(n−1)−4 for n ≥ 5. Then we prove using induction onm
that the crossing number of a subgraph Wm,n of Pm�Pn is equal to (m−1)(n−1)−4
for m ≥ 4 and n ≥ 4 and (m,n) �= (4, 4). Subsequently, we determine the crossing
number of Pm � Pn when m ≥ 4 and n ≥ 4 and (m,n) �= (4, 4). In Section 4 we
show that the crossing number of P4 � P4 is four.

The rest of this section is contributed to some terminology for crossing numbers
and graph theory.

Let G be a graph. By a drawing of G, we mean a drawing of G in the plane in
which: no edge has a vertex as an interior point; no two adjacent edges cross each
other; no two edges cross each other more than once; and no three edges cross in a
common point.

Suppose that Φ is a drawing of a graph. The number of edge crossings in Φ
is denoted by cr(Φ). The crossing number of a graph G, denoted by cr(G), is the
minimum number of edges crossings over all drawings of G. A drawing Ψ of G is
optimal if cr(Ψ) = cr(G).

A graph G′ is a subdivision of G if G′ is isomorphic to G or G′ can be obtained
from G by inserting vertices of degree two in some edges. Obviously, cr(G′) = cr(G)
if G′ is a subdivision of G. A graph H is a minor of G if H is isomorphic to a graph
obtained from a subgraph F of G by contracting some edges in E(F ). A vertex of
G is called a branch vertex if its degree is at least three in G. The complete graph
with n vertices is denoted by Kn.

By Kuratowski’s theorem [2], a graph is planar if and only if it contains no
subdivision of either the complete graph K5 or the complete bipartite graph K3,3.
Hence, if a graph G has a subgraph isomorphic to a subdivision of K5 or K3,3, then
cr(G) ≥ 1.

2 Basic lemmas and the crossing number of the graph in
Figure 10

Let Pm = u1u2 . . . um and Pn = z1z2 . . . zn be two paths, where m ≥ 4 and n ≥ 4. For
brevity, the vertex (ui, zj) in Pm � Pn is labeled by wi,j. It is easy to find that there
are many induced subgraphs in Pm � Pn such that each is isomorphic to K4. For
example, the graph P4�P5 has twelve induced subgraphs in which each is isomorphic
to K4. But K4 is a planar graph. In order to give a lower bound for the crossing
number of Pm�Pn, we need a nonplanar graph which contains K4 as subgraph. We
shall define this graph in next paragraph. The drawing of P4�P5 shown in Figure 1
can be generalized to obtain a drawing of Pm�Pn with (m−1)(n−1)−4 crossings.

Let T6 be the graph shown in Figure 2. Obviously, T6 has a subgraph isomorphic
to K3,3. So cr(T6) ≥ 1. It is easy to find that there are many subgraphs in Pm � Pn

such that each is isomorphic to a subdivision of T6.
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w1,1 w1,2 w1,3 w1,4 w1,5

w4,1 w4,2 w4,3 w4,4 w4,5

Figure 1 The graph P4 � P5
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Figure 2 The graph T6

Lemma 2.1 Let F be a graph isomorphic to a subdivision of T6. Let Q be a
subgraph of F which is isomorphic to a subdivision of K4. Then at least one edge of
Q is crossed in any drawing of F .

Proof Suppose that Φ is a drawing of F . Since F is isomorphic to a subdivision
of T6, Φ has at least one crossing.

Suppose that v1, v2, v3 and v4 are the four branch vertices of Q. If some edge of
Q is crossed by some other edge of Q, then we have the desired result. Otherwise,
the drawing of Φ restricted in Q divides the plane into four regions in which one is
unbounded and its closure contains three branch vertices of Q. Also, the boundary
of each of the other three regions contains three branch vertices of Q. Let F ′ be the
graph obtained from F by deleting all edges in E(Q). Then F ′ is a connected graph.
Suppose that v5 and v6 are the other two branch vertices of F . By the Jordan Curve
Theorem, no matter which regions v5 and v6 are in, at least one edge of Q is crossed
by some edge in F ′.
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Figure 3 The graph H1
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Lemma 2.2 Let H1 be the graph shown in Figure 3. Then cr(H1) = 2.

