The crossing number of the strong product of two paths

Dengju Ma*
School of Sciences
Nantong University
Jiangsu Province, 226019
China
ma-dj@163.com

Abstract

Let $P_{m} \boxtimes P_{n}$ be the strong product of two paths P_{m} and P_{n}. In 2013, Klešč et al. conjectured that the crossing number of $P_{m} \boxtimes P_{n}$ is equal to $(m-1)(n-1)-4$ for $m \geq 4$ and $n \geq 4$. In this paper we show that the above conjecture is true except when $m=4$ and $n=4$, and that the crossing number of $P_{4} \boxtimes P_{4}$ is four.

1 Introduction

Let G and H be two disjoint graphs. The strong product $G \boxtimes H$ of G and H is the graph with vertex set $V(G) \times V(H)$ and edge set $\{(u, v)(x, y): u=x$ and $v y \in$ $E(H)$, or $v=y$ and $u x \in E(G)$, or $u x \in E(G)$ and $v y \in E(H)\}$.

Suppose that j is a positive integer. Let P_{j} be a path with j vertices. In 2013, Klešč et al. [1] firstly studied the crossing number of the strong product of two graphs. They showed that the crossing number of $P_{3} \boxtimes P_{n}$ is equal to $n-3$ if $n \geq 3$, and they established

Lemma 1.1[1] The crossing number of $P_{m} \boxtimes P_{n}$ is at most $(m-1)(n-1)-4$ for $m \geq 4$ and $n \geq 4$.

Subsequently, Klešč et al. conjectured that the crossing number of $P_{m} \boxtimes P_{n}$ is equal to $(m-1)(n-1)-4$ for $m \geq 4$ and $n \geq 4$. In this paper we shall show that the above conjecture is true except for $m=4$ and $n=4$, and that the crossing number of $P_{4} \boxtimes P_{4}$ is four.

The arrangement of the paper is as follows. In Section 2, we give some lemmas and show that the crossing number of a subgraph of $P_{4} \boxtimes P_{5}$ is at least eight. In

[^0]Section 3, we first show using induction on n that the crossing number of a subgraph $W_{4, n}$ of $P_{4} \boxtimes P_{n}$ is equal to $3(n-1)-4$ for $n \geq 5$. Then we prove using induction on m that the crossing number of a subgraph $W_{m, n}$ of $P_{m} \boxtimes P_{n}$ is equal to $(m-1)(n-1)-4$ for $m \geq 4$ and $n \geq 4$ and $(m, n) \neq(4,4)$. Subsequently, we determine the crossing number of $P_{m} \boxtimes P_{n}$ when $m \geq 4$ and $n \geq 4$ and $(m, n) \neq(4,4)$. In Section 4 we show that the crossing number of $P_{4} \boxtimes P_{4}$ is four.

The rest of this section is contributed to some terminology for crossing numbers and graph theory.

Let G be a graph. By a drawing of G, we mean a drawing of G in the plane in which: no edge has a vertex as an interior point; no two adjacent edges cross each other; no two edges cross each other more than once; and no three edges cross in a common point.

Suppose that Φ is a drawing of a graph. The number of edge crossings in Φ is denoted by $\operatorname{cr}(\Phi)$. The crossing number of a graph G, denoted by $\operatorname{cr}(G)$, is the minimum number of edges crossings over all drawings of G. A drawing Ψ of G is optimal if $\operatorname{cr}(\Psi)=\operatorname{cr}(G)$.

A graph G^{\prime} is a subdivision of G if G^{\prime} is isomorphic to G or G^{\prime} can be obtained from G by inserting vertices of degree two in some edges. Obviously, $\operatorname{cr}\left(G^{\prime}\right)=\operatorname{cr}(G)$ if G^{\prime} is a subdivision of G. A graph H is a minor of G if H is isomorphic to a graph obtained from a subgraph F of G by contracting some edges in $E(F)$. A vertex of G is called a branch vertex if its degree is at least three in G. The complete graph with n vertices is denoted by K_{n}.

By Kuratowski's theorem [2], a graph is planar if and only if it contains no subdivision of either the complete graph K_{5} or the complete bipartite graph $K_{3,3}$. Hence, if a graph G has a subgraph isomorphic to a subdivision of K_{5} or $K_{3,3}$, then $\operatorname{cr}(G) \geq 1$.

2 Basic lemmas and the crossing number of the graph in Figure 10

Let $P_{m}=u_{1} u_{2} \ldots u_{m}$ and $P_{n}=z_{1} z_{2} \ldots z_{n}$ be two paths, where $m \geq 4$ and $n \geq 4$. For brevity, the vertex $\left(u_{i}, z_{j}\right)$ in $P_{m} \boxtimes P_{n}$ is labeled by $w_{i, j}$. It is easy to find that there are many induced subgraphs in $P_{m} \boxtimes P_{n}$ such that each is isomorphic to K_{4}. For example, the graph $P_{4} \boxtimes P_{5}$ has twelve induced subgraphs in which each is isomorphic to K_{4}. But K_{4} is a planar graph. In order to give a lower bound for the crossing number of $P_{m} \boxtimes P_{n}$, we need a nonplanar graph which contains K_{4} as subgraph. We shall define this graph in next paragraph. The drawing of $P_{4} \boxtimes P_{5}$ shown in Figure 1 can be generalized to obtain a drawing of $P_{m} \boxtimes P_{n}$ with $(m-1)(n-1)-4$ crossings.

Let T_{6} be the graph shown in Figure 2. Obviously, T_{6} has a subgraph isomorphic to $K_{3,3}$. So $\operatorname{cr}\left(T_{6}\right) \geq 1$. It is easy to find that there are many subgraphs in $P_{m} \boxtimes P_{n}$ such that each is isomorphic to a subdivision of T_{6}.

