Inequalities for two systems of subspaces with prescribed intersections

Gábor Hegedüs

Antal Bejczy Center for Intelligent Robotics Kiscelli utca 82, Budapest, H-1032 Hungary hegedus.gabor@nik.uni-obuda.hu

Abstract

Let W denote a linear space over a fixed field \mathbb{F} . We define the notions of weak ISP-system and weak (u, v)-system $\mathcal{S} = \{(U_i, V_i) : 1 \leq i \leq m\}$ of subspaces of W. We give upper bounds for the size of weak ISP-systems and weak (u, v)-systems.

1 Introduction

First we recall the notion of q-binomial coefficients.

The *q*-binomial coefficient $\begin{bmatrix} n \\ m \end{bmatrix}_q$ is a *q*-analog for the binomial coefficient, also called a Gaussian coefficient or a Gaussian polynomial. The *q*-binomial coefficient is given by

$$\begin{bmatrix} n\\m \end{bmatrix}_q := \frac{[n]_q!}{[n-m]_q! \cdot [m]_q!} \tag{1}$$

for $n, m \in \mathbb{N}$, where $[n]_q!$ is the q-factorial (see [2], p. 26)

$$[n]_q! := (1+q) \cdot (1+q+q^2) \cdots (1+q+q^2+\ldots+q^{n-1}).$$

Clearly we have $\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n \\ n-k \end{bmatrix}_q$. If we substitute q = 1 into (1), then this substitution reduces this definition to that of binomial coefficients.

Bollobás, in [1], proved the following two remarkable results in extremal combinatorics.

Theorem 1.1 Let $A_1, \ldots A_m$ and $B_1, \ldots B_m$ be finite sets satisfying the conditions

- (i) $A_i \cap B_i = \emptyset$ for each $1 \le i \le m$;
- (ii) $A_i \cap B_j \neq \emptyset$ for each $i \neq j$ $(1 \le i, j \le m)$.

Then

$$\sum_{i=1}^{m} \frac{1}{\binom{|A_i|+|B_i|}{|A_i|}} \le 1.$$

Theorem 1.2 Let $A_1, \ldots A_m$ be r-element sets and $B_1, \ldots B_m$ be s-element sets such that

- (i) $A_i \cap B_i = \emptyset$ for each $1 \le i \le m$;
- (ii) $A_i \cap B_j \neq \emptyset$ for each $i \neq j$ $(1 \le i, j \le m)$.

Then

$$m \leq \binom{r+s}{s}.$$

Tuza proved the following two versions of Bollobás' Theorem.

Theorem 1.3 Let p be an arbitrary real number, 0 and <math>t := 1 - p. Let $A_1, \ldots A_m$ and $B_1, \ldots B_m$ be finite sets satisfying the conditions

- (i) $A_i \cap B_i = \emptyset$ for each $1 \le i \le m$;
- (*ii*) $A_i \cap B_j \neq \emptyset$ or $A_j \cap B_i \neq \emptyset$ for $i \neq j$ $(1 \le i, j \le m)$.

Then

$$\sum_{i=1}^{m} p^{|A_i|} t^{|B_i|} \leq 1.$$

Theorem 1.4 Let $A_1, \ldots A_m$ be r-element sets and $B_1, \ldots B_m$ be s-element sets satisfying the conditions

- (i) $A_i \cap B_i = \emptyset$ for each $1 \le i \le m$;
- (*ii*) $A_i \cap B_j \neq \emptyset$ or $A_j \cap B_i \neq \emptyset$ for $i \neq j$ $(1 \le i, j \le m)$.

Then

$$m \leq \frac{(r+s)^{r+s}}{r^r s^s}.$$

Tuza, in [4], raised the following question: Let a, b be fixed positive integers. Determine the largest integer m := m(a, b) such that there exists a system $S = \{(A_i, B_i): 1 \le i \le m\}$ of m(a, b) pairs of sets satisfying the conditions:

- (i) A_1, \ldots, A_m are *a*-element sets and B_1, \ldots, B_m are *b*-element sets;
- (ii) $A_i \cap B_i = \emptyset$ for each $1 \le i \le m$;
- (iii) $A_i \cap B_j \neq \emptyset$ or $A_j \cap B_i \neq \emptyset$ for $i \neq j$ $(1 \le i, j \le m)$.