Proof Let Q be the subgraph of H1 induced by the four vertices x1, x2, x3 and x4.
Then Q is isomorphic to K4. It is easy to find that H1 has a subgraph isomorphic
to T6 which contains Q. By Lemma 2.1, some edge in Q has at least one crossing in
any drawing of H1. For any edge e in Q, it can be checked that H1 − e has a minor
isomorphic to K5. So cr(H1) ≥ cr(K5) + 1 ≥ 2. Also, Figure 3 exhibits a drawing of
H1 with two crossings. Hence cr(H1) = 2.
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Figure 4 Three graphs H2, H3 and H4

Lemma 2.3 Let H2 be the graph shown in Figure 4(1). Then cr(H2) ≥ 3.

Proof Suppose that Φ is an optimal drawing of H2. Let Q be the subgraph of
H2 induced by the four vertices x1, x2, x3, and x4. Clearly, Q is isomorphic to K4,
and H2 has a subgraph isomorphic to a subdivision of T6 which contains Q. By
Lemma 2.1, some edge e in Q has at least one crossing in Φ. If e is some edge in
E(Q)\{x2x3, x2x4, x3x4}, it is easy to find thatH2−e contains a subgraph isomorphic
to H1. If e is x2x3 or x2x4, then H2−e contains the path x1x2x8 and the path x3x1x4.
So H2 − e has a subgraph isomorphic to a subdivision of H1. If e is the edge x3x4,
then H2 − e contains the path x3x1x4 and the path x3x2x4. Hence H2 − e has a
subgraph isomorphic to a subdivision of H1. So cr(H2) ≥ cr(H1) + 1 ≥ 3.

Lemma 2.4 Let H3 be the graph shown in Figure 4(2). Then cr(H3) ≥ 3.

Proof Let Q be the subgraph of H3 induced by the four vertices x1, x2, x3, and
x4. Proceeding the similar argument to that in the proof of Lemma 2.3, one can
show that cr(H3) ≥ 3.

Lemma 2.5 Let H4 be the graph shown in Figure 4(3). Then cr(H4) ≥ 3.

Proof Suppose that cr(H4) = k, and that Φ is an optimal drawing of H4.

For i = 1, 2, 3, let Qi be the subgraph of H4 induced by the four vertices x2i−1,
x2i, x2i+1 and x2i+2. Then each Qi is isomorphic to K4. It is easy to find that
H4 contains a subgraph isomorphic to a subdivision of T6 which contains Q1. By
Lemma 2.1, some edge e1 in Q1 has at least one crossing in Φ. Let Φ′

1 be the drawing
obtained from Φ by deleting e1. Then cr(Φ′

1) ≤ k− 1. It is easy to find that H4 − e1
contains a subgraph which is isomorphic to a subdivision of T6 which contains Q3.
By Lemma 2.1, some edge e2 in Q3 has at least one crossing in Φ′

1. Let Φ′
2 be the

drawing obtained from Φ′
1 by deleting e2. Then cr(Φ′

2) ≤ k − 2.
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We observe that H4 − e1 − e2 has the following properties.

(1) It contains the path x3x1x4 or x3x2x4.

(2) It contains the path x5x7x6 or x5x8x6.

Without loss of generality, suppose that H4 − e1 − e2 contains the path x3x1x4.
If H4 − e1 − e2 contains x5x7x6, then H4 − e1 − e2 contains a subgraph isomorphic
to K3,3 if the cycle x3x5x4x6x3 is considered. Otherwise, H4 − e1 − e2 contains
x5x8x6. Moreover, H4 − e1 − e2 contains x7x8. In this case H4 − e1 − e2 contains a
subgraph isomorphic to a subdivision of K3,3 if the cycle x3x5x4x6x3 is considered.
So H4 − e1 − e2 is nonplanar. Thus, k ≥ 3.
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Figure 5 The graph H5

Lemma 2.6 Let H5 be the graph shown in Figure 5. Then cr(H5) = 4.