Figure $1 \quad$ The graph $P_{4} \boxtimes P_{5}$

Figure 2 The graph T_{6}
Lemma 2.1 Let F be a graph isomorphic to a subdivision of T_{6}. Let Q be a subgraph of F which is isomorphic to a subdivision of K_{4}. Then at least one edge of Q is crossed in any drawing of F.

Proof Suppose that Φ is a drawing of F. Since F is isomorphic to a subdivision of T_{6}, Φ has at least one crossing.

Suppose that v_{1}, v_{2}, v_{3} and v_{4} are the four branch vertices of Q. If some edge of Q is crossed by some other edge of Q, then we have the desired result. Otherwise, the drawing of Φ restricted in Q divides the plane into four regions in which one is unbounded and its closure contains three branch vertices of Q. Also, the boundary of each of the other three regions contains three branch vertices of Q. Let F^{\prime} be the graph obtained from F by deleting all edges in $E(Q)$. Then F^{\prime} is a connected graph. Suppose that v_{5} and v_{6} are the other two branch vertices of F. By the Jordan Curve Theorem, no matter which regions v_{5} and v_{6} are in, at least one edge of Q is crossed by some edge in F^{\prime}.

Figure 3 The graph H_{1}

Lemma 2.2 Let H_{1} be the graph shown in Figure 3. Then $\operatorname{cr}\left(H_{1}\right)=2$.
Proof Let Q be the subgraph of H_{1} induced by the four vertices x_{1}, x_{2}, x_{3} and x_{4}. Then Q is isomorphic to K_{4}. It is easy to find that H_{1} has a subgraph isomorphic to T_{6} which contains Q. By Lemma 2.1, some edge in Q has at least one crossing in any drawing of H_{1}. For any edge e in Q, it can be checked that $H_{1}-e$ has a minor isomorphic to K_{5}. So $\operatorname{cr}\left(H_{1}\right) \geq \operatorname{cr}\left(K_{5}\right)+1 \geq 2$. Also, Figure 3 exhibits a drawing of H_{1} with two crossings. Hence $\operatorname{cr}\left(H_{1}\right)=2$.

Figure 4 Three graphs H_{2}, H_{3} and H_{4}
Lemma 2.3 Let H_{2} be the graph shown in Figure 4(1). Then $\operatorname{cr}\left(H_{2}\right) \geq 3$.
Proof Suppose that Φ is an optimal drawing of H_{2}. Let Q be the subgraph of H_{2} induced by the four vertices x_{1}, x_{2}, x_{3}, and x_{4}. Clearly, Q is isomorphic to K_{4}, and H_{2} has a subgraph isomorphic to a subdivision of T_{6} which contains Q. By Lemma 2.1, some edge e in Q has at least one crossing in Φ. If e is some edge in $E(Q) \backslash\left\{x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right\}$, it is easy to find that $H_{2}-e$ contains a subgraph isomorphic to H_{1}. If e is $x_{2} x_{3}$ or $x_{2} x_{4}$, then $H_{2}-e$ contains the path $x_{1} x_{2} x_{8}$ and the path $x_{3} x_{1} x_{4}$. So $H_{2}-e$ has a subgraph isomorphic to a subdivision of H_{1}. If e is the edge $x_{3} x_{4}$, then $H_{2}-e$ contains the path $x_{3} x_{1} x_{4}$ and the path $x_{3} x_{2} x_{4}$. Hence $H_{2}-e$ has a subgraph isomorphic to a subdivision of H_{1}. So $\operatorname{cr}\left(H_{2}\right) \geq \operatorname{cr}\left(H_{1}\right)+1 \geq 3$.

Lemma 2.4 Let H_{3} be the graph shown in Figure 4(2). Then $\operatorname{cr}\left(H_{3}\right) \geq 3$.
Proof Let Q be the subgraph of H_{3} induced by the four vertices x_{1}, x_{2}, x_{3}, and x_{4}. Proceeding the similar argument to that in the proof of Lemma 2.3, one can show that $\operatorname{cr}\left(H_{3}\right) \geq 3$.

Lemma 2.5 Let H_{4} be the graph shown in Figure 4(3). Then $\operatorname{cr}\left(H_{4}\right) \geq 3$.
Proof Suppose that $\operatorname{cr}\left(H_{4}\right)=k$, and that Φ is an optimal drawing of H_{4}.
For $i=1,2,3$, let Q_{i} be the subgraph of H_{4} induced by the four vertices $x_{2 i-1}$, $x_{2 i}, x_{2 i+1}$ and $x_{2 i+2}$. Then each Q_{i} is isomorphic to K_{4}. It is easy to find that H_{4} contains a subgraph isomorphic to a subdivision of T_{6} which contains Q_{1}. By Lemma 2.1, some edge e_{1} in Q_{1} has at least one crossing in Φ. Let Φ_{1}^{\prime} be the drawing obtained from Φ by deleting e_{1}. Then $\operatorname{cr}\left(\Phi_{1}^{\prime}\right) \leq k-1$. It is easy to find that $H_{4}-e_{1}$ contains a subgraph which is isomorphic to a subdivision of T_{6} which contains Q_{3}. By Lemma 2.1, some edge e_{2} in Q_{3} has at least one crossing in Φ_{1}^{\prime}. Let Φ_{2}^{\prime} be the drawing obtained from Φ_{1}^{\prime} by deleting e_{2}. Then $\operatorname{cr}\left(\Phi_{2}^{\prime}\right) \leq k-2$.

We observe that $H_{4}-e_{1}-e_{2}$ has the following properties.
(1) It contains the path $x_{3} x_{1} x_{4}$ or $x_{3} x_{2} x_{4}$.
(2) It contains the path $x_{5} x_{7} x_{6}$ or $x_{5} x_{8} x_{6}$.

