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Abstract

In this article we construct a series of new infinite families of strongly reg-
ular graphs with the same parameters as the point-graphs of non-singular
quadrics in PG(n, 2). We study these graphs, describing and counting
their maximal cliques, and determining their automorphism groups.

1 Introduction

A strongly regular graph srg(v, k, λ, µ), is a graph with v vertices such that each
vertex lies on k edges; any two adjacent vertices have exactly λ common neighbours;
and any two non-adjacent vertices have exactly µ common neighbours. We consider
the strongly regular graphs constructed from a non-singular quadric Qn in PG(n, q).
The point-graph ΓQn of Qn has vertices corresponding to the points of Qn. Two
vertices in ΓQn are adjacent if the corresponding points of Qn lie on a line contained
in Qn. It is well known (see for example [3]) that ΓQn is a strongly regular graph.
In this article we let q = 2, and construct from ΓQn approximately n/2 new strongly
regular graphs with the same parameters as ΓQn (see Table 4 for a precise count).

This article proceeds as follows. Section 2 contains several preliminary results we
need. Section 3 describes our construction of a series of infinite families of strongly
regular graphs, the proof of the construction is given in Section 4. In Section 5, we
classify and count the maximal cliques in the new graphs. In Section 6 we prove that
our construction yields new families of strongly regular graphs. Finally, in Section 7,
we determine the automorphism group of the new graphs.
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In previous work, Kantor [8] constructed a strongly regular graph from ΓQn with the
same parameters in the case when Qn contains a spread. Kantor conjects that his
graph is not isomorphic to ΓQn . We show in Section 6.1 that the graph constructed by
Kantor is not isomorphic to any of our new graphs. Abiad and Haemers [1] construct
several strongly regular graphs from the symplectic graph over GF(2). The dual of
these graphs have the same parameters as the point-graph of a non-singular parabolic
quadric, so n is even. It is not known if these graphs are isomorphic to our examples
with n even.

2 Background Results

In [5], Godsil and McKay take a graph Γ, and use a vertex partition to construct a
new graph Γ′ that has the same spectrum as Γ. It is well-known (see for example [4])
that if a graph Γ′ has the same spectrum as a strongly regular graph Γ, then Γ′ is
also strongly regular with the same parameters as Γ. Specialising the Godsil-McKay
construction to a partition of size two in a strongly regular graph gives the following
result.

Result 2.1 1. A Godsil-McKay partition of a graph is a partition of the vertices
into two sets {X ,Y} satisfying:

I. The set X induces a regular subgraph.
II. Each vertex in Y is adjacent to 0, 1

2
|X | or |X | vertices in X .

2. Godsil-McKay construction. Let Γ be a strongly regular graph with Godsil-
McKay partition {X ,Y}. Construct the graph Γ′ with the same points and
edges as Γ, except: for each vertex R in Y with 1

2
|X | neighbours in X , delete

these 1
2
|X | edges and join R to the other 1

2
|X | vertices in X . Then the graph

Γ′ is strongly regular with the same parameters as Γ.

Let Qn be a non-singular quadric in PG(n, q). The projective index g of Qn is the
dimension of the largest subspace contained in Qn. A g-space contained in Qn is
called a generator of Qn. If n = 2r is even, then a non-singular quadric is called a
parabolic quadric, denoted P2r, which has projective index g = r−1. If n = 2r+1 is
odd, then there are two types of non-singular quadrics: the elliptic quadric denoted
E2r+1 has projective index g = r − 1; and the hyperbolic quadric denoted H2r+1 has
projective index g = r. The points and generators of Qn also form a polar space of
rank g + 1. We repeatedly use the following two properties of quadrics and polar
spaces, see [7, Chapter 22] for more information on quadrics, and [7, Section 26.1]
for more information on polar spaces.

Result 2.2 Let Qn be a non-singular quadric in PG(n, q) and let Π be a k-space. If
the quadric Qn ∩Π contains a (k − 1)-space, then Qn ∩Π is either Π, or one or two
(k − 1)-spaces.
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Result 2.3 Let Qn be a non-singular quadric in PG(n, 2), with projective index g.
Let Σ be a generator of Qn, and X a point of Qn not in Σ. Then there is a unique
generator Π of Qn that contains X and meets Σ in a (g − 1)-space. Further, the
points in Σ which lie on a line of Qn through X are exactly the points in Σ ∩ Π.

3 Our construction

We begin with a small example to illustrate the general construction.

Example 3.1 Let ` be a line of the elliptic quadric E = E2r+1 in PG(2r + 1, q).
Partition the points of E into the following three types.

(i) points of E on `,
(ii) points of E that are on a plane of E that contains `,

(iii) the remaining points of E .

Define a new graph Γ1 with vertices the points of E , and edges given in Table 1.
Note that the last row of Table 1 describes the edges of Γ1 that are different to the

Table 1: Edges in Γ1

Vertex pair Vertex types Vertex pair is an edge of Γ1:
P, P ′ P, P ′ are type (i) always (as PP ′ is always a line of E)
P,Q P is type (i), Q is type (ii) always (as PQ is always a line of E)
Q,Q′ Q,Q′ are type (ii) when QQ′ is a line of E
P,R P is type (i), R is type (iii) when PR is a line of E
R,R′ R,R′ are type (iii) when RR′ is a line of E
Q,R Q is type (ii), R is type (iii) when QR is a 2-secant of E

edges of the point-graph ΓE of E .

It can be shown directly using geometric techniques that Γ1 is regular if and only if
q = 2, and that in this case Γ1 is strongly regular with the same parameters as ΓE .
This can also be proved using the Godsil-McKay construction as follows. Consider
the partition {X ,Y} of ΓE where X contains the vertices of type (ii), and Y contains
the vertices of type (i) and (iii). Geometric techniques can be used to show that this
partition satisfies the conditions of Result 2.1(1) if and only if q = 2. Note that the
graph constructed in Result 2.1(2) from this partition is the graph Γ1, hence Γ1 is
strongly regular when q = 2. �

We now give our general construction of a series of infinite families of strongly regular
graphs. This construction generalises Example 3.1. First we define a partition of the
vertices of the point-graph of Qn.



S.G. BARWICK ET AL. /AUSTRALAS. J. COMBIN. 67 (3) (2017), 486–507 489

Definition 3.2 Let Qn be a non-singular quadric in PG(n, q), and let Γ be the point-
graph of Qn. Let s be an integer with 0 ≤ s < g, where g is the projective index of
Qn. Let αs be an s-dimensional subspace contained in Qn. The points of Qn (and so
the vertices of Γ) can be partitioned into three types:

(i) points in αs,
(ii) points of Qn\αs that lie in some (s+1)-dimensional subspace Π with αs ⊂ Π ⊂

Qn,
(iii) the remaining points of Qn.

Let Xs be the vertices of Γ of type (ii) and let Ys be the vertices of Γ of type (i) and
(iii).

Note that if s = g, then there are no points of type (ii), so we need s < g. We will
show that the partition {Xs,Ys}, 0 ≤ s < g, is a Godsil-McKay partition if and only
if q = 2. By [7, Theorem 26.6.6], the group fixing Qn is transitive on the subspaces
of dimension s contained in Qn. So for each s, 0 ≤ s < g, we can use Result 2.1 to
construct a unique strongly regular graph Γs from Γ. We state the main result here,
and give the proof in Section 4.

Theorem 3.3 In PG(n, 2), let Qn be a non-singular quadric of projective index g ≥ 1
with point-graph Γ. For each integer s, 0 ≤ s < g, let Γs be the graph obtained using
the Godsil-McKay construction with the partition {Xs,Ys} defined in Definition 3.2.
Then Γs is a strongly regular graph with the same parameters as Γ.

We show in Section 6 that Γ0
∼= Γ, and that for each n, Γs, 0 ≤ s < g are g − 1

non-isomorphic graphs.

4 Proof of Theorem 3.3

Throughout this section, let Qn be a non-singular quadric in PG(n, q) of projective
index g, and let αs be a subspace of dimension s, 0 ≤ s < g, contained in Qn. Let Γ
be the point-graph of Qn, and let {Xs,Ys} be the partition of the vertices of Γ (and
so of the points of Qn) defined in Definition 3.2. We will show that {Xs,Ys} satisfies
Conditions I and II of Result 2.1. First we count the points in Xs.

Lemma 4.1 1. If Qn = E2r+1, then |Xs| =
qs+1(qr−s + 1)(qr−s−1 − 1)

(q − 1)
.