Proof Suppose that cr(H5) = k, and suppose that Φ is an optimal drawing of H5.

Let Q be the induced subgraph of H5 by the four vertices y1, y2, x2 and x3.
Obviously, Q is isomorphic toK4, and H5 has a subgraph isomorphic to a subdivision
of T6 which contains Q. By Lemma 2.1, some edge e in Q has at least one crossing
in Φ. Let Φ′ be the drawing obtained from Φ by deleting e. If e is some edge in
{y1x2, y1x3, y2x2, y2x3}, then H5 − e has a subgraph isomorphic to a subdivision of
H4 defined in Lemma 2.5. Thus, we have that k ≥ 4 in this case. Otherwise, we
consider the edge y1y2. If it has at least one crossing in Φ, then we take it as e. So
H5 − e is isomorphic to H2 defined in Lemma 2.3. Then k ≥ 4. If y1y2 has not any
crossing in Φ, then e is exactly x2x3 in Φ. So H5 − e is isomorphic to H3 defined in
Lemma 2.4. So k ≥ 4. Also, Figure 5 exhibits a drawing of H5 with four crossings.
Hence cr(H5) = 4.
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Figure 6 The graph G1
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Lemma 2.7 Let G1 be the graph shown in Figure 6. Then cr(G1) = 7.

Proof Suppose that cr(G1) = k, and that Ψ is an optimal drawing of G1.

For i = 1, 2, 3, let Qi be the induced subgraph of G1 by the four vertices x2i−1,
x2i, x2i+1 and x2i+2. Then each Qi is isomorphic to K4. Moreover, G1 has a subgraph
isomorphic to a subdivision of T6 which contains Q1. By Lemma 2.1, some edge in
Q1 has at least one crossing in Ψ. We now apply the following operations.

(1) If some edge in {x1x2, x1x4, x2x3, x2x4} has at least one crossing in Ψ, then it
is deleted and turn to (4). Otherwise, turn to (2).

(2) Suppose that the edge x1x3 has at least one crossing in Ψ. Notice that x2x1

and x2x3 are not successive if the edges incident with x2 are oriented in clockwise or
anticlockwise in Ψ, otherwise, we redraw x1x3 near to the path x1x2x3, obtaining a
drawing of G1 with at most k − 1 crossings, a contradiction. Now x1x3 is redrawn
near to x1x2x3 such that it crosses exactly x2x4. Delete x2x4 and turn to (4). If x1x3

has not any crossing in Ψ, turn to (3).

(3) The edge x3x4 has at least one crossing in Ψ. A similar argument as the one
used in (2) shows that we may redraw x3x4 near to the path x3x2x4 such that it
crosses exactly x1x2. Delete x1x2 and turn to (4).

(4) Let Ψ′
1 be the obtained drawing, and let G′

1 the obtained graph. Then cr(Ψ′
1) ≤

k − 1, and G′
1 contains the edge x1x4 or the path x1x2x4.

Since G′
1 contains the edge x2x8, it is easy to find that G′

1 has a subgraph iso-
morphic to a subdivision of T6 which contains Q3. By Lemma 2.1, some edge in Q3

has at least one crossing in Ψ′
1. An argument similar to the one used for Q1 shows

that there is a drawing Ψ′
2 which is obtained from Ψ′

1 by deleting some edge e in
E(Q3) \ {x5x6, x5x7} and cr(Ψ′

2) ≤ k− 2. Let G′′
1 be the graph obtained from G′

1 by
deleting e. Then G′′

1 contains the edge x7x6 or the path x7x8x6.