Without loss of generality, suppose that $H_{4}-e_{1}-e_{2}$ contains the path $x_{3} x_{1} x_{4}$. If $H_{4}-e_{1}-e_{2}$ contains $x_{5} x_{7} x_{6}$, then $H_{4}-e_{1}-e_{2}$ contains a subgraph isomorphic to $K_{3,3}$ if the cycle $x_{3} x_{5} x_{4} x_{6} x_{3}$ is considered. Otherwise, $H_{4}-e_{1}-e_{2}$ contains $x_{5} x_{8} x_{6}$. Moreover, $H_{4}-e_{1}-e_{2}$ contains $x_{7} x_{8}$. In this case $H_{4}-e_{1}-e_{2}$ contains a subgraph isomorphic to a subdivision of $K_{3,3}$ if the cycle $x_{3} x_{5} x_{4} x_{6} x_{3}$ is considered. So $H_{4}-e_{1}-e_{2}$ is nonplanar. Thus, $k \geq 3$.

Figure 5 The graph H_{5}

Lemma 2.6 Let H_{5} be the graph shown in Figure 5. Then $\operatorname{cr}\left(H_{5}\right)=4$.
Proof Suppose that $\operatorname{cr}\left(H_{5}\right)=k$, and suppose that Φ is an optimal drawing of H_{5}.
Let Q be the induced subgraph of H_{5} by the four vertices y_{1}, y_{2}, x_{2} and x_{3}. Obviously, Q is isomorphic to K_{4}, and H_{5} has a subgraph isomorphic to a subdivision of T_{6} which contains Q. By Lemma 2.1, some edge e in Q has at least one crossing in Φ. Let Φ^{\prime} be the drawing obtained from Φ by deleting e. If e is some edge in $\left\{y_{1} x_{2}, y_{1} x_{3}, y_{2} x_{2}, y_{2} x_{3}\right\}$, then $H_{5}-e$ has a subgraph isomorphic to a subdivision of H_{4} defined in Lemma 2.5. Thus, we have that $k \geq 4$ in this case. Otherwise, we consider the edge $y_{1} y_{2}$. If it has at least one crossing in Φ, then we take it as e. So $H_{5}-e$ is isomorphic to H_{2} defined in Lemma 2.3. Then $k \geq 4$. If $y_{1} y_{2}$ has not any crossing in Φ, then e is exactly $x_{2} x_{3}$ in Φ. So $H_{5}-e$ is isomorphic to H_{3} defined in Lemma 2.4. So $k \geq 4$. Also, Figure 5 exhibits a drawing of H_{5} with four crossings. Hence $\operatorname{cr}\left(H_{5}\right)=4$.

Figure 6 The graph G_{1}

Lemma 2.7 Let G_{1} be the graph shown in Figure 6. Then $\operatorname{cr}\left(G_{1}\right)=7$.
Proof Suppose that $\operatorname{cr}\left(G_{1}\right)=k$, and that Ψ is an optimal drawing of G_{1}.
For $i=1,2,3$, let Q_{i} be the induced subgraph of G_{1} by the four vertices $x_{2 i-1}$, $x_{2 i}, x_{2 i+1}$ and $x_{2 i+2}$. Then each Q_{i} is isomorphic to K_{4}. Moreover, G_{1} has a subgraph isomorphic to a subdivision of T_{6} which contains Q_{1}. By Lemma 2.1, some edge in Q_{1} has at least one crossing in Ψ. We now apply the following operations.
(1) If some edge in $\left\{x_{1} x_{2}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{4}\right\}$ has at least one crossing in Ψ, then it is deleted and turn to (4). Otherwise, turn to (2).
(2) Suppose that the edge $x_{1} x_{3}$ has at least one crossing in Ψ. Notice that $x_{2} x_{1}$ and $x_{2} x_{3}$ are not successive if the edges incident with x_{2} are oriented in clockwise or anticlockwise in Ψ, otherwise, we redraw $x_{1} x_{3}$ near to the path $x_{1} x_{2} x_{3}$, obtaining a drawing of G_{1} with at most $k-1$ crossings, a contradiction. Now $x_{1} x_{3}$ is redrawn near to $x_{1} x_{2} x_{3}$ such that it crosses exactly $x_{2} x_{4}$. Delete $x_{2} x_{4}$ and turn to (4). If $x_{1} x_{3}$ has not any crossing in Ψ, turn to (3).
(3) The edge $x_{3} x_{4}$ has at least one crossing in Ψ. A similar argument as the one used in (2) shows that we may redraw $x_{3} x_{4}$ near to the path $x_{3} x_{2} x_{4}$ such that it crosses exactly $x_{1} x_{2}$. Delete $x_{1} x_{2}$ and turn to (4).
(4) Let Ψ_{1}^{\prime} be the obtained drawing, and let G_{1}^{\prime} the obtained graph. Then $\operatorname{cr}\left(\Psi_{1}^{\prime}\right) \leq$ $k-1$, and G_{1}^{\prime} contains the edge $x_{1} x_{4}$ or the path $x_{1} x_{2} x_{4}$.

Since G_{1}^{\prime} contains the edge $x_{2} x_{8}$, it is easy to find that G_{1}^{\prime} has a subgraph isomorphic to a subdivision of T_{6} which contains Q_{3}. By Lemma 2.1, some edge in Q_{3} has at least one crossing in Ψ_{1}^{\prime}. An argument similar to the one used for Q_{1} shows that there is a drawing Ψ_{2}^{\prime} which is obtained from Ψ_{1}^{\prime} by deleting some edge e in $E\left(Q_{3}\right) \backslash\left\{x_{5} x_{6}, x_{5} x_{7}\right\}$ and $\operatorname{cr}\left(\Psi_{2}^{\prime}\right) \leq k-2$. Let $G_{1}^{\prime \prime}$ be the graph obtained from G_{1}^{\prime} by deleting e. Then $G_{1}^{\prime \prime}$ contains the edge $x_{7} x_{6}$ or the path $x_{7} x_{8} x_{6}$.