2. If Qn = H2r+1, then |Xs| =
qs+1(qr−s−1 + 1)(qr−s − 1)

(q − 1)
.

3. If Qn = P2r, then |Xs| =
qs+1(qr−s−1 + 1)(qr−s−1 − 1)

(q − 1)
.
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Proof We prove this in the case Qn is E = E2r+1, which has projective index g = r−1
and point-graph denoted ΓE . The cases when Qn is H2r+1 and P2r are proved in a
very similar manner.

By [7, Theorem 22.5.1], the number of subspaces of dimension s contained in E is(
(qr−s+1 + 1)(qr−s+2 + 1) · · · (qr+1 + 1)

)
×

(
(qr−s − 1)(qr−s+1 − 1) · · · (qr − 1)

)
(q − 1)(q2 − 1) · · · (qs+1 − 1)

.

Moreover, replacing ‘s’ by ‘s + 1’ in this equation gives the number of subspaces
of dimension s + 1 contained in E . By [6, Theorem 3.1], the number of subspaces
of dimension s in a subspace of dimension s + 1 is

(
qs+2 − 1

)
/
(
q − 1

)
. By [7], the

number of subspaces of dimension s+ 1 that contain αs and are contained in E is a
constant. To calculate it, we count ordered pairs (Π,Σ) where Π is an s-dimensional
subspace contained in E , Σ is an (s + 1)-dimensional subspace contained in E , and
Π ⊂ Σ. This count gives the number of subspaces of dimension s + 1 that contain
αs and are contained in E is

x =
(qr−s + 1)(qr−s−1 − 1)

(q − 1)
. (1)

Each of these subspace contains qs+1 points that are not in αs. Hence |Xs| = xqs+1

as required. �

We now show that {Xs,Ys} satisfies Condition I of Result 2.1.

Lemma 4.2 Let Γ∗ be the subgraph of Γ on the vertices in Xs. Then Γ∗ is a regular
graph with degree k where:

1. if Qn = E2r+1, then k = (qs+1 − 1) +
qs+2(qr−s−1 + 1)(qr−s−2 − 1)

(q − 1)
;

2. if Qn = H2r+1, then k = (qs+1 − 1) +
qs+2(qr−s−2 + 1)(qr−s−1 − 1)

(q − 1)
;

3. if Qn = P2r, then k = (qs+1 − 1) +
qs+2(qr−s−2 + 1)(qr−s−2 − 1)

(q − 1)
.

Proof We prove this in the case Qn is E = E2r+1, which has projective index g = r−1
and point-graph denoted ΓE . The cases when Qn is H2r+1 and P2r are proved in a
very similar manner.

Let Q be a vertex in Xs, we need to count the number of vertices in Xs that are
adjacent to Q. Recall that Xs consists of vertices of type (ii), so in PG(2r + 1, q),
Q is a point of the quadric E , and the (s + 1)-dimensional space Σ = 〈Q,αs〉 is
contained in E . A vertex Q′ in Xs is adjacent to Q if the line QQ′ is contained in
E . We partition the lines of E through Q into three families: F1 contains the lines
of E through Q that lie in Σ; F2 contains the lines of E through Q (not in F1) that
lie in an (s+ 2)-dimensional subspace that contains Σ and is contained in E ; and F3

contains the remaining lines of E through Q.
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We first look at F1. The number of lines in F1 equals the number of lines through a
point in an (s+ 1)-dimensional subspace, so by [6, Theorem 3.1],

|F1| =
(qs+1 − 1)

(q − 1)
. (2)

Each of the lines in F1 contains the point Q and meets αs in one point. So each line
in F1 gives rise to q − 1 vertices in Xs which are adjacent to Q in the graph Γ∗. In
total, F1 contributes (q − 1)× |F1| = (qs+1 − 1) neighbours of Q in Γ∗.

Next we look at F2. Replacing ‘s’ by ‘s + 1’ in (1) gives the number of subspace of
dimension s+ 2 that contain the (s+ 1)-space Σ = 〈Q,αs〉 and are contained in E is
(qr−s−1 + 1)(qr−s−2 − 1)/(q − 1). Similarly, (2) can be generalised to show that the
number of lines through Q that lie in a subspace of dimension s + 2, and do not lie

in the (s+ 1)-space Σ is
(

(qs+2 − 1)/(q − 1)
)
−
(

(qs+1 − 1)/(q − 1)
)

= qs+1. Hence

|F2| = qs+1 × (qr−s−1 + 1)(qr−s−2 − 1)

(q − 1)
.

Each line in F2 contains one point of Σ, and the remaining q points correspond
to q vertices that lie in Xs (and are not considered in F1). That is, each line in
F2 contributes q neighbours to Q in the graph Γ∗. So in total, F2 contributes
q × |F2| = qs+2(qr−s−1 + 1)(qr−s−2 − 1)/(q − 1) neighbours to Q in the graph Γ∗.

Finally we look at F3. Let ` be a line in F3, so ` contains Q, but the (s + 2)-
space Π = 〈αs, `〉 is not contained in E . Suppose that ` contains another point Q′

that corresponds to a vertex in Xs. Then Π ∩ E contains the two distinct (s + 1)-
dimensional subspaces Σ = 〈αs, Q〉 and Σ′ = 〈αs, Q′〉. As Π is not contained in E , Π
meets E in exactly the two (s + 1)-spaces Σ and Σ′. Thus ` = QQ′ is not a line of
E , and so ` contains exactly two points Q,Q′ that are vertices of Xs, moreover they
are not adjacent in Γ∗. Thus F3 contributes 0 neighbours to Q in the graph Γ∗.

Summing the neighbours of Q in Γ∗ obtained from the families F1,F2,F3 gives the
required result. Note that if s = g − 1, so s = r − 2, then |F2| = 0, and the degree
of Γ∗ is qr−1 − 1. �

Now we look at Condition II of Result 2.1. Note that throughout the proofs in this
article, we consistently use P, P ′ to denote points of type (i); Q,Q′ to denote points
of type (ii); and R,R′ to denote points of type (iii).

Lemma 4.3 The partition {Xs,Ys} satisfies Condition II of Result 2.1 if and only
if q = 2.

Proof We prove this in the case Qn is E = E2r+1, which has projective index g = r−1
and point-graph denoted ΓE . The cases when Qn is H2r+1 and P2r are proved in a
very similar manner.

We need to show that in the graph ΓE , each vertex in Ys is adjacent to 0, 1
2
|Xs| or

|Xs| vertices in Xs. There are two cases to consider since the vertices in Ys are of
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type (i) or (iii). First consider a vertex P in Ys of type (i). Let Q ∈ Xs, so Q is a
vertex of type (ii). Hence in PG(2r + 1, q), P ∈ αs and Q lies in an (s+ 1)-space Π
with αs ⊂ Π ⊂ E . Hence PQ is a line of E , and so P and Q are adjacent vertices in
ΓE . That is, each vertex of type (i) in Ys is adjacent to each of the |Xs| vertices in
Xs.
Now consider a vertex R in Ys of type (iii). We count the number of vertices Q in
Xs for which RQ is a line of E . We will show that this number is not 0 or |Xs|, and
further, is 1

2
|Xs| if and only if q = 2. Let Σ be a subspace of E of dimension s + 1

that contains αs. So Σ\αs consists of points of type (ii), hence R /∈ Σ. Consider the
(s + 2)-space Π = 〈Σ, R〉. As αs ⊂ Σ, we have 〈αs, R〉 ⊂ Π. As R is of type (iii),
〈αs, R〉 is not contained in E . Hence Π is not contained in E . So Π ∩ E contains the
(s + 1)-space Σ and the point R /∈ Σ. Hence by Result 2.2, Π ∩ E is two distinct
(s + 1)-spaces. That is, Π ∩ E = {Σ,Σ′} where Σ′ is an (s + 1)-space that contains
R. As R is type (iii), Σ′ does not contain αs. Hence Σ ∩ Σ′ is an s-space distinct
from αs, and so Σ∩Σ′ ∩αs is a space of dimension s− 1. Let Q be a point in Σ\αs,
so Q has type (ii). If Q ∈ Σ ∩ Σ′, then as Q,R ∈ Σ′ ⊂ E , the line m = QR is a line
of E . If Q /∈ Σ ∩ Σ′, then as Π ∩ E = {Σ,Σ′}, the line m = QR is a 2-secant of E .
That is, Q is a neighbour of R in ΓE if and only if Q ∈ Σ ∩ Σ′.