Since G′′
1 contains one of x1x4 and x1x2x4 and one of x7x6 and x7x8x6, G

′′
1 has a

subgraph isomorphic to a subdivision of T6 which contains Q2. By Lemma 2.1, some
edge in Q2 has at least one crossing in Ψ′

2. We consider two cases.

Case 1: G′′
1 contains one of x1x2 and x7x8. Without loss of generality, suppose that

G′′
1 contains x1x2. If some edge in E(Q2) \ {x3x5} has at least one crossing in Ψ′

2,
then it is deleted. Otherwise, x3x5 must has at least one crossing in Ψ′

2. We now
redraw x3x5 near to x3x4x5. Notice that each of x4x3 and x4x5 has not any crossing
in Ψ′

2. But x3x5 may crosses some edges in {x4x1, x4x2, x4x6}. If this case occur,
then we delete those edges. Thus, the new drawing of x3x5 has not any crossing.
Let Ψ′

3 be the obtained drawing in the above procedure, and let Ḡ1 be the obtained
graph. Then cr(Ψ′

3) ≤ k−3, and Ḡ1 contains one of x1x2x8x7 and x1x2x8x6x7. Thus
Ḡ1 has a subgraph isomorphic to a subdivision of the graph H5 defined in Lemma
2.6. So k − 3 ≥ 4. Thus k ≥ 7.

Case 2: G′′
1 contains none of x1x2 and x7x8. In this case, G′′

1 is isomorphic to the
graph shown in Figure 7(1).
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Figure 7 Two graphs defined in Case 2

If some edge in E(Q2) \ {x3x5} has at least one crossing in Ψ′
2, then it is deleted.

The graph obtained has a subgraph isomorphic to a subdivision of H5 defined in
Lemma 2.6. Following a similar argument to that in Case 1, we have k ≥ 7. If not,
then x3x5 has at least one crossing in Ψ′

2. Since each edge in E(Q2) \ {x3x5} is not
crossed, the drawing of Ψ′

2 restricted in E(Q2) is shown in Figure 7(2).

We observe that none of x2 and x8 is in the interior of the region whose boundary
is the cycle x3x4x6x3. Otherwise, the existence of the path x2x8x5 in G′′

1, and Jordan
Curve Theorem show that one edge of the cycle x3x4x6x3 must be crossed. Similarly,
none of x2 and x8 is in the interior of the region whose boundary is the cycle x4x5x6x4.
Let F1 be the region whose boundary is the cycle x3x4x5x3, let F2 the unbounded
region in Figure 7(2). If x2 and x8 are in F1 and F2, respectively, then x2x8 must
intersect x3x5. In this case, x2x8 is deleted. Clearly, the obtained drawing has at most
k − 3 crossings, and the obtained graph has a subgraph isomorphic to a subdivision
of H5 defined in Lemma 2.6. So k ≥ 7. If x2 and x8 are in the same region, there are
two cases to consider. If they are in F1, then x6x8 must intersect x3x5. In this case,
x6x8 is deleted. Then the obtained graph has a subgraph isomorphic to a subdivision
of H5. Thus, k ≥ 7. If they are in F2, then x2x4 must intersect x3x5. Similarly, we
have that k ≥ 7. Notice that Figure 6 exhibits a drawing of G1 with four crossings.
Hence cr(G1) = 7.

Lemma 2.8 Let G2 be the graph shown in Figure 8. Then cr(G2) ≥ 7.

Proof Suppose that cr(G2) = k, and that Ψ is an optimal drawing of G2.

Let Q1 be the subgraph of G2 induced by the four vertices x1, x2, x3 and x4.
Clearly, Q1 is isomorphic to K4, and G2 has a subgraph isomorphic to a subdivision
of T6 which contains Q1. By Lemma 2.1, some edge in E(Q1) has at least one crossing
in Ψ. We now apply the operations to Q1 which are similar to those in the proof of
Lemma 2.7. If some edge in E(Q1)\{x1x3, x3x4} has at least one crossing in Ψ, then
it is deleted. Otherwise, one of x1x3 and x3x4 has at least one crossing in Ψ. In this
case the edge is redrawn and some edge in {x1x2, x2x4} is deleted if necessary such
that at least one crossing is eliminated.

Let Ψ′
1 be the drawing so obtained, and let G′

2 the graph. Then cr(Ψ′
1) ≤ k − 1,

and G′
2 contains one of the following three subgraphs.

