Inequalities for two systems of subspaces with prescribed intersections

GÁbor Hegedüs
Antal Bejczy Center for Intelligent Robotics
Kiscelli utca 82, Budapest, H-1032
Hungary
hegedus.gabor@nik.uni-obuda.hu

Abstract

Let W denote a linear space over a fixed field \mathbb{F}. We define the notions of weak $I S P$-system and weak (u, v)-system $\mathcal{S}=\left\{\left(U_{i}, V_{i}\right): 1 \leq i \leq m\right\}$ of subspaces of W. We give upper bounds for the size of weak $I S P$-systems and weak (u, v)-systems.

1 Introduction

First we recall the notion of q-binomial coefficients.
The q-binomial coefficient $\left[\begin{array}{c}n \\ m\end{array}\right]_{q}$ is a q-analog for the binomial coefficient, also called a Gaussian coefficient or a Gaussian polynomial. The q-binomial coefficient is given by

$$
\left[\begin{array}{c}
n \tag{1}\\
m
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[n-m]_{q}!\cdot[m]_{q}!}
$$

for $n, m \in \mathbb{N}$, where $[n]_{q}!$ is the q-factorial (see [2], p. 26)

$$
[n]_{q}!:=(1+q) \cdot\left(1+q+q^{2}\right) \cdots\left(1+q+q^{2}+\ldots+q^{n-1}\right) .
$$

Clearly we have $\left[\begin{array}{c}n \\ k\end{array}\right]_{q}=\left[\begin{array}{c}n \\ n-k\end{array}\right]_{q}$. If we substitute $q=1$ into (1), then this substitution reduces this definition to that of binomial coefficients.

Bollobás, in [1], proved the following two remarkable results in extremal combinatorics.

Theorem 1.1 Let $A_{1}, \ldots A_{m}$ and $B_{1}, \ldots B_{m}$ be finite sets satisfying the conditions
(i) $A_{i} \cap B_{i}=\emptyset$ for each $1 \leq i \leq m$;
(ii) $A_{i} \cap B_{j} \neq \emptyset$ for each $i \neq j(1 \leq i, j \leq m)$.

Then

$$
\sum_{i=1}^{m} \frac{1}{\left(\begin{array}{c}
\left|A_{i}\right|+\left|B_{i}\right| \\
\left|A_{i}\right|
\end{array}\right.} \leq 1
$$

Theorem 1.2 Let $A_{1}, \ldots A_{m}$ be r-element sets and $B_{1}, \ldots B_{m}$ be s-element sets such that
(i) $A_{i} \cap B_{i}=\emptyset$ for each $1 \leq i \leq m$;
(ii) $A_{i} \cap B_{j} \neq \emptyset$ for each $i \neq j(1 \leq i, j \leq m)$.

Then

$$
m \leq\binom{ r+s}{s}
$$

Tuza proved the following two versions of Bollobás' Theorem.
Theorem 1.3 Let p be an arbitrary real number, $0<p<1$ and $t:=1-p$. Let $A_{1}, \ldots A_{m}$ and $B_{1}, \ldots B_{m}$ be finite sets satisfying the conditions
(i) $A_{i} \cap B_{i}=\emptyset$ for each $1 \leq i \leq m$;
(ii) $A_{i} \cap B_{j} \neq \emptyset$ or $A_{j} \cap B_{i} \neq \emptyset$ for $i \neq j(1 \leq i, j \leq m)$.

Then

$$
\sum_{i=1}^{m} p^{\left|A_{i}\right|} t^{\left|B_{i}\right|} \leq 1
$$

Theorem 1.4 Let $A_{1}, \ldots A_{m}$ be r-element sets and $B_{1}, \ldots B_{m}$ be s-element sets satisfying the conditions
(i) $A_{i} \cap B_{i}=\emptyset$ for each $1 \leq i \leq m$;
(ii) $A_{i} \cap B_{j} \neq \emptyset$ or $A_{j} \cap B_{i} \neq \emptyset$ for $i \neq j(1 \leq i, j \leq m)$.

Then

$$
m \leq \frac{(r+s)^{r+s}}{r^{r} s^{s}}
$$

Tuza, in [4], raised the following question: Let a, b be fixed positive integers. Determine the largest integer $m:=m(a, b)$ such that there exists a system $\mathcal{S}=$ $\left\{\left(A_{i}, B_{i}\right): 1 \leq i \leq m\right\}$ of $m(a, b)$ pairs of sets satisfying the conditions:
(i) $A_{1}, \ldots A_{m}$ are a-element sets and $B_{1}, \ldots B_{m}$ are b-element sets;
(ii) $A_{i} \cap B_{i}=\emptyset$ for each $1 \leq i \leq m$;
(iii) $A_{i} \cap B_{j} \neq \emptyset$ or $A_{j} \cap B_{i} \neq \emptyset$ for $i \neq j(1 \leq i, j \leq m)$.