Suppose Q ∈ Σ ∩ Σ′, Q /∈ αs, we characterise the points on the line m = QR. First
suppose m = QR contains a second point Q′ of type (ii). So 〈αs, Q′〉 is an (s + 1)-
space contained in E . Thus Π contains three distinct (s + 1)-spaces of E , namely
Σ,Σ′, 〈αs, Q′〉, contradicting Result 2.2. Thus m contains exactly one point of type
(ii), namely Q, and the rest of the points on m are type (iii). Hence in the graph
ΓE , the line m gives rise to one neighbour of R that lies in Xs, namely Q. Thus each
point of Σ′ ∩Σ not in αs gives rise to exactly one vertex in Xs that is a neighbour of
R. This is true for every (s+1)-space Σ with αs ⊂ Σ ⊂ E . Moreover, each neighbour
of R in Xs corresponds to a point of E that lies in exactly one such (s + 1)-space,
so arises exactly once in this way. Hence the number of neighbours of R that lie in
Xs equals the number of points of E\αs that lie in some Σ ∩ Σ′ for (s + 1)-spaces
Σ,Σ′ ⊂ E with αs ⊂ Σ, αs 6⊂ Σ′ and Σ ∩Σ′ an s-space. We next count these points.

Firstly, the number of (s+ 1)-dimensional spaces that contain αs and are contained
in E is given in (1). Secondly, let Σ be an (s + 1)-space containing αs, and Σ′ an
(s + 1)-space that meets Σ in an s-space not containing αs. Then the number of
points in Σ∩Σ′ which are not in αs is

(
(qs+1− 1)/(q− 1)

)
−
(
(qs− 1)/(q− 1)

)
= qs.

Hence in the graph ΓE , there are

y =
qs (qr−s + 1)(qr−s−1 − 1)

(q − 1)

vertices in Xs that are neighbours of R. To satisfy Condition II of Result 2.1, we
need y ∈ {0, 1

2
|Xs|, |Xs|}. Now y = 0 if and only if r − s − 1 = 0, which does not

occur as s < g = r − 1. Further, |Xs| is calculated in Lemma 4.1, and y < |Xs|.
Using Lemma 4.1, y = |Xs|/2 if and only if q = 2.

Thus the vertices in Ys of type (i) are adjacent to |Xs| of the vertices in Xs. Further,
the vertices in Ys of type (iii) are not adjacent to 0 or all the vertices of Xs, and are
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adjacent to 1
2
|Xs| of the vertices in Xs if and only if q = 2. That is, Condition II of

Result 2.1 is satisfied in for the partition {Xs,Ys} of ΓE if and only if q = 2. �

It is now straightforward to prove Theorem 3.3.

Proof of Theorem 3.3 Let Qn be a non-singular quadric of PG(n, 2) with projective
index g. Let s be an integer with 0 ≤ s < g, let αs be a s-space contained in Qn, and
let {Xs,Ys} be the partition given in Definition 3.2. By Lemmas 4.2 and 4.3, the
partition {Xs,Ys} satisfies Conditions I and II of Result 2.1(1). Hence we can use
Result 2.1(2) to construct a graph Γs. Note that as the group fixing Qn is transitive
on the s-spaces of Qn, 0 ≤ s ≤ g, different choices of the subspace αs give rise to the
same (up to isomorphism) graph. So for any s, 0 ≤ s < g, the graph Γs is a strongly
regular graph with the same parameters as Γ. �

Remark 4.4 As 0 ≤ s < g, we have g ≥ 1. This places a bound on n: when Qn is a
hyperbolic quadric, we need n ≥ 3; when Qn is a parabolic quadric, we need n ≥ 4;
and when Qn is an elliptic quadric, we need n ≥ 5.

It is useful to note that the proof of Lemma 4.3 gives a description of the edges in
the graph Γs. That is, let P, P ′ be vertices of type (i), Q,Q′ vertices of type (ii), and
R,R′ vertices of type (iii). Then {P, P ′}, {P,Q}, {P,R}, {Q,Q′}, {R,R′} are edges
of Γs if PP ′, PQ, PR, QQ′, RR′ are lines of Qn respectively; and {Q,R} is an edge
of Γs if QR is a 2-secant of Qn. In summary, we have:

Corollary 4.5 Let Γs, 0 ≤ s < g be the graph constructed in Theorem 3.3. The
adjacencies in Γs are the same as those given in Table 1.

Remark 4.6 We note that if q 6= 2, then geometric techniques similar to those used
here show that the graph Γs with s > 0 is not regular.

5 Maximal cliques of Γs

In Section 5.1, we classify the maximal cliques in the graph Γs, and in Section 5.2,
we count them.

5.1 Description of Maximal Cliques of Γs

Throughout this section, let Qn be a non-singular quadric of PG(n, 2) of projective
index g with point-graph Γ. For s an integer with 0 ≤ s < g, let αs be an s-space of
Qn. Let Γs be the graph described in Theorem 3.3.

We first describe the maximal cliques of the point-graph Γ of Qn. The largest sub-
spaces contained in Qn are the generators, which have dimension g, and so contain
2g+1−1 points. Further, any subspace of Qn is contained in a generator of Qn. Hence
the maximal cliques of Γ have 2g+1 − 1 vertices and correspond to generators of Qn.
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We want to study maximal cliques in Γs, we begin by studying cliques of Γs of size
2g+1−1, then show that these are maximal. We define a g-clique of Γs to be a clique
of size 2g+1−1. The next lemma describes two types of g-cliques of Γs, we show later
that these are the maximal cliques of Γs. The first type corresponds to generators
of Qn containing αs, and so corresponds to maximal cliques of the original graph Γ.
Figure 1 illustrates the two types of g-cliques described in Lemma 5.1.

Σ

αs

Type B

Ca
Cc

Type A

αs

Σ

Cb

Π

Figure 1: g-cliques of Γs

Lemma 5.1 Let Γs, 0 ≤ s < g, be the graph constructed as in Theorem 3.3.

A. Let Σ be a generator of Qn that contains αs, then the points of Σ form a g-clique
of Γs.

B. Let Π,Σ be two generators of Qn such that: Σ contains αs; Π does not contain
αs; and Π, Σ meet in a (g − 1)-dimensional space. Let Ca be the 2s − 1 points
of αs ∩ Π; Cb be the 2g − 2s points of Σ that are not in αs or Π; and Cc be the
2g points of Π\Σ, see Figure 1. Then the points in Ca ∪ Cb ∪ Cc form a g-clique
of the graph Γs.

Proof For part A, let Σ be a generator of Qn that contains αs. Let C be the set of
vertices of Γs that correspond to the points of Σ. As C consists of vertices of type (i)
and (ii) only, two vertices of C are adjacent if the corresponding two points lie on a
line of Qn. As Σ is contained in Qn, every pair of distinct points in Σ lie in a line of
Qn. Hence every pair of distinct vertices in C are adjacent, so C is a clique. Further,
Σ contains 2g+1 − 1 points, so |C| = 2g+1 − 1. Thus C is a g-clique of Γs.

We now consider the set Ca ∪ Cb ∪ Cc described in part B. By construction, the three
sets Ca, Cb, Cc are pairwise disjoint, Ca consists of points of type (i), Cb consists of
points of type (ii), and Cc contains no points of type (i). Suppose Cc contained a
point Q of type (ii), so 〈αs, Q〉 is an (s+ 1)-space of Qn. By construction, 〈αs, Q〉 is
not contained in Π or Σ, so contains a point X not in Σ or Π. So the (g + 1)-space
〈Π,Σ〉 meets Qn in at least Π,Σ, X, contradicting Result 2.2. Hence Cc consists of
points of type (iii). Note that straightforward counting shows that the number of
points in Ca, Cb, Cc is as stated in the theorem, and |Ca ∪ Cb ∪ Cc| = 2g+1 − 1.
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We need to show that any pair of vertices in the set corresponding to Ca ∪ Cb ∪ Cc
are adjacent. Recall Corollary 4.5 shows that the adjacencies in Γs are as described
in Table 1. Let P, P ′ ∈ Ca, Q,Q′ ∈ Cb, R,R′ ∈ Cc be distinct points. (Note that
the argument below is easily adjusted to work if Ca or Cb has size 1.) As P, P ′ have
type (i), Q,Q′ have type (ii) and R,R′ have type (iii), the following pairs of points
lie in a subspace of Qn, and so lie on a line of Qn: P, P ′ ∈ αs ⊂ Qn, Q,Q′ ∈ Σ ⊂ Qn,
P,Q ∈ Σ ⊂ Qn, P,R ∈ Π ⊂ Qn, R,R′ ∈ Π ⊂ Qn. Hence the corresponding pairs of
vertices are all adjacent in Γs.