Tuza proved the following property of the numbers m(a, b) in [4].

Proposition 1.5 m(a, 1) = 2a + 1 for each $a \ge 1$. For every $a, b \ge 1$,

$$m(a,b) \ge m(a,b-1) + m(a-1,b).$$

Proposition 1.5 gives a lower bound for m(a, b) near to $2\binom{a+b}{a}$ for every a and b.

Lovász, in [3], used tensor product methods to prove the following skew version of Bollobás' Theorem for subspaces.

Theorem 1.6 Let \mathbb{F} be an arbitrary field. Let $U_1, \ldots U_m$ be r-dimensional and $V_1, \ldots V_m$ be s-dimensional subspaces of a linear space W over the field \mathbb{F} . Assume that

- (i) $U_i \cap V_i = \{0\}$ for each $1 \le i \le m$;
- (*ii*) $U_i \cap V_j \neq \{0\}$ whenever $i < j \ (1 \le i, j \le m)$.

Then

$$m \leq \binom{r+s}{r}.$$

In this paper our main aim is to give a subspace version of Theorems 1.3 and 1.4. The following definitions were motivated by Theorems 1.4 and 1.6.

Definition. Let \mathbb{F} be a fixed field. We say that a system $\mathcal{S} = \{(U_i, V_i) : 1 \leq i \leq m\}$ is a *weak ISP-system of subspaces* of an *n*-dimensional linear space W over the field \mathbb{F} , if \mathcal{S} satisfies the following conditions:

- (i) $U_i \cap V_i = \{0\}$ for each $1 \le i \le m$;
- (ii) $U_i \cap V_j \neq \{0\}$ or $U_j \cap V_i \neq \{0\}$ for $i \neq j$ $(1 \le i, j \le m)$.

Definition. Let \mathbb{F} be a fixed field. We say that a system $\mathcal{S} = \{(U_i, V_i) : 1 \leq i \leq m\}$ of subspaces of a linear space W over the field \mathbb{F} is a *weak* (u, v)-system, if \mathcal{S} satisfies the conditions

- (i) \mathcal{S} is a weak *ISP*-system;
- (ii) $\dim(U_i) = u$ and $\dim(V_i) = v$ for each $1 \le i \le m$.

Our main results are upper bounds for the size of weak ISP-systems and weak (u, v)-systems.

Theorem 1.7 Let $S = \{(U_i, V_i) : 1 \le i \le m\}$ be a weak *ISP*-system of subspaces of a linear space W over the finite field \mathbb{F}_q . Let $u_i := \dim(U_i)$ and $v_i := \dim(V_i)$ for each $1 \le i \le m$. Let $0 \le j \le n$ be an arbitrary, but fixed integer. Then we have

$$\sum_{i=1}^{m} \frac{\binom{n-v_i-u_i}{j-u_i}_q q^{(j-u_i)v_i}}{\binom{n}{j}_q} \le 1.$$

Theorem 1.8 Let $S = \{(U_i, V_i) : 1 \le i \le m\}$ be a weak (u, v)-system of subspaces of an n-dimensional linear space W over the finite field \mathbb{F}_q . Then

$$m \le \left(\frac{q}{q-1}\right)^n q^{uv}$$

2 Proofs of our main results

In the proof of our main results we use the following bounds for the q-binomial coefficients.

Lemma 2.1 Let $0 \le j \le n$ be natural numbers. Then

$$\begin{bmatrix}n\\j\end{bmatrix}_q \le \left(\frac{q}{q-1}\right)^n q^{j(n-j)}$$

Proof. This follows immediately from the inequalities

$$q^{\binom{n}{2}} \leq [n]_q! \leq \left(\frac{q}{q-1}\right)^n q^{\binom{n}{2}}.$$

In the proof of Theorem 1.7 we also use the following simple lemma (see Lemma 2.2 in [5]).