Since $G_{1}^{\prime \prime}$ contains one of $x_{1} x_{4}$ and $x_{1} x_{2} x_{4}$ and one of $x_{7} x_{6}$ and $x_{7} x_{8} x_{6}, G_{1}^{\prime \prime}$ has a subgraph isomorphic to a subdivision of T_{6} which contains Q_{2}. By Lemma 2.1, some edge in Q_{2} has at least one crossing in Ψ_{2}^{\prime}. We consider two cases.
Case 1: $G_{1}^{\prime \prime}$ contains one of $x_{1} x_{2}$ and $x_{7} x_{8}$. Without loss of generality, suppose that $G_{1}^{\prime \prime}$ contains $x_{1} x_{2}$. If some edge in $E\left(Q_{2}\right) \backslash\left\{x_{3} x_{5}\right\}$ has at least one crossing in Ψ_{2}^{\prime}, then it is deleted. Otherwise, $x_{3} x_{5}$ must has at least one crossing in Ψ_{2}^{\prime}. We now redraw $x_{3} x_{5}$ near to $x_{3} x_{4} x_{5}$. Notice that each of $x_{4} x_{3}$ and $x_{4} x_{5}$ has not any crossing in Ψ_{2}^{\prime}. But $x_{3} x_{5}$ may crosses some edges in $\left\{x_{4} x_{1}, x_{4} x_{2}, x_{4} x_{6}\right\}$. If this case occur, then we delete those edges. Thus, the new drawing of $x_{3} x_{5}$ has not any crossing. Let Ψ_{3}^{\prime} be the obtained drawing in the above procedure, and let \bar{G}_{1} be the obtained graph. Then $\operatorname{cr}\left(\Psi_{3}^{\prime}\right) \leq k-3$, and \bar{G}_{1} contains one of $x_{1} x_{2} x_{8} x_{7}$ and $x_{1} x_{2} x_{8} x_{6} x_{7}$. Thus \bar{G}_{1} has a subgraph isomorphic to a subdivision of the graph H_{5} defined in Lemma 2.6. So $k-3 \geq 4$. Thus $k \geq 7$.

Case 2: $\quad G_{1}^{\prime \prime}$ contains none of $x_{1} x_{2}$ and $x_{7} x_{8}$. In this case, $G_{1}^{\prime \prime}$ is isomorphic to the graph shown in Figure 7(1).

Figure 7 Two graphs defined in Case 2
If some edge in $E\left(Q_{2}\right) \backslash\left\{x_{3} x_{5}\right\}$ has at least one crossing in Ψ_{2}^{\prime}, then it is deleted. The graph obtained has a subgraph isomorphic to a subdivision of H_{5} defined in Lemma 2.6. Following a similar argument to that in Case 1, we have $k \geq 7$. If not, then $x_{3} x_{5}$ has at least one crossing in Ψ_{2}^{\prime}. Since each edge in $E\left(Q_{2}\right) \backslash\left\{x_{3} x_{5}\right\}$ is not crossed, the drawing of Ψ_{2}^{\prime} restricted in $E\left(Q_{2}\right)$ is shown in Figure $7(2)$.

We observe that none of x_{2} and x_{8} is in the interior of the region whose boundary is the cycle $x_{3} x_{4} x_{6} x_{3}$. Otherwise, the existence of the path $x_{2} x_{8} x_{5}$ in $G_{1}^{\prime \prime}$, and Jordan Curve Theorem show that one edge of the cycle $x_{3} x_{4} x_{6} x_{3}$ must be crossed. Similarly, none of x_{2} and x_{8} is in the interior of the region whose boundary is the cycle $x_{4} x_{5} x_{6} x_{4}$. Let F_{1} be the region whose boundary is the cycle $x_{3} x_{4} x_{5} x_{3}$, let F_{2} the unbounded region in Figure $7(2)$. If x_{2} and x_{8} are in F_{1} and F_{2}, respectively, then $x_{2} x_{8}$ must intersect $x_{3} x_{5}$. In this case, $x_{2} x_{8}$ is deleted. Clearly, the obtained drawing has at most $k-3$ crossings, and the obtained graph has a subgraph isomorphic to a subdivision of H_{5} defined in Lemma 2.6. So $k \geq 7$. If x_{2} and x_{8} are in the same region, there are two cases to consider. If they are in F_{1}, then $x_{6} x_{8}$ must intersect $x_{3} x_{5}$. In this case, $x_{6} x_{8}$ is deleted. Then the obtained graph has a subgraph isomorphic to a subdivision of H_{5}. Thus, $k \geq 7$. If they are in F_{2}, then $x_{2} x_{4}$ must intersect $x_{3} x_{5}$. Similarly, we have that $k \geq 7$. Notice that Figure 6 exhibits a drawing of G_{1} with four crossings. Hence $\operatorname{cr}\left(G_{1}\right)=7$.

Lemma 2.8 Let G_{2} be the graph shown in Figure 8. Then $\operatorname{cr}\left(G_{2}\right) \geq 7$.
Proof Suppose that $\operatorname{cr}\left(G_{2}\right)=k$, and that Ψ is an optimal drawing of G_{2}.
Let Q_{1} be the subgraph of G_{2} induced by the four vertices x_{1}, x_{2}, x_{3} and x_{4}. Clearly, Q_{1} is isomorphic to K_{4}, and G_{2} has a subgraph isomorphic to a subdivision of T_{6} which contains Q_{1}. By Lemma 2.1, some edge in $E\left(Q_{1}\right)$ has at least one crossing in Ψ. We now apply the operations to Q_{1} which are similar to those in the proof of Lemma 2.7. If some edge in $E\left(Q_{1}\right) \backslash\left\{x_{1} x_{3}, x_{3} x_{4}\right\}$ has at least one crossing in Ψ, then it is deleted. Otherwise, one of $x_{1} x_{3}$ and $x_{3} x_{4}$ has at least one crossing in Ψ. In this case the edge is redrawn and some edge in $\left\{x_{1} x_{2}, x_{2} x_{4}\right\}$ is deleted if necessary such that at least one crossing is eliminated.

