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Abstract

A watchman’s walk in a graph G = (V,E) is a minimum closed domi-
nating walk. In this paper, it is shown that the number of vertices in
a watchman’s walk on the block intersection graph of a Steiner triple
system is between v−3

4
and v−7

2
, for admissible v ≥ 15. Included are con-

structions to build a design that achieves the minimum bound for any
admissible v.

1 Introduction

The watchman’s walk problem was first introduced in [11] as a variation of the dom-
ination number. In domination, we seek a set of vertices S in a graph G such that
the closed neighbourhood, N [S], contains all the vertices of G. Such a set is called
a dominating set. Particularly, we search for the least such set. The order of the
smallest possible set is the domination number of G, denoted γ(G).

If we imagine the graph as the layout of a museum with the vertices corresponding
to rooms and the edges to doors connecting those rooms, we can imagine the size
of a minimum dominating set as the minimum number of watchmen needed to keep
a constant watch on the museum, with the proviso that guards can look through
doorways to adjacent rooms, watching them without entering them. However, in
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dire financial times, the museum may instead decide to make do with only a single
guard who must instead patrol through the entire building. Certainly, such a guard
will walk continuously; that is, the start and end position of her patrol must be the
same, so that when one circuit ends, the next may begin. While every room may
not now be visited, every room must be adjacent to a visited room. Finally, of all
such patrols, the one of shortest length is preferred, as that will serve to reduce the
time a room is unguarded.

In a graph G, this is equivalent to finding a walk that is closed and whose vertices
dominate G, and of all such walks, finding the one of shortest length. We call
such a walk a minimum closed dominating walk (MCDW), and denote its length
by w(G). Consider the number of vertices in each MCDW of G; the maximum of
these numbers is denoted by w′(G). Note that in general, w(G) and w′(G) are two
very different parameters, as a minimum closed dominating walk may often revisit a
vertex. (Consider a star with every edge subdivided.)

Finding a MCDW involves aspects of several other domination problems. Cer-
tainly, since any walk is connected, finding a MCDW may be considered a restriction
on the problem of finding a connected dominating set [17]. Similarly, the idea of
motion implicit in the watchman problem is also reminiscent of the eternal domi-
nation problem [3]. However, little is known about the length of minimum closed
dominating walks. The decision problem is (unsurprisingly) NP-complete, but easily
computed for trees [11]. Some results are known for Cartesian products of graphs,
and for graphs with large circumference [12, 13]. More work has been done on an-
other variant of the watchman’s walk, where the amount of time a vertex can go
unguarded is fixed, and the minimum number of watchmen necessary to meet that
restriction is sought [1, 7, 9].

This paper examines the length of minimum closed dominating walks on the block
intersection graphs of Steiner triple systems. Cycles in block intersection graphs are
well-studied; they are known to be Hamiltonian and, moreover, pancyclic [14, 16].
More recently, block intersection graphs have been the setting for the cops and
robbers problem [2]. The desirable structure of block intersection graphs allowing
these results are favourable to discrete movement problems, including the watchman’s
walk problem.

A Steiner triple system of order v, denoted STS(v), is a pair (V,B) of two sets:
the point set, V , of order v and the block set, B, of triples of elements of V , with
the property that every pair of points in V occurs exactly once in some block of
B. The repetition number, r, of the STS(v) is the number of blocks in which each
point of V occurs, and it is well-known that r = v−1

2
. The number v is said to be

admissible when v ≡ 1 or 3 (mod 6) and v ≥ 7 as these are the necessary and
sufficient conditions for the existence of an STS(v).

The block intersection graph of an STS(v), D, is a graph G(D) = (V,E) with
V = B and an edge between vertices u and v if and only if the blocks corresponding
to u and v have a nonempty intersection. Throughout this paper, the terms blocks
and vertices will be used interchangeably and a watchman’s walk on a Steiner triple
system will refer to a watchman’s walk on the block intersection graph of that Steiner
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triple system.

By the structure of Steiner triple systems, we know a lot about the adjacency of
vertices in the corresponding block intersection graphs.

Lemma 1.1 For any STS(v), D, G(D) has the following properties:

i. |N(B)| = 3(r − 1) = 3v−9
2

, for any vertex B;

ii. |N(B1) ∩N(B2)| = v+3
2
, for any pair of adjacent vertices B1 and B2;

ii. |N(B1) ∩N(B2)| = 9, for any pair of nonadjacent vertices B1 and B2.