To complete the proof that Ca ∪ Cb ∪ Cc corresponds to a g-clique of Γs, we need
to show that Q,R are adjacent in Γs, so by Table 1, we need to show that QR is
a 2-secant of Qn. The line QR lies in the (g + 1)-space 〈Π,Σ〉, which meets Qn in
exactly Π and Σ. As Q ∈ Σ\Π and R ∈ Π\Σ, the line QR is not contained in Qn,
so it is a 2-secant of Qn. Hence QR is an edge of Γs. That is, Ca ∪ Cb ∪ Cc is a set of
2g+1− 1 vertices of Γs such that any two vertices are adjacent, and so it is a g-clique
of Γs. �

We will show that the only maximal cliques in Γs are the g-cliques of Class A and
B. We need some preliminary lemmas. Note that the g-cliques of Class A contain no
points of type (iii), we begin by showing that the converse also holds.

Lemma 5.2 Let C be a g-clique of Γs, 0 ≤ s < g, that contains no vertices of type
(iii), then C is a g-clique of Class A.

Proof Let C be a g-clique of Γs, 0 ≤ s < g, that contains no vertices of type (iii).
Suppose C is not contained in a generator of Qn. We consider the number of points
of C in each generator of Qn. Let Σ be a generator of Qn that contains the maximum
number of points of C. As C is not contained in Σ, there is a point A of C that is
not in Σ. By Result 2.3, there is a unique generator Π of Qn that contains A and
meets Σ in a (g − 1)-space. Further, the points of Σ that lie on a line of Qn through
A are exactly the points of Σ ∩ Π. As C contains no points of type (iii), edges in
C correspond to lines of Qn. In Γs, each vertex in C is adjacent to the vertex A, so
in PG(n, 2), the points of C ∩ Σ lie in Σ ∩ Π. Hence |Π ∩ C| ≥ |Σ ∩ C| + 1, which
contradicts the choice of Σ being the generator with the largest intersection with
C. Hence C is contained in a generator of Qn. As |C| = 2g+1 − 1, the vertices of C
correspond exactly to the points of this generator, and so C is a Class A g-clique.

�

Lemma 5.3 Every generator of Qn contains at least one point of type (ii).

Proof Let Qn be a non-singular quadric of projective index g and let Π be a genera-
tor of Qn. There are two cases to consider. Firstly, if Π contains αs, then Π contains
only points of type (i) and (ii). Hence, as s < g, Π contains at least one point of
type (ii). Next consider the case where Π meets αs in a subspace αt of dimension t,
with −1 ≤ t ≤ s − 1. Let P1 be a point of αs\αt. As P1 /∈ Π, by Result 2.3 there
exists a unique generator Σ1 of Qn that contains P1 and meets Π in a (g − 1)-space.
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Moreover, if Y ∈ αt, then P1Y ⊂ αs and so is a line of Qn, hence by Result 2.3,
αt ⊂ Σ1, and so αt = Π ∩ Σ1 ∩ αs. Further, if X is a point of Π ∩ Σ1 not in αs and
Y ∈ 〈αt, P1〉, then the line XY lies in Σ1 and so is a line of Qn.

If αs ∩ Σ1 6= αs, we repeat this process. Let P2 be a point of αs not in Σ1. By
Result 2.3 there is a generator Σ2 of Qn that contains P2 and meets Σ1 in a (g − 1)-
space. Moreover, if Y ∈ 〈αt, P1〉, then P2Y ⊂ αs, and so is a line of Qn, hence by
Result 2.3, 〈αt, P1〉 ⊂ αs ⊂ Σ2. So 〈αt, P1, P2〉 ⊂ Σ2, and αt = Π∩Σ1∩Σ2∩αs. Note
that Π∩Σ1∩Σ2 has dimension at least g− 2. Further, if X is a point of Π∩Σ1∩Σ2

not in αs, and Y ∈ 〈αt, P1, P2〉, then XY lies in Σ2 and so is a line of Qn.

Repeat this process a total of k ≤ s − t times, until 〈αt, P1, . . . , Pk〉 = αs. Let
H = Π∩Σ1∩ · · · ∩Σk, so H has dimension d ≥ g−k ≥ g− (s− t), H ∩αs = αt, and
αs = 〈αt, P1, . . . , Pk〉 ⊂ Σk. Note that dimH − dimαt = d − t ≥ g − (s − t) − t =
g − s > 0, so H\αt is non-empty. Let X be a point of H not in αs, and let Y ∈ αs.
So X, Y ∈ Σk, hence XY is a line of Qn. That is, 〈X,αs〉 is an (s + 1)-space of Qn
and hence X is a type (ii) point. As X ∈ H ⊂ Π, Π contains at least one point of
type (ii) as required. �

We now show that there are only two types of g-cliques in Γs, namely those of Class
A and B described in Lemma 5.1.

Lemma 5.4 Let C be a g-clique in Γs, 0 ≤ s < g, then C is a g-clique of Class A
or B.

Proof Let C be a g-clique of Γs and denote the subsets of vertices of C of type (i),
(ii), (iii) by Ci, Cii, Ciii respectively. If Ciii = ∅, then by Lemma 5.2, C corresponds to
a generator of Qn containing αs, and so is of Class A. So suppose Ciii 6= ∅.
We begin by constructing two generators of Qn whose union contains the g-clique C.
Firstly, as C is a clique of Γs, the subset Ci ∪ Ciii is also a clique, so any two vertices
of Ci ∪ Ciii are adjacent in Γs. As Ci ∪ Ciii contains only vertices of type (i) and (iii),
in PG(n, 2), any two points of Ci ∪ Ciii lie on a line of Qn. Hence Ci ∪ Ciii is contained
in a subspace of Qn and so by [7, Theorem 22.4.1] is contained in a generator Π of
Qn. Secondly, consider the set of points αs ∪ Cii in Qn. Let Q ∈ Cii, so Q has type
(ii), and 〈Q,αs〉 is contained in Qn. Hence αs ∪ Cii is contained in a subspace of Qn
and so is contained in a generator Σ of Qn. So we have C ⊂ Π ∪ Σ. To show that C
is a clique of Class B, we need to show that Π ∩ Σ has dimension g − 1.

We first show that Cii is not empty. Suppose Cii = ∅, then C = Ci∪Ciii is contained in
the g-space Π. As |C| = 2g+1−1, we have C = Ci∪Ciii = Π. However, by Lemma 5.3,
Π contains at least one point of type (ii), a contradiction. Thus Cii 6= ∅.
As Cii, Ciii are not empty, let Q ∈ Cii and R ∈ Ciii. As Q,R lie in a clique of Γs, they are
adjacent in Γs. Hence by Corollary 4.5, QR is a 2-secant of Qn. As Q ∈ Cii ⊂ Σ ⊂ Qn
and QR is a 2-secant, we have R /∈ Σ. Similarly R ∈ Ciii ⊂ Π ⊂ Qn and QR a
2-secant implies Q /∈ Π. In summary, we have

C ⊂ Σ ∪ Π; Ci ⊂ αs ∩ Π ∩ Σ; Cii ⊂ Σ\Π; Ciii ⊂ Π\Σ.
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Next we determine the size of Ci, Cii and Ciii. As Ciii 6= ∅, there is a point R ∈ Ciii, so
R /∈ Σ. By Result 2.3, there is a unique generator Π1 of Qn that contains R and meets
Σ in a (g− 1)-space denoted H = Σ∩Π1. There are two cases to consider as H ∩αs
has dimension s or s−1. If H contained αs, then 〈R,αs〉 ⊂ Π1 would be a subspace of
Qn, which implies that R is type (ii), a contradiction. Thus H∩αs is an (s−1)-space.
If P ∈ Ci, then P,R ∈ C, so P,R are adjacent in Γs and so PR is a line of Qn. Thus
P ∈ H, and so P ∈ H∩αs. Thus Ci ⊆ H∩αs, and so |Ci| ≤ |H∩αs| = 2s−1. By the
construction of H, each point in H\αs lies on a line of Qn with R, and each point of
Σ\(H ∪αs) lies on a 2-secant of Qn with R. So the type (ii) points of C are contained
in Σ\(H ∪αs). That is, |Cii| ≤ |Σ\(H ∪αs)| = (2g+1− 1)−

(
(2g− 1) + 2s)

)
= 2g− 2s.