Let Ψ_{1}^{\prime} be the drawing so obtained, and let G_{2}^{\prime} the graph. $\operatorname{Then} \operatorname{cr}\left(\Psi_{1}^{\prime}\right) \leq k-1$, and G_{2}^{\prime} contains one of the following three subgraphs.
(a) The path $x_{1} x_{2} x_{4}$.
(b) The path $x_{1} x_{4} x_{2}$.
(c) $\left\{x_{3} x_{2}\right\} \cup\left\{x_{1} x_{4}\right\}$.

Figure 8 The graph G_{2}
Let Q_{2} be the induced subgraph of G_{2}^{\prime} by the four vertices x_{5}, x_{6}, x_{7} and x_{8}. Obviously, Q_{2} is isomorphic to K_{4}, and G_{2}^{\prime} has a subgraph isomorphic to a subdivision of T_{6} which contains Q_{2}. By Lemma 2.1, some edge in $E\left(Q_{2}\right)$ has at least one crossing in Ψ_{1}^{\prime}. An argument similar to one used for Q_{1} shows that there is a drawing Ψ_{2}^{\prime} obtained form Ψ_{1}^{\prime} by deleting some edge e in $E\left(Q_{2}\right) \backslash\left\{x_{5} x_{6}, x_{5} x_{7}\right\}$ and $\operatorname{cr}\left(\Psi_{2}^{\prime}\right) \leq k-2$. Let $G_{2}^{\prime \prime}$ be the graph obtained. We observe that $G_{2}^{\prime \prime}$ contains one of the following subgraphs.
(a) The path $x_{7} x_{8} x_{6}$.
(b) The path $x_{7} x_{6} x_{8}$.
(c) $\left\{x_{5} x_{8}\right\} \cup\left\{x_{7} x_{6}\right\}$.

Let Q_{3} be the induced subgraph of $G_{2}^{\prime \prime}$ by the four vertices x_{3}, x_{4}, x_{5} and x_{6}. Then Q_{3} is isomorphic to K_{4}, and $G_{2}^{\prime \prime}$ has a subgraph isomorphic to a subdivision of T_{6} which contains Q_{3}. By Lemma 2.1, some edge in $E\left(Q_{3}\right)$ has at least one crossing in Ψ_{2}^{\prime}. We consider two cases.
Case 1: $G_{2}^{\prime \prime}$ contains one of $x_{1} x_{2}$ and $x_{7} x_{8}$. Without loss of generality, suppose that $G_{2}^{\prime \prime}$ contains the edge $x_{1} x_{2}$. If some edge e_{1} in $E\left(Q_{3}\right) \backslash\left\{x_{3} x_{5}\right\}$ has at least one crossing in Ψ_{2}^{\prime}, then the drawing obtained from Ψ_{2}^{\prime} by deleting e_{1} has at most $k-3$ crossings. Moreover, $G_{2}^{\prime \prime}-e_{1}$ contains a subdivision of the graph H_{5} defined in Lemma 2.6, since there is a path $x_{1} x_{2} y_{1} x_{6} x_{7}$ or $x_{1} x_{2} y_{1} x_{6} x_{8} x_{7}$ in $G_{2}^{\prime \prime}-e_{1}$. So $k \geq 7$. If not, then $x_{3} x_{5}$ has at least one crossing in Ψ_{2}^{\prime}. We now delete edges $x_{4} y_{1}$ and $x_{4} y_{2}$. If $x_{2} x_{4}$ was not removed, then it is deleted. Next, $x_{3} x_{5}$ can be drawn near to the path $x_{3} x_{4} x_{5}$ such that it has at most one crossing. If $x_{3} x_{5}$ has one crossing, then it can be drawn such that it crosses exactly $x_{4} x_{6}$. Thus, the drawing obtained from Ψ_{2}^{\prime} by deleting $x_{4} x_{6}$ has at most $k-3$ crossings, and the obtained graph has a subgraph isomorphic to a subdivision of the graph H_{5} defined in Lemma 2.6. So $k \geq 7$. If $x_{3} x_{5}$ has not any crossing, we also let Ψ_{2}^{\prime} be the obtained drawing. Clearly, $\operatorname{cr}\left(\Psi_{2}^{\prime}\right) \leq k-3$. So $k \geq 7$.

Case 2: $G_{2}^{\prime \prime \prime}$ contains none of $x_{1} x_{2}$ and $x_{7} x_{8}$. In this case, $G_{2}^{\prime \prime}$ is the graph shown in Figure 9.

If some edge in $E\left(Q_{3}\right) \backslash\left\{x_{3} x_{5}\right\}$ has at least one crossing in Ψ_{2}^{\prime}, then it is deleted. The obtained graph has a subgraph isomorphic to a subdivision of the graph H_{5} defined in Lemma 2.6. Hence, $k \geq 7$. Otherwise, $x_{3} x_{5}$ has at least one crossing in Ψ_{2}^{\prime}. The drawing of Ψ_{2}^{\prime} restricted in Q_{3} is as in Figure 7(2). Let F_{1} and F_{2} be the regions whose boundaries are $x_{3} x_{4} x_{6} x_{3}$ and $x_{4} x_{5} x_{6} x_{4}$, respectively. Proceeding the similar argument as x_{2} and x_{8} in Case (2) in the proof of Lemma 2.7, none of x_{1} and
x_{7} is in F_{1} or F_{2}.