As stated above, for graphs in general, a watchman’s walk may be required to
revisit a single vertex many times. This is not the case for the G(D) of an STS(v),
D.

Lemma 1.2 In the block intersection graph of an STS(v), there is a watchman’s
walk with no repeated blocks.

Proof: Suppose to the contrary that there is a watchman’s walk, W = (B1, B2, . . .,
Bt, A, R, X, Bt+1, . . ., Bw), with R a repeated block.

First, note the necessary conditions to use R in this place. We must use R (or
an equivalent repeated block) if A ∩ X = ∅ and all blocks in N(A) ∩ N(X) occur
elsewhere in W . If this is not the case, either R can be removed or replaced by a
suitable unused block from N(A) ∩N(X).

Since R is necessary, all points in X occur in other blocks of the walk and thus X
is redundant in terms of domination. Take a block B in N(A)∩N(Bt+1) and replace
R and X. That is, the walk W2 = (B1, B2, . . ., Bt, A, B, Bt+1, . . ., Bw) is a closed
dominating walk shorter than W . This is a contradiction, since a watchman’s walk
is minimum. Thus such a watchman’s walk has no repeated block. �

Corollary 1.3 For any STS(v), D,

w′(G(D)) =

{
1 if w(G(D)) = 0,
w(G(D)) otherwise.

Proof: If w(G(D)) = 0, then any watchman’s walk has only one vertex, and thus
w′(G(D)) = 1. If w(G(D)) > 0, then there is a watchman’s walk with no repeated
blocks by the above lemma. Since there are no repeated blocks, and the walk is closed,
there must be the same number of edges and vertices; thus w′(G(D)) = w(G(D)).
�

Unlike for graphs in general, the number of vertices in a watchman’s walk of
G(D) for an STS(v), D, is the same length as that walk, when w(G(D)) > 0. The
only Steiner triple system, D, for which w(G(D)) = 0, is the Fano plane, the unique
STS(7). Thus, from this point forward, we concentrate on counting the number of
vertices in a watchman’s walk.
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2 Basic Bounds

First we consider some basic bounds on the number of vertices in a watchman’s walk.
We will call a walk on a block intersection graph pivotal if all blocks in the walk share
a common point. Note that in the block intersection graph this corresponds to the
vertices of such a walk forming a clique.

Lemma 2.1 For any STS(v), D, with v ≥ 7, w′(G(D)) ≤ r − 2 = v−5
2
.

Proof: Take the element x ∈ V . Consider a pivotal walk, W , through all but
two blocks containing x. Let the two blocks containing x that are not in W be
B1 = {x, a, b} and B2 = {x, c, d}. Now every point other than a, b, c, and d are
in W . This means the only blocks not dominated by W contain three of these four
points. Since {a, b} ⊂ B1 and {c, d} ⊂ B2, neither of these pairs can occur in
another block and thus no block exists with three of these four elements. So W is a
dominating walk, and w′(G(D)) ≤ E(W ) = r − 2. �

Note that the above bound is tight for v ∈ {7, 9}, but for both STS(13)s, a clever
selection of blocks gives w′(G(D)) = r − 3. Of the eighty STS(15)s, none has a
watchman’s walk with w′(G(D)) = 5. In that light, we improve the bound from
Lemma 2.1 to r − 3 for larger v.

If R is the set of blocks through the point x in an STS(v), then |R| = r and
|B \ R| = b − r =

(
v−3
3

)
r. When proving the upper bound, we removed 2 blocks

from the set R, since there is no block with all three elements contained in those two
blocks outside R. Our goal is now to show that 3 blocks can always be removed.

Let C3(X) be the set of 3-subsets of X. Define f : B \ R 	→ C3(R), such that
f({a, b, c}) = S, where S is the 3-subset of C3(R), containing the three blocks of R
that contain a, b, and c. Note that S ∈ C3(R) and f is well-defined, since each point
of a block in B \R occurs in exactly one block of R. Notice that |Imf | ≤ |B \R| =(
v−3
3

)
r, since f is well-defined. Thus we can always remove 3 blocks from R and

maintain dominance if there is a set of three blocks in C3(R) to which f maps no
block. That is, if |Imf | < |C3(R)|. It is easy to show that |C3(R)| = (

r
3

)
> |B \R| ≥

|Imf |, for v ≥ 15. This proves the following lemma.

Lemma 2.2 For any STS(v), D, with v ≥ 15, w′(G(D)) ≤ r − 3 = v−7
2
.

Now we will look to find a basic lower bound. This is a simple counting bound
taking nothing into account other than the basic properties of an STS(v) and a
watchman’s walk.