(a) The path x1x2x4. (b) The path x1x4x2. (c) {x3x2} ∪ {x1x4}.
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Figure 8 The graph G2

Let Q2 be the induced subgraph of G′
2 by the four vertices x5, x6, x7 and x8.

Obviously, Q2 is isomorphic toK4, andG′
2 has a subgraph isomorphic to a subdivision

of T6 which contains Q2. By Lemma 2.1, some edge in E(Q2) has at least one crossing
in Ψ′

1. An argument similar to one used for Q1 shows that there is a drawing Ψ′
2

obtained form Ψ′
1 by deleting some edge e in E(Q2)\{x5x6, x5x7} and cr(Ψ′

2) ≤ k−2.
Let G′′

2 be the graph obtained. We observe that G′′
2 contains one of the following

subgraphs.

(a) The path x7x8x6. (b) The path x7x6x8. (c) {x5x8} ∪ {x7x6}.
Let Q3 be the induced subgraph of G′′

2 by the four vertices x3, x4, x5 and x6.
Then Q3 is isomorphic to K4, and G′′

2 has a subgraph isomorphic to a subdivision of
T6 which contains Q3. By Lemma 2.1, some edge in E(Q3) has at least one crossing
in Ψ′

2. We consider two cases.

Case 1: G′′
2 contains one of x1x2 and x7x8. Without loss of generality, suppose that

G′′
2 contains the edge x1x2. If some edge e1 in E(Q3)\{x3x5} has at least one crossing

in Ψ′
2, then the drawing obtained from Ψ′

2 by deleting e1 has at most k−3 crossings.
Moreover, G′′

2 − e1 contains a subdivision of the graph H5 defined in Lemma 2.6,
since there is a path x1x2y1x6x7 or x1x2y1x6x8x7 in G′′

2 − e1. So k ≥ 7. If not, then
x3x5 has at least one crossing in Ψ′

2. We now delete edges x4y1 and x4y2. If x2x4 was
not removed, then it is deleted. Next, x3x5 can be drawn near to the path x3x4x5

such that it has at most one crossing. If x3x5 has one crossing, then it can be drawn
such that it crosses exactly x4x6. Thus, the drawing obtained from Ψ′

2 by deleting
x4x6 has at most k− 3 crossings, and the obtained graph has a subgraph isomorphic
to a subdivision of the graph H5 defined in Lemma 2.6. So k ≥ 7. If x3x5 has not
any crossing, we also let Ψ′

2 be the obtained drawing. Clearly, cr(Ψ′
2) ≤ k − 3. So

k ≥ 7.

Case 2 : G′′
2 contains none of x1x2 and x7x8. In this case, G′′

2 is the graph shown in
Figure 9.

If some edge in E(Q3) \ {x3x5} has at least one crossing in Ψ′
2, then it is deleted.

The obtained graph has a subgraph isomorphic to a subdivision of the graph H5

defined in Lemma 2.6. Hence, k ≥ 7. Otherwise, x3x5 has at least one crossing in
Ψ′

2. The drawing of Ψ′
2 restricted in Q3 is as in Figure 7(2). Let F1 and F2 be the

regions whose boundaries are x3x4x6x3 and x4x5x6x4, respectively. Proceeding the
similar argument as x2 and x8 in Case (2) in the proof of Lemma 2.7, none of x1 and
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x7 is in F1 or F2.
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Figure 9 The graph defined in Case 2

Let J be the graph obtained from G′′
2 by deleting x2, x3, x4, x5, x6, x8, y1 and y2.

Then J is connected graph. It is easy to find that there are two internally disjoint
paths P1 and P2 from x1 to x7 in J . Let F3 be the region whose boundary is the
cycle x3x4x5x3, and let F4 the unbounded region in Figure 7(2).

If x1 and x7 are in F3 and F4, respectively, it can be found that x3x5 has at least
two crossings if P1 and P2 are considered. We now delete x3x5. Then the obtained
graph has a subgraph isomorphic to a subdivision of the graph H3 defined in Lemma
2.4. So k ≥ 7.