Figure 9 The graph defined in Case 2
Let J be the graph obtained from $G_{2}^{\prime \prime}$ by deleting $x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{8}, y_{1}$ and y_{2}. Then J is connected graph. It is easy to find that there are two internally disjoint paths P_{1} and P_{2} from x_{1} to x_{7} in J. Let F_{3} be the region whose boundary is the cycle $x_{3} x_{4} x_{5} x_{3}$, and let F_{4} the unbounded region in Figure 7(2).

If x_{1} and x_{7} are in F_{3} and F_{4}, respectively, it can be found that $x_{3} x_{5}$ has at least two crossings if P_{1} and P_{2} are considered. We now delete $x_{3} x_{5}$. Then the obtained graph has a subgraph isomorphic to a subdivision of the graph H_{3} defined in Lemma 2.4. So $k \geq 7$.

If x_{1} and x_{7} are in the same region, we consider two cases.
(a) Both x_{1} and x_{7} are in F_{3}. Then $x_{6} x_{7}$ must intersect $x_{3} x_{5}$ by Jordan Curve Theorem. If $x_{3} x_{5}$ has at least two crossings, then it is deleted. Considering that the obtained graph has a subgraph isomorphic to a subdivision of H_{3}, we have that $k \geq 7$. If $x_{3} x_{5}$ has exactly one crossing, then it is produced by $x_{3} x_{5}$ and $x_{6} x_{7}$. We now consider the vertex x_{8}. We claim that x_{8} must be in F_{2}. For, if x_{8} is in F_{1}, then $x_{8} x_{5}$ must cross some edge in the cycle $x_{3} x_{4} x_{6} x_{3}$ by Jordan Curve Theorem. If x_{8} is in F_{4}, then the path $x_{8} y_{2} x_{4}$ must cross some edge in the cycle $x_{3} x_{5} x_{6} x_{3}$. If x_{8} is in F_{3}, then the edge $x_{8} x_{6}$ must cross some edge in the cycle $x_{3} x_{4} x_{5} x_{3}$. So x_{8} is in F_{2}.

We now discuss how many crossings are eliminated after $x_{7} x_{8}$ has been deleted to obtain $G_{2}^{\prime \prime}$. If there are at least two crossings being eliminated, then Ψ_{2}^{\prime} has at most $k-3$ crossings. In this case, we delete $x_{3} x_{5}$. Considering that the obtained graph has a subgraph isomorphic to a subdivision of H_{3} defined in Lemma 2.4, we have that $k \geq 7$. If there is exactly one crossing being eliminated, then the crossing must be produced by $x_{7} x_{8}$ and $x_{4} x_{5}$. Now $x_{7} x_{8}$ is added back in the primitive way. Next, $x_{7} x_{6}$ is newly drawn such that it is near to the path $x_{6} x_{8} x_{7}$. We now delete all edges incident with x_{8} other than $x_{8} x_{6}$ and $x_{8} x_{7}$ in the interior of the region F_{2}. Then $x_{6} x_{7}$ has exactly one crossing which is produced by $x_{6} x_{7}$ and $x_{4} x_{5}$. Notice that $x_{4} x_{5}$ has at least two crossings in this case. Next, $x_{4} x_{5}$ is deleted. The obtained drawing has at most $k-3$ crossings, and the obtained graph has a subgraph isomorphic to a subdivision of H_{5} defined in Lemma 2.6. Hence, we have $k \geq 7$.
(b) Both x_{1} and x_{7} are in F_{4}. Then $x_{1} x_{4}$ must intersect $x_{3} x_{5}$. Next, we proceed the similar argument as $x_{6} x_{7}$. The difference are that x_{8} is replaced by x_{2}, that $x_{7} x_{8}$ is replaced by $x_{1} x_{2}$, and that F_{2} is replaced by F_{1}. So $k \geq 7$.

Lemma 2.9 Let G_{3} be the graph shown in Figure 10. Then $\operatorname{cr}(G) \geq 8$.
Proof Suppose that $\operatorname{cr}\left(G_{3}\right)=k$, and that Ψ is an optimal drawing of G_{3}.
Let Q be the subgraph of G_{3} induced by the four vertices x_{1}, x_{2}, x_{3} and x_{4}. Obviously, Q is isomorphic to K_{4}, and G_{3} has a subgraph isomorphic to a subdivision of T_{6} which contains Q. By Lemma 2.1, some edge in $E(Q)$ has at least one crossing in Ψ.

Figure 10 The graph G_{3}

If some edge in $\left\{x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right\}$ has at least one crossing in Ψ, then the edge is deleted. The obtained graph has a subgraph isomorphic to a subdivision of G_{1} defined in Lemma 2.7. So $k \geq 8$. Otherwise, we consider $x_{2} x_{3}$. If $x_{2} x_{3}$ has at least one crossing in Ψ, then it is deleted. The obtained graph is isomorphic to G_{2} defined in Lemma 2.8. Thus, we have that $k \geq 8$. If not, then $x_{1} x_{4}$ has at least one crossing in Ψ. If we can redraw $x_{1} x_{4}$ so that it is not crossed, then we obtain a drawing of G_{3} with less crossings that in Ψ, a contradiction. Otherwise, $x_{1} x_{4}$ can be redrawn such that it crosses exactly $x_{2} x_{3}$. Since the graph obtained from G_{3} by deleting $x_{2} x_{3}$ is isomorphic to G_{2}, we have $k \geq 8$.

3 The crossing number of $P_{m} \boxtimes P_{n}$ for $m \geq 4, n \geq 4$ and $(m, n) \neq(4,4)$

Let $W_{m, n}$ be the graph obtained from $P_{m} \boxtimes P_{n}$ by deleting the four vertices $w_{1,1}$, $w_{1, n}, w_{m, 1}$ and $w_{m, n}$.