Lemma 2.3 For an STS(v), D, with v ≥ 9, w′(G(D)) ≥ v+3
6
.

Proof: Take a watchman’s walk W = (B1, B2, . . . , Bw′) and consider how many
new blocks are dominated by each block as the walk progresses. The block B1

dominates 1 + 3(r − 1) = 3v−7
2

new blocks. Now consider how many new blocks
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Bi+1 dominates with respect to Bi, possibly over-counting with respect to actual
new blocks as Bi+1 may also intersect with other, previous blocks. This number is
2(r − 3) = 2

(
v−1
2

− 3
)
= v − 7. Now counting this over all blocks: |B| = v(v−1)

6
≤

3v−7
2

+ (w′ − 1)(v − 7). Rearranging, we get w′ ≥ v+3
6
. �

One approach to constructing designs with a desired dominating walk is to find a
design with an embedded design with desirable properties. The following is a result
of what is known as the Doyen-Wilson Theorem given in [8].

Theorem 2.4 Given an STS(v), D, there exists an STS(u) that contains D if and
only if u ≥ 2v + 1.

Using the Doyen-Wilson Theorem for u = 2v + 1, we can now create a larger
design from a smaller one and prescribe a dominating walk.

Theorem 2.5 For v admissible, there is an STS(2v+1), D′, with w′(G(D′)) ≤ v−1
2
.

Proof: We will construct a dominating walk in an STS(v), D, and show it is also
a dominating walk in the STS(2v + 1), D′, which we construct. Suppose V (D) =
{1, 2, . . . , v} and let W be a pivotal walk in G(D), containing all blocks through the
point 1. Clearly, W dominates all blocks in B(D).

In the construction ofD′, add v+1 new points, following the 2n+1 construction of
[15]. Note that each block not in D has one point in V (D). Thus W is a dominating
walk of D′. Since |W | = v−1

2
, the result holds. �

The walk obtained in Theorem 2.5 has length u−3
4
, where u is the number of

points. This is not particularly close to the bound of u+3
6

given in Lemma 2.3. The
goal is now to find the best lower bound.

3 Best lower bound

In an STS(v), D, a complete arc is a maximal set of points of which no three are con-
tained in the same block. Define Z(D) ⊆ V (D) to be the complete arc of maximum
size in D. That is, Z(D) is the maximum set of points in V (D) such that for all
B ∈ B, B �⊆ Z(D). Sauer and Schönheim give the upper bound and constructions
for such sets in [18]. The proof of the upper bound is a simple counting argument.

Lemma 3.1 If D is an STS(v),

|Z(D)| ≤
{

v+1
2

if v ≡ 3, 7 (mod 12),
v−1
2

if v ≡ 1, 9 (mod 12).

Note that this upper bound is achieved by the set of new points added, N , in the
proof of Theorem 2.5 and by the construction N is a complete arc. Using this upper
bound on the size of a complete arc, we can find a minimum bound on the size of a
watchman’s walk.
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Theorem 3.2 If D is an STS(v), then w′(G(D)) ≥ v−3
4
.

Proof: Let W be a watchman’s walk in G(D) on w′(G(D)) blocks of D. Let M be
the set of points ofD used byW . Each block inW (after the first) contributes at most
two points not already inM , while the first contributes 3. Thus 2(w′(G(D))−1)+3 ≥
|M |, or w′(G(D)) ≥ |M |−1

2
.

Now consider the set Z = V \ M . Certainly, there can be no block made up
entirely of points of Z, since such a block would not be dominated by the blocks
of W . Thus, |Z| ≤ |Z(D)| ≤ v+1

2
, by Lemma 3.1. This means |M | = |V | − |Z| ≥

|V | − v+1
2

= v−1
2

and hence w′(G(D)) ≥ v−3
4
. �

Due to the denominator of 4 in the bound, this can only be achieved for v ≡
3, 7 (mod 12). Adjusting this for other admissible values we obtain the following
corollary.

Corollary 3.3 If D is an STS(v) and v ≡ 1, 9 (mod 12), then w′(G(D)) ≥ v−1
4
.

A similar argument to that of Theorem 3.2 can be made for domination number.
In that case each block in the domination set may contribute three points of D, as
the blocks need not be connected.

Lemma 3.4 If D is an STS(v), then γ(G(D)) ≥ v−1
6
.