Tuza proved the following property of the numbers $m(a, b)$ in [4].
Proposition $1.5 m(a, 1)=2 a+1$ for each $a \geq 1$. For every $a, b \geq 1$,

$$
m(a, b) \geq m(a, b-1)+m(a-1, b) .
$$

Proposition 1.5 gives a lower bound for $m(a, b)$ near to $2\binom{a+b}{a}$ for every a and b.
Lovász, in [3], used tensor product methods to prove the following skew version of Bollobás' Theorem for subspaces.

Theorem 1.6 Let \mathbb{F} be an arbitrary field. Let $U_{1}, \ldots U_{m}$ be r-dimensional and $V_{1}, \ldots V_{m}$ be s-dimensional subspaces of a linear space W over the field \mathbb{F}. Assume that
(i) $U_{i} \cap V_{i}=\{0\}$ for each $1 \leq i \leq m$;
(ii) $U_{i} \cap V_{j} \neq\{0\}$ whenever $i<j(1 \leq i, j \leq m)$.

Then

$$
m \leq\binom{ r+s}{r}
$$

In this paper our main aim is to give a subspace version of Theorems 1.3 and 1.4. The following definitions were motivated by Theorems 1.4 and 1.6.

Definition. Let \mathbb{F} be a fixed field. We say that a system $\mathcal{S}=\left\{\left(U_{i}, V_{i}\right): 1 \leq i \leq m\right\}$ is a weak ISP-system of subspaces of an n-dimensional linear space W over the field \mathbb{F}, if \mathcal{S} satisfies the following conditions:
(i) $U_{i} \cap V_{i}=\{0\}$ for each $1 \leq i \leq m$;
(ii) $U_{i} \cap V_{j} \neq\{0\}$ or $U_{j} \cap V_{i} \neq\{0\}$ for $i \neq j(1 \leq i, j \leq m)$.

Definition. Let \mathbb{F} be a fixed field. We say that a system $\mathcal{S}=\left\{\left(U_{i}, V_{i}\right): 1 \leq i \leq m\right\}$ of subspaces of a linear space W over the field \mathbb{F} is a weak (u, v)-system, if \mathcal{S} satisfies the conditions
(i) \mathcal{S} is a weak $I S P$-system;
(ii) $\operatorname{dim}\left(U_{i}\right)=u$ and $\operatorname{dim}\left(V_{i}\right)=v$ for each $1 \leq i \leq m$.

Our main results are upper bounds for the size of weak $I S P$-systems and weak (u, v)-systems.

Theorem 1.7 Let $\mathcal{S}=\left\{\left(U_{i}, V_{i}\right): 1 \leq i \leq m\right\}$ be a weak ISP-system of subspaces of a linear space W over the finite field \mathbb{F}_{q}. Let $u_{i}:=\operatorname{dim}\left(U_{i}\right)$ and $v_{i}:=\operatorname{dim}\left(V_{i}\right)$ for each $1 \leq i \leq m$. Let $0 \leq j \leq n$ be an arbitrary, but fixed integer. Then we have

$$
\sum_{i=1}^{m} \frac{\left[\begin{array}{c}
n-v_{i}-u_{i} \\
j-u_{i}
\end{array}\right]_{q} q^{\left(j-u_{i}\right) v_{i}}}{\left[\begin{array}{c}
n \\
j
\end{array}\right]_{q}} \leq 1
$$

Theorem 1.8 Let $\mathcal{S}=\left\{\left(U_{i}, V_{i}\right): 1 \leq i \leq m\right\}$ be a weak (u, v)-system of subspaces of an n-dimensional linear space W over the finite field \mathbb{F}_{q}. Then

$$
m \leq\left(\frac{q}{q-1}\right)^{n} q^{u v}
$$

2 Proofs of our main results

In the proof of our main results we use the following bounds for the q-binomial coefficients.

Lemma 2.1 Let $0 \leq j \leq n$ be natural numbers. Then

$$
\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q} \leq\left(\frac{q}{q-1}\right)^{n} q^{j(n-j)}
$$

Proof. This follows immediately from the inequalities

$$
q^{\binom{n}{2}} \leq[n]_{q}!\leq\left(\frac{q}{q-1}\right)^{n} q^{\binom{n}{2}} .
$$

In the proof of Theorem 1.7 we also use the following simple lemma (see Lemma 2.2 in [5]).