Lemma 2.2 Let V denote the n-dimensional vector space over the finite field \mathbb{F}_q and fix an (n-d)-dimensional subspace K of V, where $0 \le d \le n$. Let U_1 be a fixed ℓ_1 -subspace of V such that $U_1 \cap K = \{0\}$. Let $u(n, d; \ell_1, \ell_2)$ denote the number of ℓ_2 -subspaces U_2 of V satisfying $U_2 \cap K = \{0\}$ and $U_1 \subseteq U_2$. Then

$$u(n,d;\ell_1,\ell_2) = \frac{\left[\begin{array}{c} d\\ \ell_2 \end{array} \right]_q \left[\begin{array}{c} \ell_2\\ \ell_1 \end{array} \right]_q q^{(\ell_2-\ell_1)(n-d)}}{\left[\begin{array}{c} d\\ \ell_1 \end{array} \right]_q}$$

Proof of Theorem 1.7:

Let $1 \leq i \leq m$, $0 \leq j \leq n$ be fixed integers. Let $\mathcal{F}(i, j)$ denote the following subset of subspaces of W:

$$\mathcal{F}(i,j) := \{ U \le W : \dim(U) = j, U_i \subseteq U, V_i \cap U = \{0\} \}.$$

Then it follows immediately from Lemma 2.2 that

$$|\mathcal{F}(i,j)| = \frac{{\binom{n-v_i}{j}}_q {\binom{j}{u_i}}_q q^{(j-u_i)v_i}}{{\binom{n-v_i}{u_i}}_q}.$$

for each $0 \leq j \leq n$.

Lemma 2.3 Let $0 \le j \le n$ be fixed. Let $1 \le i_1 < i_2 \le m$ be two indices. Then

$$\mathcal{F}(i_1,j) \cap \mathcal{F}(i_2,j) = \emptyset.$$

Proof. We can prove this statement by an indirect argument. Suppose that there exist two indices $1 \leq i_1 < i_2 \leq m$ such that $\mathcal{F}(i_1, j) \cap \mathcal{F}(i_2, j) \neq \emptyset$. Let $U \in \mathcal{F}(i_1, j) \cap \mathcal{F}(i_2, j)$ be an arbitrary, but fixed subspace. Then $U_{i_1} \subseteq U$ and $V_{i_1} \cap U = \{0\}$. Similarly $U_{i_2} \subseteq U$ and $V_{i_2} \cap U = \{0\}$. Hence we find that

$$U_{i_1} \cap V_{i_2} = \{0\}$$

and

$$U_{i_2} \cap V_{i_1} = \{0\},\$$

which gives a contradiction, because $S = \{(U_i, V_i) : 1 \le i \le m\}$ is a weak (u, v)-system of subspaces of the linear space W.

In the following, let $0 \le j \le n$ be a fixed integer. It follows from Lemma 2.3 that

$$\sum_{i=1}^{m} |\mathcal{F}(i,j)| = |\bigcup_{i=1}^{m} \mathcal{F}(i,j)| \le {n \choose j}_{q},$$

because $\mathcal{F}(i,j) \subseteq \{U \leq W : \dim(U) = j\}$. Hence

$$\sum_{i=1}^{m} \frac{{\binom{n-v_i}{j}}_q {\binom{j}{u_i}}_q q^{(j-u_i)v_i}}{{\binom{n-v_i}{u_i}}_q} \leq {\binom{n}{j}}_q.$$
(2)

But it is easy to verify that

$$\frac{\binom{n-v_i}{j}_q \binom{j}{u_i}_q}{\binom{n-v_i}{u_i}_q} = \binom{n-v_i-u_i}{j-u_i}_q,$$

and hence it follows from inequality (2) that

$$\sum_{i=1}^{m} {n-v_i-u_i \brack j-u_i}_q q^{(j-u_i)v_i} \leq {n \brack j}_q,$$

which was to be proved.