An independent set of a graph is a set of nonadjacent vertices. For any graph G,
the independence number, β(G), denotes the size of the maximum independent set in
G. For any STS(v), D, simple counting shows β(G(D)) ≤ v

3
and, clearly, β(G(D))

is an upper bound on γ(G(D)).

Theorem 3.5 If G(D) is a block intersection graph on an STS(v), D, with v ≥ 15,
then

v − 3

4
≤ w′(G(D)) ≤ v − 7

2
and

v − 1

6
≤ γ(G(D)) ≤ v

3
.

4 Constructing Designs to Meet the Lower Bound

The goal of this section is to construct an STS(v), D, such that there is a watchman’s
walk on G(D) that achieves the minimum bound. Define

ω(v) =

{
v−3
4

if v ≡ 3, 7 (mod 12)
v−1
4

if v ≡ 1, 9 (mod 12).

We say an STS(v), D, achieves the minimum bound if w′(G(D)) = ω(v). We say
that any D that achieves this bound has a minimal watchman’s walk. Note that the
bound in Lemma 3.1 is equal to v− (2ω(v)+ 1). First we will consider the structure
of a minimal watchman’s walk.
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Lemma 4.1 Suppose D is an STS(v). If w′(G(D)) = ω(v) then any watchman’s
walk of D is a pivotal walk.

Proof: Let W be a watchman’s walk of D containing ω(v) blocks. The blocks of
W must contain at least 2ω(v) + 1 points, otherwise D would contain a complete
arc larger than v − (2ω(v) + 1); a contradiction. By a counting argument similar
to the one made in the proof of Theorem 3.2, there are at most 2ω(v) + 1 points in
the blocks of W . Thus, the ω(v) blocks of W contain exactly 2ω(v) + 1 points. Due
to the adjacency of consecutive blocks in W , deviating and returning to the point
common to the first two blocks will use at most 2ω(v) points. Thus, W is a pivotal
watchman’s walk. �.

For the small values of v, an STS(v) with a minimal watchman’s walk is given in
the Appendix, including those in the following lemma.

Lemma 4.2 For v = 7, v = 9, and v = 13, there is an STS(v) that has a minimal
watchman’s walk.

The construction for the cases 3 and 7 (mod 12) is given in Theorem 2.5. We
need a new construction for 1 and 9 (mod 12). To do this, we will use 3-GDDs. A
3-GDD of type gu1

1 gu2
2 . . . gun

n is a set of points V , a set of groups G (with ui groups
of size gi) that partition V (|G| > 1), and a set of blocks B of size 3, such that every
pair of distinct elements of V occurs in exactly one block or one group, but not both.
A Latin square of side g is a 3-GDD of type g3 and the three groups are referred to
as rows, columns, and elements. By results from Zhu [19] and Colbourn, Hoffman,
and Rees [6], we get the following lemma.

Lemma 4.3 For δ ∈ {0, 1} and u ≥ 3, there exists a 3-GDD of type 4δ6u.

The idea, as in many triple system constructions, is to use the correct 3-GDD
and Steiner triple systems of small size to create the design of the desired size which,
in this case, has a minimal watchman’s walk.

Theorem 4.4 For v ≡ 1, 9 (mod 12) and v ≥ 37, there exists an STS(v), D, that
has a pivotal minimal watchman’s walk. That is, w′(G(D)) = ω(v) = v−1

4
.

Proof: This proof is by construction. If v = 12n + 1, let A be a 3-GDD of type 6n

and if v = 12n + 9, let A be a 3-GDD of type 416n. Create a second copy of this 3-
GDD called A′. For any block {a′, b′, c′} in A′, replace it by {a, b′, c′}, {a′, b, c′}, and
{a′, b′, c}, where {a, b, c} is the corresponding block in A. The only points remaining
without pairs covered by these blocks and the blocks of A are those within the same
group or in corresponding groups. Let Ai and A′

i be corresponding groups of size
6 for 1 ≤ i ≤ 3n + 1, and let A and A′ be the corresponding blocks of size 4, if
they exist. Create the point ∞ and on the 13 points Ai ∪ A′

i ∪ {∞}, for each i, put
an STS(13) with the 3 blocks from a watchman’s walk, through the point ∞ and
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covering the points of Ai. If necessary, for A ∪ A′ ∪ {∞} place an STS(9) with the
2 blocks from a watchman’s walk, through ∞, covering the points of A. This is a
STS(12n+ 8δ + 1). There are 3n+ 2δ = 12n+8δ−1

4
blocks through ∞ that dominate

all the blocks, thus we have a pivotal watchman’s walk of the desired size through
∞. �

There are now some small cases, v < 37, for which a design that has a minimal
watchman’s walk needs to be constructed. The explicit statement of some are given
in the Appendix, and others can be crafted using the constructions that follow. See
Table 1 to determine the construction of each small case.