Lemma 2.2 Let V denote the n-dimensional vector space over the finite field \mathbb{F}_{q} and fix an $(n-d)$-dimensional subspace K of V, where $0 \leq d \leq n$. Let U_{1} be a fixed ℓ_{1}-subspace of V such that $U_{1} \cap K=\{0\}$. Let $u\left(n, d ; \ell_{1}, \ell_{2}\right)$ denote the number of ℓ_{2}-subspaces U_{2} of V satisfying $U_{2} \cap K=\{0\}$ and $U_{1} \subseteq U_{2}$. Then

$$
u\left(n, d ; \ell_{1}, \ell_{2}\right)=\frac{\left[\begin{array}{c}
d \\
\ell_{2}
\end{array}\right]_{q}\left[\begin{array}{c}
\ell_{2} \\
\ell_{1}
\end{array}\right]_{q} q^{\left(\ell_{2}-\ell_{1}\right)(n-d)}}{\left[\begin{array}{c}
d \\
\ell_{1}
\end{array}\right]_{q}} .
$$

Proof of Theorem 1.7:

Let $1 \leq i \leq m, 0 \leq j \leq n$ be fixed integers. Let $\mathcal{F}(i, j)$ denote the following subset of subspaces of W :

$$
\mathcal{F}(i, j):=\left\{U \leq W: \operatorname{dim}(U)=j, U_{i} \subseteq U, V_{i} \cap U=\{0\}\right\}
$$

Then it follows immediately from Lemma 2.2 that

$$
|\mathcal{F}(i, j)|=\frac{\left[\begin{array}{c}
n-v_{i} \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
j \\
u_{i}
\end{array}\right]_{q} q^{\left(j-u_{i}\right) v_{i}}}{\left[\begin{array}{c}
n-v_{i} \\
u_{i}
\end{array}\right]_{q}}
$$

for each $0 \leq j \leq n$.
Lemma 2.3 Let $0 \leq j \leq n$ be fixed. Let $1 \leq i_{1}<i_{2} \leq m$ be two indices. Then

$$
\mathcal{F}\left(i_{1}, j\right) \cap \mathcal{F}\left(i_{2}, j\right)=\emptyset .
$$

Proof. We can prove this statement by an indirect argument. Suppose that there exist two indices $1 \leq i_{1}<i_{2} \leq m$ such that $\mathcal{F}\left(i_{1}, j\right) \cap \mathcal{F}\left(i_{2}, j\right) \neq \emptyset$. Let $U \in \mathcal{F}\left(i_{1}, j\right) \cap$ $\mathcal{F}\left(i_{2}, j\right)$ be an arbitrary, but fixed subspace. Then $U_{i_{1}} \subseteq U$ and $V_{i_{1}} \cap U=\{0\}$. Similarly $U_{i_{2}} \subseteq U$ and $V_{i_{2}} \cap U=\{0\}$. Hence we find that

$$
U_{i_{1}} \cap V_{i_{2}}=\{0\}
$$

and

$$
U_{i_{2}} \cap V_{i_{1}}=\{0\},
$$

which gives a contradiction, because $\mathcal{S}=\left\{\left(U_{i}, V_{i}\right): 1 \leq i \leq m\right\}$ is a weak (u, v) system of subspaces of the linear space W.

In the following, let $0 \leq j \leq n$ be a fixed integer. It follows from Lemma 2.3 that

$$
\sum_{i=1}^{m}|\mathcal{F}(i, j)|=\left|\bigcup_{i=1}^{m} \mathcal{F}(i, j)\right| \leq\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q},
$$

because $\mathcal{F}(i, j) \subseteq\{U \leq W: \operatorname{dim}(U)=j\}$. Hence

$$
\sum_{i=1}^{m} \frac{\left[\begin{array}{c}
n-v_{i} \tag{2}\\
j
\end{array}\right]_{q}\left[\begin{array}{c}
j \\
u_{i}
\end{array}\right]_{q} q^{\left(j-u_{i}\right) v_{i}}}{\left[\begin{array}{c}
n-v_{i} \\
u_{i}
\end{array}\right]_{q}} \leq\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q}
$$

But it is easy to verify that

$$
\frac{\left[\begin{array}{c}
n-v_{i} \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
j \\
u_{i}
\end{array}\right]_{q}}{\left[\begin{array}{c}
n-v_{i} \\
u_{i}
\end{array}\right]_{q}}=\left[\begin{array}{c}
n-v_{i}-u_{i} \\
j-u_{i}
\end{array}\right]_{q},
$$

and hence it follows from inequality (2) that

$$
\sum_{i=1}^{m}\left[\begin{array}{c}
n-v_{i}-u_{i} \\
j-u_{i}
\end{array}\right]_{q} q^{\left(j-u_{i}\right) v_{i}} \leq\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q},
$$

which was to be proved.