Proof of Theorem 1.8: If $S = \{(U_i, V_i) : 1 \le i \le m\}$ is a weak (u, v)-system of subspaces of the linear space W, then $u_i = \dim(U_i) = u$ and $v_i = \dim(V_i) = v$ for each $1 \le i \le m$. It follows from Theorem 1.7 that

$$\sum_{i=1}^{m} \frac{\left\lfloor \frac{n-u-v}{j-u} \right\rfloor_{q} q^{(j-u)v}}{\left\lfloor \frac{n}{j} \right\rfloor_{q}} \leq 1$$

for each $1 \leq j \leq n$. Let j := n - v. This choice implies that

$$\sum_{i=1}^m \frac{q^{(n-v-u)v}}{{n \brack v}_q} \ \le \ 1.$$

It follows from Lemma 2.1 that

$$\sum_{i=1}^{m} \frac{q^{(n-v-u)v}}{\left(\frac{q}{q-1}\right)^n q^{v(n-v)}} \leq 1$$

But then

$$m \frac{q^{-uv}}{\left(\frac{q}{q-1}\right)^n} \le 1$$

which was to be proved.

3 Concluding remarks

We can raise the following natural question: Let u, v be fixed positive integers. Let \mathbb{F} be a fixed field. Determine the largest integer t := t(u, v) such that there exists a weak (u, v)-system $\mathcal{S} = \{(U_i, V_i) : 1 \leq i \leq t\}$ of t(u, v) pairs of subspaces of an n-dimensional linear space W over the field \mathbb{F} .

If \mathbb{F} is the finite field \mathbb{F}_q , then we proved in Theorem 1.8 that

$$t(u,v) \leq \left(\frac{q}{q-1}\right)^n q^{uv}$$

On the other hand, it is easy to verify the lower bound $m(u, v) \leq t(u, v)$. Namely, let $\{e_1, \ldots, e_n\}$ denote a fixed basis of the *n*-dimensional linear space W over \mathbb{F} . By the definition of the number m(u, v) there exists a system $\mathcal{S} = \{(A_i, B_i) : 1 \leq i \leq m(u, v)\}$ of m(u, v) pairs of sets satisfying the conditions:

513

- (i) A_1, \ldots, A_m are *u*-element sets and B_1, \ldots, B_m are *v*-element sets;
- (ii) $A_i \cap B_i = \emptyset$ for each $1 \le i \le m$;
- (iii) $A_i \cap B_j \neq \emptyset$ or $A_j \cap B_i \neq \emptyset$ for $i \neq j$ $(1 \le i, j \le m)$.

Define the generated subspaces $U_i := \langle \{e_k : k \in A_i\} \rangle$ and $V_i := \langle \{e_l : l \in B_i\} \rangle$ for each $1 \leq i \leq m(u, v)$.

Then it is easy to verify that the system $S = \{(U_i, V_i) : 1 \le i \le m(u, v)\}$ of m(u, v) pairs of subspaces is a weak (u, v)-system.

References

- [1] B. Bollobás, On generalized graphs, *Acta Math. Hung.* **16** (3) (1965), 447–452.
- [2] W. Koepf, Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities, Vieweg, 1998.
- [3] L. Lovász, Flats in matroids and geometric graphs, in: Combinatorial surveys, Proc. 6th British Combin. Conf., Egham 1977, Acad. Press, London 1977, 45– 86.
- [4] Z. Tuza, Application of Set-Pair Method in Extremal Hypergraph Theory, in: "Extremal problems for Finite Sets", *Bolyai Soc. Math. Studies* 3, János Bolyai Math. Soc., Budapest, 1994, 479–514.
- [5] K. Wang and Z. Li, Lattices associated with vector spaces over a finite field, Lin. Algebra Appl. 429 (2) (2008), 439–446.

(Received 7 Oct 2016; revised 5 Jan 2017)