Theorem 4.5 For v ≡ 1, 3 (mod 6) and n ≥ 0, if there exists an STS(4n+ v) with
a minimal pivotal watchman’s walk through a point of a sub-STS(v), which when
restricted to the sub-STS(v) gives a minimal pivotal watchman’s walk on that design,
then there exists an STS(12n+ v) with a minimal pivotal watchman’s walk.

Proof: There are two situations that arise: v ≤ 3 and v > 3. If v = 1, then the
sub-STS(v) has no blocks and if v = 3, then it is a single block. For v > 3, let D
be an STS(v) embedded in an STS(4n + v), D′, for some non-negative integer n.
Moreover, suppose there is a watchman’s walk, W , on D′ through a single point in
D, that achieves the minimum bound and restricting W to D gives a set of blocks,
W|D that contain a watchman’s walk of D. Note that if v = 1 or v = 3, |W|D| can
be taken to be zero.

Let X = {1, 2, 3, . . . , 4n}, V (D) = {a1, a2, . . . , av}, and V (D′) = V (D) ∪ X.
Without loss of generality, assume that every block of W contains the point a1.
Consider the Latin square, L, of side 4n on the points X , with entries arranged as
follows:

X1 X2

X2 X1

where X1 = {1, 2, . . . , 2n} and X2 = X \ X1. Let Ri = {Rx|x ∈ Xi} and Ci =
{Cx|x ∈ Xi}, for i ∈ {1, 2}, and R = R1 ∪ R2 and C = C1 ∪ C2.

Note ω(4n + v) = n + ω(v). Since W|D is a watchman’s walk that achieves the
minimal bound, it has length ω(v). Thus, the remaining n blocks of W must contain
the vertex a1 and exactly 2n points of V (D′) \ V (D). Let these 2n points be X1.
Create two more copies of D′, call them D′

R and D′
C , using the points V (D)∪R and

V (D)∪C, respectively. DenoteWR andWC as the walks inD′
R andD′

C corresponding
toW . PlaceR1 as the first 2n rows, R2 as the last 2n rows, C1 as the first 2n columns,
and C2 as the last 2n columns of L.

Let B(L) be the row-column-entry triples formed by L in the usual way.

We claim B = B(D′) ∪ B(D′
R) ∪ B(D′

C) ∪ B(L) is an STS(12n+ v) on the points
V (D) ∪ X ∪ R ∪ C. (We consider B a set and not a multiset, as the blocks of D
occur in each of B(D′)∪B(D′

R)∪B(D′
C).) Certainly, any edge in X, C, or R occurs
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exactly once in the corresponding block from B(D′), B(D′
C), or B(D′

R). Any other
edge must occur exactly once in a block of B(L).

Now consider the blocks of W � = W ∪WR ∪WC . Certainly, blocks from D′, D′
R,

and D′
C are all dominated by blocks from the corresponding W , WR, and WC . By

the structure of L, every block in B(L) has at least one point from R1, C1, or X1.
Thus every block is dominated by W �. Since all blocks in W � contain the vertex a1,
we know there is a pivotal dominating walk through W �.

Finally, the number of blocks in W � is 3n+ w′(D). So,

|B(W �)| =
{

3n+ v−3
4

= (12n+v)−3
4

if v ≡ 3, 7 (mod 12)

3n+ v−1
4

= (12n+v)−1
4

if v ≡ 1, 9 (mod 12),

achieving the bounds of Theorem 3.2 and Corollary 3.3. Thus, W � is a pivotal
watchman’s walk for the STS(12n+ v). �

Theorem 4.6 For v ≡ 3 or 7 (mod 12), if D is an STS(v) that has a minimal
pivotal watchman’s walk, then there exists an STS(3v) that has a minimal pivotal
watchman’s walk.

Proof: Suppose V (D) = {1, 2, 3, . . . , v} and there is a pivotal watchman’s walk,
W , of length v−3

4
through the point 1. These blocks contain v−3

2
points other than

1, say {2, 3, 4, . . . , v−1
2
}. By [10], there exists a Latin square of side v, on the set

{1, 2, . . . , v}, with a subsquare of side v−1
2

embedded in the upper left hand corner, on
the set {1, 2, . . . ,
v−1
2
}. Treating the Latin square as a 3-GDD with groups of size v, place a copy of D

on the groups represented by the rows, {R1, R2, . . . , Rv}, and columns, {C1, C2, . . . , Cv},
such that the last v−1

2
rows and columns correspond to the points {1, 2, 3, . . . , v−1

2
}.