As Cii 6= ∅, there is a point Q ∈ Cii, so Q ∈ Σ\Π. By Result 2.3, there is a unique
generator Σ1 of Qn that contains Q and meets Π in a (g − 1)-space. Hence Q is on
a line of Qn with the 2g − 1 points of Π ∩ Σ1; and Q is on a 2-secant of Qn with the
(2g+1 − 1) − (2g − 1) = 2g points of Π\Σ1. If R is a point of Ciii, then as Q,R ∈ C,
they are adjacent in Γs and so QR is a 2-secant of Qn. Hence the points of Ciii lie in
Π\Σ1, and so |Ciii| ≤ 2g.

As |C| = 2g+1−1, we need equality in all three of these bounds, that is, |Ci| = 2s−1,
|Cii| = 2g − 2s, and |Ciii| = 2g. Moreover,

Ci = αs ∩ Π1, Cii = Σ\(αs ∪ Π1), Ciii = Π\Σ1. (3)

To show that C is a g-clique of Class B, we need to show that Π = Π1 and Σ = Σ1.
Suppose that Π 6= Π1, so Π∩Π1 has dimension at most g−1, that is |Π∩Π1| ≤ 2g−1.
As Π contains Ciii, and |Ciii| = 2g > |Π ∩ Π1|, there exists a point R′ ∈ Ciii with
R′ ∈ Π\Π1. By Result 2.3, there exists a unique generator Π2 of Qn which contains
R′ and meets Σ in a (g − 1)-space. Further, for each point X ∈ Σ\Π2, XR

′ is a
2-secant of Qn. Thus Cii ⊂ Σ\Π2. By (3), Cii = Σ\(αs ∪ Π1), moreover we have
|Σ\(αs ∪Π1)| = |Σ\(αs ∪Π2)|. Hence Σ ∩Π1 = Σ ∩Π2, and so Π1 ∩Π2 is a (g − 1)-
space in Σ. Recall that R ∈ Π1, and by assumption R′ ∈ Π2\Π1, so Π1 6= Π2.
Thus 〈Π1,Π2〉 is a (g + 1)-space, and so by Result 2.2, meets Qn in exactly the two
generators Π1,Π2. Now R,R′ ∈ Ciii, so {R,R′} is an edge of Γs, and so RR′ is a line
of Qn. As R′ ∈ Π2\Π1, and RR′ is a line of Qn in 〈Π1,Π2〉, we have R ∈ Π2. So
R ∈ Π2 ∩ Π1 ⊂ Σ, contradicting the choice of R 6∈ Σ. Hence Π = Π1. Thus Σ meets
Π in a (g − 1)-space, so by the construction of Σ1, we have Σ = Σ1. Substituting
into (3), we see that C is a g-clique of Class B. �

Lemma 5.5 The maximum size of a clique in Γs is 2g+1 − 1.

Proof Suppose Γs, s > 0, contains a clique K of size 2g+1. Let X be a vertex in K,
then K\X is a g-clique, and so by Lemma 5.4, K\X has Class A or B. Table 2 gives
the number of vertices of each type in the two different g-cliques. As s > 0 and K\X
has Class A or B, K\X contains vertices of both type (i) and (ii). Let P be a vertex
of type (i) in K and Q a vertex of type (ii) in K. If K\P has Class A, then using
Table 2, we see that K\Q satisfies neither column, and so is not a g-clique of Γs, a
contradiction. Similarly, if K\P has Class B, then K\Q satisfies neither column, and
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Table 2: Number of vertices of each type in each g-clique

g-clique A g-clique B
vertex type (i) 2s+1 − 1 2s − 1
vertex type (ii) 2g+1 − 2s+1 2g − 2s

vertex type (iii) 0 2g

so is not a g-clique of Γs. So there are no cliques of size 2g+1, hence the g-cliques are
the maximal cliques of Γs. A similar argument proves the result when s = 0. �

In summary, we have classified the maximal cliques of Γs as follows.

Theorem 5.6 Let Qn be a non-singular quadric of PG(n, 2) of projective index g ≥
1, and let Γs, 0 ≤ s < g, be the graph constructed in Theorem 3.3. If C is a maximal
clique of Γs, then C is a g-clique of Class A or B.

5.2 Counting maximal cliques

In the previous section, we classified the maximal cliques in the graph Γs, we count
them here.

Theorem 5.7 Let Qn be a non-singular quadric in PG(n, 2) of projective index g ≥
1. Let Γ be the point-graph of Qn and let Γs, 0 ≤ s < g, be the graph constructed in
Theorem 3.3.

1. Let Qn = E2r+1, then
(a) Γ has (22 + 1)(23 + 1) · · · (2r+1 + 1) maximal cliques.
(b) Γs has (22 + 1)(23 + 1) · · · (2r−s+ 1)×

(
2r+2−2r−s+1 + 1

)
maximal cliques.

2. If Qn = H2r+1, then
(a) Γ has (20 + 1)(21 + 1) · · · (2r + 1) maximal cliques.
(b) Γs has (20 +1)(21 +1)) · · · (2r−s−1 +1)×

(
2r+1−2r−s+1

)
maximal cliques.

3. If Qn = P2r, then
(a) Γ has (21 + 1)(22 + 1) · · · (2r + 1) maximal cliques.
(b) Γs has (21 + 1)(22 + 1) · · · (2r−s−1 + 1)×

(
2r+1−2r−s+ 1

)
maximal cliques.

Proof For part 1, we work in PG(2r + 1, 2) and let Qn = E = E2r+1 have point-
graph Γ. The maximal cliques of Γ correspond exactly to the generators of E . By
[7, Theorem 22.5.1], the number of generators of E is

(22 + 1)(23 + 1) · · · (2r+1 + 1)

proving 1(a). For part 1(b), let αs be a subspace of E , 0 ≤ s < g, and let Γs be the
graph constructed from Γ as in Theorem 3.3. Let nA, nB be the number of maximal
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cliques of Γs of Class A and B respectively. By Lemma 5.1, nA is equal to the number
of generators of E that contain αs, and so by [7, Theorem 22.4.7],

nA = (22 + 1)(23 + 1) · · · (2r−s + 1). (4)

To count the maximal cliques of Class B, by Lemma 5.1 we need to count the number
of pairs of generators Σ,Π of E such that Σ contains αs, and Π meets Σ in a (g− 1)-
space not containing αs. The number of choices for Σ is the number of generators
of E that contain αs, which is given in (4), and is nA. Once Σ is chosen, we count
the number of choices for Π. The number of (g − 1)-spaces contained in Σ but
not containing αs equals the number of (g − 1)-spaces contained in Σ minus the
number of (g − 1)-spaces contained in Σ which contain αs. This is (2g+1 − 1) −
(2g−s − 1) = 2g+1 − 2g−s. By [7, Lemma 22.4.8], the number of generators of E
that meet Σ in a fixed (g − 1)-space is 4. Hence the number of choices for Π is
(2g+1− 2g−s)× 4 = 2g+3− 2g−s+2. As the projective index of E is g = r− 1, we have
nB = nA

(
2g+3 − 2g−s+2

)
= nA

(
2r+2 − 2r−s+1

)
. Hence the total number of maximal

cliques of Γs is nA + nB = nA

(
2r+2 − 2r−s+1 + 1

)
as required. This completes the

proof of part 1. The proofs of parts 2 and 3 are similar. �

Theorem 5.8 Let Qn be a non-singular quadric in PG(n, 2) of projective index g ≥
1. Let Γs, 0 ≤ s < g, be the graph constructed in Theorem 3.3. Let X be a fixed
vertex of Γs, then the number of maximal cliques of Γs containing X according to the
type of X is given in Table 3.