If x1 and x7 are in the same region, we consider two cases.

(a) Both x1 and x7 are in F3. Then x6x7 must intersect x3x5 by Jordan Curve
Theorem. If x3x5 has at least two crossings, then it is deleted. Considering that
the obtained graph has a subgraph isomorphic to a subdivision of H3, we have that
k ≥ 7. If x3x5 has exactly one crossing, then it is produced by x3x5 and x6x7. We
now consider the vertex x8. We claim that x8 must be in F2. For, if x8 is in F1, then
x8x5 must cross some edge in the cycle x3x4x6x3 by Jordan Curve Theorem. If x8 is
in F4, then the path x8y2x4 must cross some edge in the cycle x3x5x6x3. If x8 is in
F3, then the edge x8x6 must cross some edge in the cycle x3x4x5x3. So x8 is in F2.

We now discuss how many crossings are eliminated after x7x8 has been deleted to
obtain G′′

2. If there are at least two crossings being eliminated, then Ψ′
2 has at most

k − 3 crossings. In this case, we delete x3x5. Considering that the obtained graph
has a subgraph isomorphic to a subdivision of H3 defined in Lemma 2.4, we have
that k ≥ 7. If there is exactly one crossing being eliminated, then the crossing must
be produced by x7x8 and x4x5. Now x7x8 is added back in the primitive way. Next,
x7x6 is newly drawn such that it is near to the path x6x8x7. We now delete all edges
incident with x8 other than x8x6 and x8x7 in the interior of the region F2. Then
x6x7 has exactly one crossing which is produced by x6x7 and x4x5. Notice that x4x5

has at least two crossings in this case. Next, x4x5 is deleted. The obtained drawing
has at most k− 3 crossings, and the obtained graph has a subgraph isomorphic to a
subdivision of H5 defined in Lemma 2.6. Hence, we have k ≥ 7.

(b) Both x1 and x7 are in F4. Then x1x4 must intersect x3x5. Next, we proceed
the similar argument as x6x7. The difference are that x8 is replaced by x2, that x7x8

is replaced by x1x2, and that F2 is replaced by F1. So k ≥ 7.
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Lemma 2.9 Let G3 be the graph shown in Figure 10. Then cr(G) ≥ 8.

Proof Suppose that cr(G3) = k, and that Ψ is an optimal drawing of G3.

Let Q be the subgraph of G3 induced by the four vertices x1, x2, x3 and x4.
Obviously, Q is isomorphic to K4, and G3 has a subgraph isomorphic to a subdivision
of T6 which contains Q. By Lemma 2.1, some edge in E(Q) has at least one crossing
in Ψ.
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Figure 10 The graph G3

If some edge in {x1x2, x1x3, x2x4, x3x4} has at least one crossing in Ψ, then the
edge is deleted. The obtained graph has a subgraph isomorphic to a subdivision of
G1 defined in Lemma 2.7. So k ≥ 8. Otherwise, we consider x2x3. If x2x3 has at
least one crossing in Ψ, then it is deleted. The obtained graph is isomorphic to G2

defined in Lemma 2.8. Thus, we have that k ≥ 8. If not, then x1x4 has at least
one crossing in Ψ. If we can redraw x1x4 so that it is not crossed, then we obtain
a drawing of G3 with less crossings that in Ψ, a contradiction. Otherwise, x1x4 can
be redrawn such that it crosses exactly x2x3. Since the graph obtained from G3 by
deleting x2x3 is isomorphic to G2, we have k ≥ 8.

3 The crossing number of Pm � Pn for m ≥ 4, n ≥ 4 and

(m, n) �= (4, 4)

Let Wm,n be the graph obtained from Pm � Pn by deleting the four vertices w1,1,
w1,n, wm,1 and wm,n.

Lemma 3.1 cr(W4,n) ≥ 3(n− 1)− 4 for n ≥ 5.

Proof We use the induction on n. If n = 5, then cr(W4,n) ≥ 8, since W4,n is
isomorphic to the graph defined in Lemma 2.9.