Proof of Theorem 1.8: If $\mathcal{S}=\left\{\left(U_{i}, V_{i}\right): 1 \leq i \leq m\right\}$ is a weak (u, v)-system of subspaces of the linear space W, then $u_{i}=\operatorname{dim}\left(U_{i}\right)=u$ and $v_{i}=\operatorname{dim}\left(V_{i}\right)=v$ for each $1 \leq i \leq m$. It follows from Theorem 1.7 that

$$
\sum_{i=1}^{m} \frac{\left[\begin{array}{c}
n-u-v \\
j-u
\end{array}\right]_{q} q^{(j-u) v}}{\left[\begin{array}{c}
n \\
j
\end{array}\right]_{q}} \leq 1
$$

for each $1 \leq j \leq n$. Let $j:=n-v$. This choice implies that

$$
\sum_{i=1}^{m} \frac{q^{(n-v-u) v}}{\left[\begin{array}{l}
n \\
v
\end{array}\right]_{q}} \leq 1
$$

It follows from Lemma 2.1 that

$$
\sum_{i=1}^{m} \frac{q^{(n-v-u) v}}{\left(\frac{q}{q-1}\right)^{n} q^{v(n-v)}} \leq 1
$$

But then

$$
m \frac{q^{-u v}}{\left(\frac{q}{q-1}\right)^{n}} \leq 1
$$

which was to be proved.

3 Concluding remarks

We can raise the following natural question: Let u, v be fixed positive integers. Let \mathbb{F} be a fixed field. Determine the largest integer $t:=t(u, v)$ such that there exists a weak (u, v)-system $\mathcal{S}=\left\{\left(U_{i}, V_{i}\right): 1 \leq i \leq t\right\}$ of $t(u, v)$ pairs of subspaces of an n-dimensional linear space W over the field \mathbb{F}.

If \mathbb{F} is the finite field \mathbb{F}_{q}, then we proved in Theorem 1.8 that

$$
t(u, v) \leq\left(\frac{q}{q-1}\right)^{n} q^{u v}
$$

On the other hand, it is easy to verify the lower bound $m(u, v) \leq t(u, v)$. Namely, let $\left\{e_{1}, \ldots, e_{n}\right\}$ denote a fixed basis of the n-dimensional linear space W over \mathbb{F}. By the definition of the number $m(u, v)$ there exists a system $\mathcal{S}=\left\{\left(A_{i}, B_{i}\right): 1 \leq i \leq\right.$ $m(u, v)\}$ of $m(u, v)$ pairs of sets satisfying the conditions:
(i) $A_{1}, \ldots A_{m}$ are u-element sets and $B_{1}, \ldots B_{m}$ are v-element sets;
(ii) $A_{i} \cap B_{i}=\emptyset$ for each $1 \leq i \leq m$;
(iii) $A_{i} \cap B_{j} \neq \emptyset$ or $A_{j} \cap B_{i} \neq \emptyset$ for $i \neq j(1 \leq i, j \leq m)$.

Define the generated subspaces $U_{i}:=\left\langle\left\{e_{k}: k \in A_{i}\right\}\right\rangle$ and $V_{i}:=\left\langle\left\{e_{l}: l \in B_{i}\right\}\right\rangle$ for each $1 \leq i \leq m(u, v)$.

Then it is easy to verify that the system $\mathcal{S}=\left\{\left(U_{i}, V_{i}\right): 1 \leq i \leq m(u, v)\right\}$ of $m(u, v)$ pairs of subspaces is a weak (u, v)-system.

References

[1] B. Bollobás, On generalized graphs, Acta Math. Hung. 16 (3) (1965), 447-452.
[2] W. Koepf, Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities, Vieweg, 1998.
[3] L. Lovász, Flats in matroids and geometric graphs, in: Combinatorial surveys, Proc. 6th British Combin. Conf., Egham 1977, Acad. Press, London 1977, 4586.
[4] Z. Tuza, Application of Set-Pair Method in Extremal Hypergraph Theory, in: "Extremal problems for Finite Sets", Bolyai Soc. Math. Studies 3, János Bolyai Math. Soc., Budapest, 1994, 479-514.
[5] K. Wang and Z. Li, Lattices associated with vector spaces over a finite field, Lin. Algebra Appl. 429 (2) (2008), 439-446.