Lemma $3.1 \quad c r\left(W_{4, n}\right) \geq 3(n-1)-4$ for $n \geq 5$.
Proof We use the induction on n. If $n=5$, then $\operatorname{cr}\left(W_{4, n}\right) \geq 8$, since $W_{4, n}$ is isomorphic to the graph defined in Lemma 2.9.

Assume that $\operatorname{cr}\left(W_{4, t}\right) \geq 3(t-1)-4$, where $t \geq 5$. Suppose that $\operatorname{cr}\left(W_{4, t+1}\right)=k$, and that Π is an optimal drawing of $W_{4, t+1}$. Let Q_{1} be the subgraph of $W_{4, t+1}$ induced by the four vertices $w_{1, t-1}, w_{2, t-1}, w_{1, t}$ and $w_{2, t}$. Obviously, Q_{1} is isomorphic to K_{4}, and $W_{4, t+1}$ has a subgraph isomorphic to a subdivision of T_{6} which contains Q_{1}. By Lemma 2.1, some edge in Q_{1} has at least one crossing in Π. We now apply the following operations which are similar to that in the proof of Lemma 2.7.
(1) If some edge in $E\left(Q_{1}\right) \backslash\left\{w_{1, t-1} w_{2, t-1}, w_{2, t-1} w_{2, t}\right\}$ has at least one crossing in Π,
then it is deleted and turn to (4). Otherwise, turn to (2).
(2) Suppose that the edge $w_{1, t-1} w_{2, t-1}$ has at least one crossing in Π. We can redraw $w_{1, t-1} w_{2, t-1}$ near to the path $w_{1, t-1} w_{1, t} w_{2, t-1}$ such that it has at most one crossing. If the new drawing of $w_{1, t-1} w_{2, t-1}$ has no crossing, then a drawing of $W_{4, t+1}$ with at most $k-1$ crossings is obtained, a contradiction. Otherwise, $w_{1, t-1} w_{2, t-1}$ can be redrawn near to $w_{1, t-1} w_{2, t-1}$ such that it crosses exactly $w_{1, t} w_{2, t}$. Delete $w_{1, t} w_{2, t}$ and turn to (4). If $w_{1, t-1} w_{2, t-1}$ has not any crossing in Π, turn to (3).
(3) The edge $w_{2, t-1} w_{2, t}$ has at least one crossing in Ψ. A similar argument as the one used in (2) shows that we may redraw $w_{2, t-1} w_{2, t}$ near to the path $w_{2, t-1} w_{1, t} w_{2, t}$ such that it crosses exactly $w_{1, t-1} w_{1, t}$. Delete $w_{1, t-1} w_{1, t}$ and turn to (4).
(4) Let Π_{1}^{\prime} be the obtained drawing, and let $W_{4, t+1}^{(1)}$ the obtained graph.

Then $\operatorname{cr}\left(\Pi_{1}^{\prime}\right) \leq k-1$, and $W_{4, t+1}^{(1)}$ contains the edge $w_{1, t-1} w_{2, t}$ or the path $w_{1, t-1} w_{1, t} w_{2, t}$.

Let Q_{2} be the subgraph of $W_{4, t+1}^{(1)}$ induced by the four vertices $w_{3, t-1}, w_{3, t}, w_{4, t-1}$ and $w_{4, t}$. Next, we proceed the similar argument as Q_{1}. Let Π_{2}^{\prime} be the drawing so obtained, and let $W_{4, t+1}^{(2)}$ be the graph corresponding to Π_{2}^{\prime}. Then $\operatorname{cr}\left(\Pi_{2}^{\prime}\right) \leq$ $\operatorname{cr}\left(\Pi_{1}^{\prime}\right)-1 \leq k-2$ and $W_{4, t+1}^{(2)}$ contains the edge $w_{4, t-1} w_{3, t}$ or the path $w_{4, t-1} w_{4, t} w_{3, t}$.

Let Q_{3} be the induced subgraph of $W_{4, t+1}^{(2)}$ by the four vertices $w_{2, t}, w_{2, t+1}, w_{3, t}$ and $w_{3, t+1}$. Obviously, Q_{3} is isomorphic to K_{4}, and $W_{4, t+1}^{(2)}$ has a subgraph isomorphic to a subdivision of T_{6} which contains Q_{3}. By Lemma 2.1, some edge in $E\left(Q_{3}\right)$ has at least one crossing in Π_{2}^{\prime}. We now apply the following operations.
(a) If some edge in $E\left(Q_{3}\right) \backslash\left\{w_{2, t} w_{3, t}\right\}$ has at least one crossing in Π_{2}^{\prime}, then it is deleted and turn to (c). Otherwise, turn to (b).
(b) The edge $w_{2, t} w_{3, t}$ is crossed in Π_{2}^{\prime}. We redraw this edge near to the path $w_{2, t} w_{2, t+1} w_{3, t}$. If in such new drawing $w_{2, t} w_{3, t}$ is not crossed, then turn to (c). Otherwise, $w_{2, t} w_{3, t}$ can be drawn such that it crosses exactly the edge $w_{2, t+1} w_{3, t+1}$. Now the edge $w_{2, t+1} w_{3, t+1}$ is deleted, and turn to (c).
(c) Let Π_{3}^{\prime} be the obtained drawing, and let $W_{4, t+1}^{(3)}$ be the obtained graph.