Let T be the set of blocks through 1 that contain {Ri, Cj}, with i, j > v−1
2
. Consider

W ∪ T . There are v+1
2

+ v−3
4

= 3v−1
4

blocks in this set containing 1. The blocks
from the upper left hand corner of the Latin square are dominated by the blocks of
W . The remaining blocks of the Latin square are dominated by blocks of T . The
blocks on the groups corresponding to the rows and columns all contain one point
corresponding to the last v−1

2
rows or columns; each of these points occurs in a block

of T . The blocks of D are clearly dominated by W . Since these blocks make an
STS(3v) and 3v ≡ 1, 9 (mod 12), the new design has a minimal pivotal watchman’s
walk through the point 1. �

Lemma 4.7 There is an STS(33) that has a pivotal minimal watchman’s walk.

Proof: Consider a 3-GDD A of type 44 [4]. Create a second copy, A′, and for any
block {a′, b′, c′} in A′, replace it by {a, b′, c′}, {a′, b, c′}, and {a′, b′, c}, where {a, b, c}
is the corresponding block in A. The only points remaining without pairs are those
in corresponding groups, Ai and A′

i, 1 ≤ i ≤ 4. Create the point ∞ and on the 9
points Ai∪A′

i∪{∞}, for each i, put an STS(9) with the 2 blocks from a watchman’s
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walk, through the point ∞ and covering the points of Ai. This is an STS(33). There
are 2(4) = 8 = 33−1

4
blocks through ∞ that dominate all the blocks, thus we have a

pivotal watchman’s walk of the desired size. �

Order MCDW Length Construction Ingredients
7 1 Direct (see Appendix)
9 2 Direct (see Appendix)
13 3 Direct (see Appendix)
15 3 Theorem 2.5 STS(7)
19 4 Theorem 2.5 STS(9)
21 5 Theorem 4.6 STS(7) and LS(7)
25 6 Theorem 4.5 STS(9) and LS(8)
27 6 Theorem 2.5 STS(13)
31 7 Theorem 2.5 STS(15)
33 8 Lemma 4.7 STS(9) and 3-GDD of type 44

Table 1: Construction Method for Small Orders

Theorem 4.8 For every admissible v, there exists an STS(v), D, that has a minimal
pivotal watchman’s walk. That is, w′(G(D)) = ω(v).

Proof: For v ≡ 3, 7 (mod 12), the construction follows from Theorem 2.5. For
v ≡ 1, 9 (mod 12) and v ≥ 37, the conditions in the construction of the proof of
Theorem 4.4 are met by Lemma 4.3. Thus for all admissible values of v ≥ 37, there
exists a construction of an STS(v) that has a minimal watchman’s walk. The table
in Table 1 gives the construction for all other admissible values. �

5 Directions of future studies

Having analyzed the case of the block intersection graphs of Steiner triple systems
that achieve the lower bound, several natural avenues of investigation present them-
selves. First, we might consider what is the spectrum of values which can be achieved
for a watchman’s walk on the block intersection graphs of Steiner triple systems of
fixed order. This would involve characterizing complete arcs in individual Steiner
triple systems [5].

Further, while Steiner triple systems are a natural design to first consider, there
is an obvious generalization to consider block intersection graphs of other designs.
Particularly, the methods of Theorem 3.2 could be applied to such designs.

Theorem 3.5 points out that γ and w′ are more closely related in block intersection
graphs than graphs in general. This motivates further investigation of this and other
variations on the domination problem in the context of block intersection graphs.
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Finally, there are two problems on the watchman’s walk that remain open: the
relationship between the length of a walk and the time an individual vertex goes un-
guarded; and how the use of multiple watchmen alters the structure of the individual
walks.

Appendix

The blocks of each design are written vertically. A minimum watchman’s walk is
contained in the blocks on the left for each design. Note that each given walk is
pivotal.

v = 7: ω(7) = 1

0 001122

1 353434

2 465665

v = 9: ω(9) = 2

00 0011122236

13 4534534547

26 8787676858

v = 13: ω(13) = 3

000 00011111222223334445556

135 79b3469a3467867868a7897

246 8ac578bc95acbbacc9bbac9

000 00011111222223334445556

135 79b3469a3467867868a7897

246 8ac578bc95abcbcac9babc9
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