Table 3: Number of maximal cliques of Γs containing X

type

Qn ofX 0 ≤ s < g − 1 s = g − 1
E2r+1 (i) (22 + 1) · · · (2r−s + 1)×

(
2r+1 − 2r−s+1 + 1

)
5(2r+1 − 7)

(ii) (22 + 1) · · · (2r−s−1 + 1)×
(
2r+1 − 2r−s + 1

)
2r+1 − 3

(iii) (22 + 1) · · · (2r−s + 1) 5
H2r+1 (i) (20 + 1) · · · (2r−s−1 + 1)×

(
2r − 2r−s + 1

)
2(2r − 1)

(ii) (20 + 1) · · · (2r−s−2 + 1)×
(
2r − 2r−s−1 + 1

)
2r

(iii) (20 + 1) · · · (2r−s−1 + 1) 2
P2r (i) (21 + 1) · · · (2r−s−1 + 1)×

(
2r − 2r−s + 1

)
3(2r − 3)

(ii) (21 + 1) · · · (2r−s−2 + 1)×
(
2r − 2r−s−1 + 1

)
2r − 1

(iii) (21 + 1) · · · (2r−s−1 + 1) 3

Proof First consider the case where Qn = E = E2r+1 in PG(n, 2) = PG(2r + 1, 2).
Let αs be a subspace of E , 0 ≤ s < g, and let Γs be the graph constructed from the
point-graph Γ of E , as in Theorem 3.3. Let P be a vertex of Γs of type (i), so in
PG(2r + 1, 2), P ∈ αs. All the maximal cliques of Γs of Class A contain αs. So by
(4), P lies in nA = (22 + 1)(23 + 1) · · · (2r−s + 1) maximal cliques of Class A. To form
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a maximal clique of Γs of Class B that contains P , we need two generators Σ,Π of E
such that Σ contains αs, Π meets Σ in a (g−1)-space not containing αs, and P ∈ Π.
We count the number of pairs Σ, Π satisfying this. First, the number of choices
for Σ equals the number of generators of E containing αs which is nA. The number
of (g − 1)-spaces of Σ that contain P is 2g − 1, and the number of (g − 1)-spaces
of Σ that contain αs and P is 2g−s − 1. Hence the number of (g − 1)-spaces of Σ
that contain P , but do not contain αs is (2g − 1) − (2g−s − 1) = 2g − 2g−s. By
[7, Lemma 22.4.8], the number of generators of E that meet Σ in a fixed (g − 1)-
space is 4. In total, the number of maximal cliques of Class B containing P is
nA× (2g − 2g−s)× 4 = nA

(
2r+1− 2r−s+1

)
as E has projective index g = r− 1. Hence

the total number of maximal cliques of Γs containing P is nA

(
2r+1 − 2r−s+1 + 1

)
as

required.

Now let Q be a vertex of Γs of type (ii). The number of maximal cliques of Class
A containing Q equals the number of generators of E containing αs and Q which by
[7, Theorem 22.4.7] is (22 + 1)(23 + 1) · · · (2r−s−1 + 1). To count the maximal cliques
of Γs that contain Q, we need to count pairs of generators Σ,Π of E such that Σ
contains αs and Q, and Π meets Σ in a (g − 1)-space not containing αs or Q. The
number of choices for Σ is calculated above to be (22 + 1)(23 + 1) · · · (2r−s−1 + 1).
Further, the number of (g − 1)-spaces in Σ is 2g+1 − 1; the number of (g − 1)-spaces
of Σ containing αs is 2g−s − 1; the number of (g − 1)-spaces of Σ containing αs and
Q is 2g−s−1− 1; and the number of (g− 1)-spaces of Σ containing Q is 2g− 1. Hence
the number of (g − 1)-spaces of Σ that do not contain αs and do not contain Q is
(2g+1 − 1) − (2g−s − 1) − (2g − 1) + (2g−s−1 − 1) = 2g − 2g−s−1. As before, each of
these (g − 1)-spaces lies in 4 suitable choices for the generator Π of E . Hence the
number of maximal cliques of Class B containing Q is (22 + 1)(23 + 1) · · · (2r−s−1 +
1) × (2g − 2g−s−1) × 4 = (22 + 1)(23 + 1) · · · (2r−s−1 + 1)

(
2r+1 − 2r−s

)
as E has

projective index g = r− 1. Hence the total number of maximal cliques containing Q
is (22 + 1)(23 + 1) · · · (2r−s−1 + 1)

(
2r+1 − 2r−s + 1

)
as required.

Let R be a vertex of Γs of type (iii), so 〈R,αs〉 is not contained in E , hence R is in zero
maximal cliques of Class A. To count the maximal cliques of Γs of Class B containing
R, we need to count pairs of generators Σ,Π of E such that Σ contains αs, Π meets Σ
in a (g− 1)-space not containing αs, and Π contains R. The number of choices for Σ
equals the number of generators of E containing αs which is nA by (4). As Σ contains
αs, it contains no points of type (iii), so R /∈ Σ. So by Result 2.3, there is a unique
generator of E that contains R and meets Σ in a (g−1)-space denoted H. Further, if
H contained αs, then 〈R,αs〉 would be contained in E , and so R would be type (ii),
a contradiction, so H does not contain αs. So for each Σ, there is a unique choice
for Π that can be used to form a Class B maximal clique containing R. Hence the
number of maximal cliques of Γs containing R is nA = (22 + 1)(23 + 1) · · · (2r−s + 1)
as required. This completes the proof for the case Qn = E2r+1. The cases when Qn is
H2r+1 and P2r are similar. �
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6 The graphs Γs are all non-isomorphic

Theorem 6.1 Let Qn be a non-singular quadric in PG(n, 2) of projective index g ≥
1. Let Γ be the point-graph of Qn and let Γs, 0 ≤ s < g, be the graph constructed in
Theorem 3.3. Then Γs is isomorphic to Γ if and only if s = 0.

Proof We first show that Γ0
∼= Γ. To construct Γ0 from Γ, we let α0 be a subspace

of Qn of dimension 0, so α0 is a point which we denote P . We classify the points of
Qn, and so the vertices of Γ, into type (i), (ii), (iii) with respect to α0 = P . The point
P is the only point of Qn of type (i). Note that lines in PG(n, 2) contain exactly
three points. Consider the involution φ acting on the vertices of Γ where: φ fixes
vertices of type (i) and (iii); and φ maps a vertex Q of type (ii) to the vertex of
type (ii) that corresponds to the third point of Qn on the line PQ. The involution φ
maps Γ to a graph Γ′. Incidence in Γ′ is inherited from Γ, that is, points X and Y
are adjacent in Γ (so XY is a line of Qn) if and only if vertices φ(X) and φ(Y ) are
adjacent in Γ′. The map φ is an isomorphism, so Γ ∼= Γ′. We now show that Γ′ = Γ0.

By Corollary 4.5, we need to show that the edges of Γ′ satisfy Table 1. First note that
as there is only one point of type (i) in Qn, the first row of Table 1 is not relevant.
Let Q1, Q2 be points of Qn of type (ii), and let R,R′ be points of Qn of type (iii).
The incidences in rows 4 and 5 of Table 1 hold in Γ, so as φ fixes points of type (i)
and (iii), they also hold in Γ′.

To simplify notation, let Q′1 = φ−1(Q1) and φ−1(Q2) = Q′2. Consider row 2 of
Table 1: {P,Q1} is an edge of Γ′ if and only if {P,Q′1} is an edge of Γ if and only if
{P,Q1, Q

′
1} is a line of Qn. Hence it follows from the definition of φ that {P,Q1} is

always an edge of Γ′ as required.

Consider row 6 of Table 1: {Q1, R} is an edge of Γ′ if {Q′1, R} is an edge of Γ, that
is, if Q′1R is a line of Qn. As R is type (iii), the plane 〈P,Q′1, R〉 is not contained in
Qn, and so by Result 2.2 meets Qn in exactly the lines PQ′1, Q

′
1R. As Q1 is the third

point on the line PQ′1, the line Q1R is a 2-secant of Qn as required.

Consider row 3 of Table 1. Suppose {Q1, Q2} is an edge of Γ′, so {Q′1, Q′2} is an
edge of Γ. If the line Q1Q2 contains P , then Q′1 = Q2 and Q′2 = Q1, so {Q1, Q2}
is an edge of Γ and so Q1Q2 is a line of Qn as required. Now suppose Q1Q2 does
not contain P . Then {Q′1, Q′2} an edge of Γ implies Q′1Q

′
2 is a line of Qn. Hence the

plane 〈P,Q′1, Q′2〉 contains at least three lines, namely PQ′1, PQ
′
2 and Q′1Q

′
2, and so

by Result 2.2, is contained in Qn. Further, it contains Q1 and Q2, so Q1Q2 is a line of
Qn as required. Hence the edges of Γ′ satisfy Table 1. So by Corollary 4.5, Γ′ = Γ0.