Then $\operatorname{cr}\left(W_{4, t+1}^{(3)}\right) \leq \operatorname{cr}\left(W_{4, t+1}^{(2)}\right)-1 \leq k-3$, and $W_{4, t+1}^{(3)}$ has a subgraph isomorphic to a subdivision of $W_{4, t}$. By the inductive assumption, $\operatorname{cr}\left(W_{4, t}\right) \geq 3(t-1)-4$. This implies that $k \geq 3 t-4$. So $\operatorname{cr}\left(W_{4, t+1}\right) \geq 3 t-4$. Therefore, $\operatorname{cr}\left(W_{4, n}\right) \geq 3(n-1)-4$. \square

Lemma $3.2 c r\left(W_{m, n}\right) \geq(m-1)(n-1)-4$ for $m \geq 4$ and $n \geq 5$.
Proof We use the induction on m. By Lemma 3.1, $\operatorname{cr}\left(W_{m, n}\right) \geq(m-1)(n-1)-4$ if $m=4$. Assume that $\operatorname{cr}\left(W_{m, n}\right) \geq(m-1)(n-1)-4$ if $m=q$. Suppose that $\operatorname{cr}\left(W_{q+1, n}\right)=k$, and that Π is an optimal drawing of $W_{q+1, n}$.

Let $Q_{1}^{\prime}\left(Q_{n-1}^{\prime}\right.$, respectively) be the induced subgraph of $W_{q+1, n}$ by the four vertices $w_{q-1,1}, w_{q-1,2}, w_{q, 1}$ and $w_{q, 2}\left(w_{q-1, n-1}, w_{q-1, n}, w_{q, n-1}\right.$ and $w_{q, n}$, respectively). For $i=1,2, \ldots, n-3$, let Q_{i+1}^{\prime} be the induced subgraph of $W_{q+1, n}$ by the four vertices
$w_{q, i+1}, w_{q, i+2}, w_{q+1, i+1}$ and $w_{q+1, i+2}$. It is obvious that Q_{j}^{\prime} is isomorphic to K_{4} for $j=1,2, \ldots, n-1$.

We start with Q_{1}^{\prime} and deal with it as Q_{1} in the proof of Lemma 3.1. If some edge in $E\left(Q_{1}^{\prime}\right) \backslash\left\{w_{q-1,1} w_{q-1,2}, w_{q-1,2} w_{q, 2}\right\}$ has at least one crossing in Π, then it is deleted. Otherwise, one of $w_{q-1,1} w_{q-1,2}$ and $w_{q-1,2} w_{q, 2}$ has at least one crossing. In this case the edge is redrawn and some edge in $\left\{w_{q-1,1} w_{q, 1}, w_{q, 1} w_{q, 2}\right\}$ is deleted if necessary such that at least one crossing is eliminated.

After Q_{1}^{\prime} has been dealt with, the obtained graph has a subgraph isomorphic to a subdivision of T_{6} which contains Q_{2}^{\prime}. By Lemma 2.1, some edge in Q_{2}^{\prime} has at least one crossing in the present drawing. We now deal with Q_{2}^{\prime} in the similar way to that of Q_{1} in the proof of Lemma 3.1. If some edge in $E\left(Q_{2}^{\prime}\right) \backslash\left\{w_{q, 2} w_{q, 3}, w_{q, 3} w_{q+1,3}\right\}$ has at least one crossing in the present drawing, then it is deleted. Otherwise, one of $w_{q, 2} w_{q, 3}$ and $w_{q, 3} w_{q+1,3}$ has at least one crossing in the present drawing. In this case the edge is redrawn and some edge in $\left\{w_{q, 2} w_{q+1,2}, w_{q+1,2} w_{q+1,3}\right\}$ is deleted if necessary such that at least one crossing is eliminated.

For $i=3, \ldots, n-2, Q_{i}^{\prime}$ is dealt with as Q_{2}^{\prime}. At last, Q_{n-1}^{\prime} is dealt with in the similar way to Q_{3} in the proof of Lemma 3.1. Let G be the obtained graph after removing at least one crossing for each of $Q_{i}, i \in\{1,2, \ldots, n-1\}$. Then G has a subgraph isomorphic to a subdivision of the graph $W_{q, n}$. Thus, $\operatorname{cr}(G) \leq k-(n-1)$. By the inductive assumption, $\operatorname{cr}(G) \geq(q-1)(n-1)-4$. This implies that $k \geq q(n-1)-4$. So $\operatorname{cr}\left(W_{q+1, n}\right) \geq q(n-1)-4$. Therefore, $\operatorname{cr}\left(W_{m, n}\right) \geq(m-1)(n-1)-4$.

Figure $11 \quad$ A drawing of $P_{4} \boxtimes P_{4}$
Since $P_{m} \boxtimes P_{n}$ is isomorphic to $P_{n} \boxtimes P_{m}$, we have that $\operatorname{cr}\left(P_{m} \boxtimes P_{n}\right)=\operatorname{cr}\left(P_{n} \boxtimes P_{m}\right)$.

Theorem 3.3 $c r\left(P_{m} \boxtimes P_{n}\right)=(m-1)(n-1)-4$ for $m \geq 4, n \geq 4$ and $(m, n) \neq$ $(4,4)$.

Proof The theorem follows from Lemmas 1.1 and 3.2.

4 The crossing number of $P_{4} \boxtimes P_{4}$

Theorem 4.1 $\quad \operatorname{cr}\left(P_{4} \boxtimes P_{4}\right)=4$.
Proof The drawing of $P_{4} \boxtimes P_{4}$ shown in Figure 11 implies that $\operatorname{cr}\left(P_{4} \boxtimes P_{4}\right) \leq 4$. Since $P_{4} \boxtimes P_{4}$ has a subgraph isomorphic to a subdivision of H_{5} defined in Lemma 2.6, $\operatorname{cr}\left(P_{4} \boxtimes P_{4}\right) \geq 4$. Hence $\operatorname{cr}\left(P_{4} \boxtimes P_{4}\right)=4$.

Acknowledgements

The author thanks the referees for a careful reading of the manuscript and for their helpful suggestions.

References

[1] M. Klešč, J. Petrillová and M. Valo, Minimal number of crossings in strong product of paths, Carpathian J. Math. 29 no. 1 (2013), 27-32.
[2] C. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), 271-283.

[^0]: * Supported by NNSFC under the grant number 11171114.