Assume that cr(W4,t) ≥ 3(t− 1)− 4, where t ≥ 5. Suppose that cr(W4,t+1) = k,
and that Π is an optimal drawing of W4,t+1. Let Q1 be the subgraph of W4,t+1

induced by the four vertices w1,t−1, w2,t−1, w1,t and w2,t. Obviously, Q1 is isomorphic
to K4, and W4,t+1 has a subgraph isomorphic to a subdivision of T6 which contains
Q1. By Lemma 2.1, some edge in Q1 has at least one crossing in Π. We now apply
the following operations which are similar to that in the proof of Lemma 2.7.

(1) If some edge in E(Q1) \ {w1,t−1w2,t−1, w2,t−1w2,t} has at least one crossing in Π,
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then it is deleted and turn to (4). Otherwise, turn to (2).

(2) Suppose that the edge w1,t−1w2,t−1 has at least one crossing in Π. We can
redraw w1,t−1w2,t−1 near to the path w1,t−1w1,tw2,t−1 such that it has at most one
crossing. If the new drawing of w1,t−1w2,t−1 has no crossing, then a drawing of W4,t+1

with at most k− 1 crossings is obtained, a contradiction. Otherwise,w1,t−1w2,t−1 can
be redrawn near to w1,t−1w2,t−1 such that it crosses exactly w1,tw2,t. Delete w1,tw2,t

and turn to (4). If w1,t−1w2,t−1 has not any crossing in Π, turn to (3).

(3) The edge w2,t−1w2,t has at least one crossing in Ψ. A similar argument as the
one used in (2) shows that we may redraw w2,t−1w2,t near to the path w2,t−1w1,tw2,t

such that it crosses exactly w1,t−1w1,t. Delete w1,t−1w1,t and turn to (4).

(4) Let Π′
1 be the obtained drawing, and let W

(1)
4,t+1 the obtained graph.

Then cr(Π′
1) ≤ k − 1, and W

(1)
4,t+1 contains the edge w1,t−1w2,t or the path

w1,t−1w1,tw2,t.

Let Q2 be the subgraph of W
(1)
4,t+1 induced by the four vertices w3,t−1, w3,t, w4,t−1

and w4,t. Next, we proceed the similar argument as Q1. Let Π′
2 be the drawing

so obtained, and let W
(2)
4,t+1 be the graph corresponding to Π′

2. Then cr(Π′
2) ≤

cr(Π′
1)− 1 ≤ k− 2 and W

(2)
4,t+1 contains the edge w4,t−1w3,t or the path w4,t−1w4,tw3,t.

Let Q3 be the induced subgraph of W
(2)
4,t+1 by the four vertices w2,t, w2,t+1, w3,t

and w3,t+1. Obviously, Q3 is isomorphic to K4, andW
(2)
4,t+1 has a subgraph isomorphic

to a subdivision of T6 which contains Q3. By Lemma 2.1, some edge in E(Q3) has
at least one crossing in Π′

2. We now apply the following operations.

(a) If some edge in E(Q3) \ {w2,tw3,t} has at least one crossing in Π′
2, then it is

deleted and turn to (c). Otherwise, turn to (b).

(b) The edge w2,tw3,t is crossed in Π′
2. We redraw this edge near to the path

w2,tw2,t+1w3,t. If in such new drawing w2,tw3,t is not crossed, then turn to (c). Oth-
erwise, w2,tw3,t can be drawn such that it crosses exactly the edge w2,t+1w3,t+1. Now
the edge w2,t+1w3,t+1 is deleted, and turn to (c).

(c) Let Π′
3 be the obtained drawing, and let W

(3)
4,t+1 be the obtained graph.

Then cr(W
(3)
4,t+1) ≤ cr(W

(2)
4,t+1)− 1 ≤ k− 3, and W

(3)
4,t+1 has a subgraph isomorphic

to a subdivision of W4,t. By the inductive assumption, cr(W4,t) ≥ 3(t− 1)− 4. This
implies that k ≥ 3t−4. So cr(W4,t+1) ≥ 3t−4. Therefore, cr(W4,n) ≥ 3(n−1)−4.