We now show that Γs with 1 ≤ s < g is not isomorphic to the graph Γ ∼= Γ0 by
considering the maximal cliques. We prove the case when Qn = E = E2r+1, the cases
where Qn is H2r+1 or P2r are similar. The number of maximal cliques in Γ and Γs
are given in (1a) and (1b) of Theorem 5.7. These numbers are equal if and only if
2r+1 − 2r−s+1 + 1 = (2r−s+1 + 1) · · · (2r + 1). If s ≥ 1, then the right hand side is
≥ 22r+1, which is larger than the left hand side. So we have equality if and only if
s = 0. Hence Γs with 1 ≤ s < g is not isomorphic to Γ. �
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Theorem 6.2 Let Qn be a non-singular quadric in PG(n, 2) of projective index
g ≥ 1. Let Γ be the point-graph of Qn and let Γs, 0 ≤ s < g, be the graph constructed
in Theorem 3.3. Then the graphs Γ0,Γ1, . . . ,Γg−1 are distinct up to isomorphism.

Proof We prove the case when Qn = E = E2r+1, the cases where Qn is H2r+1 or P2r

are similar. Let s1, s2 be two integers with 0 ≤ s1 < s2 < g. The number of maximal
cliques in Γs1 and Γs2 are given in Theorem 5.7(1b). These two numbers are equal if
and only if

2r+2 − 2r−s2+1 + 1 = (2r−s2+1 + 1) · · · (2r−s1 + 1)
(
2r+2 − 2r−s1+1 + 1

)
. (5)

As s1 < s2, the right hand side is greater than 22r+2−s1 , which is greater than 2r+1

as s1 < s2 < g = r − 1. Hence the right hand side is greater than the left, so they
cannot be equal. Thus Γs1 and Γs2 are not isomorphic if s1 and s2 are distinct. �

6.1 Kantor’s graphs

In [8], Kantor constructs a strongly regular graph ΓK from a non-singular quadric Qn
in PG(n, q) with the same parameters as the point-graph Γ of Qn. Kantor conjects
that the graph ΓK is not the same as Γ except in the case when Qn = H7. It is
not known in general whether ΓK is isomorphic to Γ ∼= Γ0. We show that ΓK is
not isomorphic to the graphs Γs when s > 0. Kantor’s construction works when the
quadric Qn contains a spread, however, we do not need to describe the details of
Kantor’s graphs to prove non-isomorphism.

Theorem 6.3 Let Qn be a non-singular quadric in PG(n, 2) of projective index g ≥
1. Let Γs, 0 < s < g be the graph constructed in Theorem 3.3. Let ΓK be the graph
constructed from Qn in [8]. Then ΓK is not isomorphic to Γs, 0 < s < g.

Proof We use [8, Lemma 3.3] which shows that the vertices of ΓK can be partitioned
into maximal cliques. We show that the vertices of Γs, 0 < s < g, cannot be
partitioned into maximal cliques. Let C, C ′ be two maximal cliques of Γs. We consider
three cases. If C, C ′ are both of Class A, then they both contain αs, and so are not
disjoint. If C is Class A and C ′ is Class B, then C contains αs, and C ′ meets αs in a
(s − 1)-space. Hence as s > 0, C ′ contains at least one point of αs, so C, C ′ are not
disjoint in this case.

Now consider the case where C, C ′ are maximal cliques of Γs of Class B. Both C, C ′
meet αs in a subspace of dimension s− 1. If s ≥ 2, then two subspaces of dimension
s − 1 contained in an s-space meet in at least a point, and so C, C ′ share at least a
point. Thus if s ≥ 2, any two maximal cliques of Γs share at least one vertex, and so
the vertices of Γs cannot be partition into maximal cliques, and hence Γs, 2 ≤ s < g
is not isomorphic to ΓK .

Now suppose s = 1, so α1 is a line. A partition of the vertices of Γ1 into maximal
cliques partitions the points of α1. As every maximal clique of Γ1 contains a point
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of α1, we are looking for a partition of Γ1 into three maximal cliques of Class B, one
through each point of α1. We show there is no such partition. First, a maximal clique
has 2g+1−1 points, so three pairwise disjoint maximal cliques contain x = 3(2g+1−1)
points, with either g = r − 1 or r. As 0 < s < g, it follows that g ≥ 2. Thus for the
elliptic and parabolic case we have r ≥ 3 and for the hyperbolic case we have r ≥ 2.
However, as q = 2, E2r+1 contains 22r+1− 2r− 1 points, H2r+1 contains 22r+1 + 2r− 1
points and P2r contains 22r − 1 points. None of these numbers is equal to x when
r ≥ 2. Hence we cannot partition the vertices of Γs, s > 0 into maximal cliques.
Thus by [8, Lemma 3.3], Γs is not isomorphic to ΓK . �

7 The automorphism group of Γs

Let Qn be a non-singular quadric in PG(n, 2) of projective index g ≥ 1. Let Γ be
the point-graph of Qn. Let αs be an s-space contained in Qn, 0 ≤ s < g, construct
the partition of the points of Qn given in Definition 3.2, and let Γs be the graph
constructed in Theorem 3.3. If s = 0, then by Theorem 6.1, Γ0 = Γ so Aut(Γ0) =
Aut Γ. In this section we determine the automorphism group of the graph Γs, 0 <
s < g.

First note that the group of collineations of PG(n, 2) fixing Qn is PGO(n + 1, 2),
see [7]. Moreover, if n ≥ 4, then the group of automorphisms of Γ is Aut Γ ∼=
PGO(n+ 1, 2), see [10, Chapter 8].

The partition of the points of Qn given in Definition 3.2 also partitions the vertices
of Γ and Γs, 0 ≤ s < g. Vertices of type (i) in Γ correspond in PG(n, 2) to the points
of αs. Let (Aut Γ)αs denote the subgroup of automorphisms of Γ that fix the set of
vertices of type (i). As the graphs Γ,Γs have the same set of vertices, if φ is a map
acting on the vertices of Γ, then φ is also a map acting on the vertices of Γs. We will
prove the following relationship between their automorphism groups.

Theorem 7.1 Let Qn be a non-singular quadric in PG(n, 2) of projective index g ≥ 1
with point-graph Γ. Let αs be an s-space of Qn, 0 < s < g, and let Γs be the graph
constructed in Theorem 3.3. Then Aut(Γs) = (Aut Γ)αs.

In order to prove this theorem, we need a series of preliminary lemmas, the first relies
on an application of Witt’s Theorem, so we begin with a discussion on applying Witt’s
Theorem to non-singular quadrics of PG(n, 2), see [9, Chapter 7] for more details.
Let V be a vector space of dimension n + 1 over GF(2), and let f(x0, . . . , xn) be a
quadratic form on V with associated bilinear form b(x, y) = b(x + y) − b(x) − b(y).
The radical of f in V is the subspace rad f = {u ∈ V : b(u, v) = 0 for all v ∈ V }.
Let U be a subspace of V and suppose there exists a linear isometry ϕ : U → V with
respect to f (that is, ϕ is an invertible linear map and f(u) = f(ϕ(u)) for all u ∈ U .
Then Witt’s theorem says that there exists a linear isometry ζ : V → V such that
ζ(u) = ϕ(u) for all u ∈ U if and only if ϕ(U ∩ rad f) = ϕ(U) ∩ rad f . We interpret
this in the projective space PG(n, 2) associated with V . Let Qn be a non-singular
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quadric in PG(n, 2) with homogeneous equation f(x0, . . . , xn) = 0. If n is odd, then
rad f = ∅. If n is even, then Qn = Pn and rad f is the nucleus point N of Pn. As an
example, let Π1,Π2 be subspaces of Qn of the same dimension. If Qn has a nucleus
N , then N /∈ Qn, so neither Π1 nor Π2 contain N . As there exists a collineation
of PG(n, 2) that maps Π1 to Π2, it follows from Witt’s theorem that there exists a
collineation of PG(n, 2) that fixes Qn and maps Π1 to Π2. We use Witt’s Theorem
to prove the following lemma.

Lemma 7.2 Let Qn be a non-singular quadric in PG(n, 2) of projective index g ≥ 1.
Let s be an integer, 0 ≤ s < g, let αs be an s-space of Qn, and partition the points of
Qn into types (i), (ii), (iii) as in Definition 3.2. Then the subgroup of PGO(n+ 1, 2)
fixing αs is transitive on the points of each type.