Lemma 3.2 cr(Wm,n) ≥ (m− 1)(n− 1)− 4 for m ≥ 4 and n ≥ 5.

Proof We use the induction on m. By Lemma 3.1, cr(Wm,n) ≥ (m− 1)(n− 1)− 4
if m = 4. Assume that cr(Wm,n) ≥ (m − 1)(n − 1) − 4 if m = q. Suppose that
cr(Wq+1,n) = k, and that Π is an optimal drawing of Wq+1,n.

LetQ′
1 (Q

′
n−1, respectively) be the induced subgraph ofWq+1,n by the four vertices

wq−1,1, wq−1,2, wq,1 and wq,2 (wq−1,n−1, wq−1,n, wq,n−1 and wq,n, respectively). For
i = 1, 2, . . . , n − 3, let Q′

i+1 be the induced subgraph of Wq+1,n by the four vertices
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wq,i+1, wq,i+2, wq+1,i+1 and wq+1,i+2. It is obvious that Q′
j is isomorphic to K4 for

j = 1, 2, . . . , n− 1.

We start with Q′
1 and deal with it as Q1 in the proof of Lemma 3.1. If some edge

in E(Q′
1)\{wq−1,1wq−1,2, wq−1,2wq,2} has at least one crossing in Π, then it is deleted.

Otherwise, one of wq−1,1wq−1,2 and wq−1,2wq,2 has at least one crossing. In this case
the edge is redrawn and some edge in {wq−1,1wq,1, wq,1wq,2} is deleted if necessary
such that at least one crossing is eliminated.

After Q′
1 has been dealt with, the obtained graph has a subgraph isomorphic to

a subdivision of T6 which contains Q′
2. By Lemma 2.1, some edge in Q′

2 has at least
one crossing in the present drawing. We now deal with Q′

2 in the similar way to that
of Q1 in the proof of Lemma 3.1. If some edge in E(Q′

2) \ {wq,2wq,3, wq,3wq+1,3} has
at least one crossing in the present drawing, then it is deleted. Otherwise, one of
wq,2wq,3 and wq,3wq+1,3 has at least one crossing in the present drawing. In this case
the edge is redrawn and some edge in {wq,2wq+1,2, wq+1,2wq+1,3} is deleted if necessary
such that at least one crossing is eliminated.

For i = 3, . . . , n − 2, Q′
i is dealt with as Q′

2. At last, Q′
n−1 is dealt with in the

similar way to Q3 in the proof of Lemma 3.1. Let G be the obtained graph after
removing at least one crossing for each of Qi, i ∈ {1, 2, . . . , n − 1}. Then G has a
subgraph isomorphic to a subdivision of the graphWq,n. Thus, cr(G) ≤ k−(n−1). By
the inductive assumption, cr(G) ≥ (q−1)(n−1)−4. This implies that k ≥ q(n−1)−4.
So cr(Wq+1,n) ≥ q(n− 1)− 4. Therefore, cr(Wm,n) ≥ (m− 1)(n− 1)− 4.
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Figure 11 A drawing of P4 � P4

Since Pm�Pn is isomorphic to Pn�Pm, we have that cr(Pm�Pn) = cr(Pn�Pm).
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Theorem 3.3 cr(Pm � Pn) = (m− 1)(n− 1)− 4 for m ≥ 4, n ≥ 4 and (m,n) �=
(4, 4).

Proof The theorem follows from Lemmas 1.1 and 3.2.

4 The crossing number of P4 � P4

Theorem 4.1 cr(P4 � P4) = 4.

Proof The drawing of P4 � P4 shown in Figure 11 implies that cr(P4 � P4) ≤ 4.
Since P4 � P4 has a subgraph isomorphic to a subdivision of H5 defined in Lemma
2.6, cr(P4 � P4) ≥ 4. Hence cr(P4 � P4) = 4.
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