Proof Let P, P ′ be two points of Qn of type (i), so P, P ′ ∈ αs. There is a collineation
of PG(n, 2) that fixes αs, and maps P to P ′. Hence by Witt’s theorem, there is a
collineation of PG(n, 2) fixing αs and Qn, and mapping P to P ′. Hence PGO(n +
1, 2)αs is transitive on the points of Qn of type (i).

Let Q,Q′ be points of Qn of type (ii), so Π = 〈Q,αs〉 and Π′ = 〈Q′, αs〉 are (s + 1)-
spaces contained in Qn. There is a collineation of PG(n, 2) that maps Π to Π′, fixes
αs, and maps Q to Q′. Hence by Witt’s Theorem, there is a collineation of PG(n, 2)
that fixes αs and Qn, and maps Q to Q′. Hence PGO(n+ 1, 2)αs is transitive on the
points of Qn of type (ii).

Let R,R′ be points of Qn of type (iii), so Π = 〈R,αs〉 and Π′ = 〈R′, αs〉 are (s+ 1)-
spaces which are not contained in Qn. Now Π is an (s + 1)-space, and Π ∩ Qn
contains αs and the point R /∈ αs, hence by Result 2.2, Π ∩ Qn is exactly two s-
spaces. Similarly, Π′∩Qn is two s-spaces, one being αs. So there is an automorphism
of PG(n, 2) that maps Π to Π′, fixes αs, and maps R to R′. As Π,Π′ are not contained
in Qn, in order to apply Witt’s Theorem, we need to consider the nucleus N of Qn
when n is even. Suppose n is even, so Qn = Pn, and Pn has nucleus a point N /∈ Pn.
We show that neither Π nor Π′ contain N . Let P ∈ αs ⊂ Pn and let ΣP be the
tangent hyperplane to Pn at P . So ΣP contains N and all the lines of Pn through P .
Let Σ = ∩P∈αsΣP , then Σ contains N and points of type (i) and (ii), but no points
of type (iii). As 〈αs, N〉 is an (s + 1)-space contained in Σ, it contains no points
of type (iii). As the (s + 1)-space Π contains points of type (iii), Π meets 〈αs, N〉
in exactly the s-space αs. Thus N /∈ Π, and similarly N /∈ Π′. Hence by Witt’s
Theorem there is a collineation of PG(n, 2) that fixes αs and Qn, and maps R to R′.
Thus PGO(n+ 1, 2)αs is transitive on the points of Qn of type (iii). �

We now show that if s > 0, then Aut(Γs) has at least three orbits on the vertices of
Γs, namely the vertices of each type.

Lemma 7.3 For 0 < s < g, the vertices of Γs of different types lie in a different
number of maximal cliques.

Proof We prove the result for the case Qn = E2r+1, the cases when Qn is H2r+1 and
P2r are similar. Comparing the number of cliques through vertices of type (i), (ii)
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and (iii) in Γs from Theorem 5.8, it is sufficient to show that k!, k2, k3 are distinct
where

k1 = (2r−s + 1)(2r+1 − 2r−s+1 + 1), k2 = 2r+1 − 2r−s + 1, k3 = 2r−s + 1.

If 0 < s < g−1, then k1−k2 = 2r−s(2r+1−2r−s+1) > 0 and k2−k3 = 2r+1−2r−s+1 > 0.
Hence k1 > k2 > k3, that is vertices of different types lie in a different number of
maximal cliques. If 0 < s = g − 1, then r ≥ 3 and so k1, k2, k3 are distinct. �

Lemma 7.4 If 0 < s < g, then (Aut Γ)αs ⊆ Aut(Γs). Further, Aut(Γs) has exactly
three orbits on the vertices of Γs, namely the vertices of each type.

Proof Recall that Γ is the point-graph of a non-singular quadric Qn in PG(n, 2)
with projective index g ≥ 1; αs is an s-space contained in Qn; and the vertices of Γ
are partitioned into types (i), (ii) and (iii) as given in Definition 3.2. Note that as
0 < s < g, we need g > 1, and so n ≥ 5.

Let φ ∈ (Aut Γ)αs , so φ is an automorphism of Γ that fixes the set of vertices of Γ of
type (i). As Γ,Γs have the same set of vertices, φ acts on the vertices of Γs, and fixes
the set of vertices of Γs of type (i). Further, φ induces a bijection denoted φ̄ acting
on the points of Qn and fixing αs. As n ≥ 5, we have Aut Γ ∼= PGO(n+1, 2) (see [10,
Chapter 8]) so φ̄ ∈ PGO(n+ 1, 2)αs . By Lemma 7.2, φ̄ preserves the type of a point
in Qn, hence φ preserves the type of a vertex in Γs. By Corollary 4.5, the edges of Γs
are described in Table 1. As the collineation φ̄ maps lines (respectively 2-secants) of
Qn to lines (2-secants) of Qn, the map φ preserves adjacencies and non-adjacencies
of vertex pairs of Γs. That is φ ∈ Aut(Γs), and so (Aut Γ)αs ⊆ Aut(Γs).

Further, by Lemma 7.2, PGO(n, 2)αs is transitive on the points of Qn of each type,
so (Aut Γ)αs is transitive on the vertices of Γ of each type. Hence Aut(Γs) has at
most three orbits on the vertices of Γs. By Lemma 7.3, Aut(Γs) has at least three
orbits on the vertices of Γs. Hence Aut(Γs) has exactly three orbits on the vertices
of Γs, namely the vertices of each type. �

Lemma 7.5 For 0 ≤ s < g, Aut(Γs) ⊆ Aut Γ.

Proof First note that if s = 0, then by Theorem 6.1, Γ0 = Γ so Aut(Γ0) = Aut Γ.
Suppose s > 0, and let φ ∈ Aut(Γs). As Γ and Γs have the same set of vertices, φ
is a bijection acting on the vertices of Γ. We show that φ preserves adjacencies and
non-adjacencies of vertices in Γ.

By Corollary 4.5 and Table 1, the only difference in adjacencies between vertices in
Γ and Γs are between a vertex of type (ii) and a vertex of type (iii). Let X, Y be
two vertices of Γ, there are two cases to consider. Firstly, if the pair X, Y consists
of one vertex of type (ii) and one vertex of type (iii), then X, Y are adjacent in Γ if
and only if X, Y are non-adjacent in Γs. Secondly, if the pair X, Y does not consist
of one vertex of type (ii) and one vertex of type (iii), then X, Y are adjacent in Γ
if and only if X, Y are adjacent in Γs. In either case, as φ preserves adjacency and
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non-adjacency in Γs, φ preserves the adjacency or non-adjacency of the vertex pair
X, Y in Γ. Hence φ ∈ Aut Γ as required. �

Proof of Theorem 7.1 By Lemma 7.5, Aut(Γs) ⊆ Aut Γ, and so (Aut(Γs))αs ⊆
(Aut Γ)αs . As s > 0, by Lemma 7.4, Aut(Γs) fixes the set of vertices of type (i), that
is (Aut(Γs))αs = Aut(Γs), hence Aut(Γs) ⊆ (Aut Γ)αs . By Lemma 7.4, (Aut Γ)αs ⊆
Aut(Γs), hence (Aut Γ)αs = Aut(Γs) as required. �

Finally we show that given a graph Γs, we can reconstruct the graph Γ and the
quadric Qn. If s = 0 then Γ = Γ0 by Theorem 6.1. So suppose 0 < s < g, and define
a graph Γ whose vertices are the vertices of Γs. The proof of Lemma 7.3 shows that
the number of maximal cliques through a vertex of Γs of type (i) is greater than the
number of maximal cliques through a vertex of type (ii), which is greater than the
number of maximal cliques through a vertex of type (iii). Hence we can partition
the vertices of Γs into their types by using the number of maximal cliques through
them. Define the edges of Γ to be the same as the edges of Γs, except swapping the
adjacencies between vertices of type (ii) and (iii). Then by Corollary 4.5, Γ is the
point-graph of the quadric Qn used to construct Γs. We can now reconstruct the
quadric Qn from Γ as follows. The maximal cliques of Γ are exactly the generators
of Qn in PG(n, 2). By intersecting the generators of Qn, we can recover firstly the
(g−1)-spaces of Qn, and so on, constructing the lattice of subspaces of the generators.
Hence we can construct the points of Qn, all the lines contained in Qn, the planes
contained in Qn, . . . , the g-spaces contained in Qn.

8 Conclusion

In summary, Table 4 lists the parameters of the strongly regular graphs arising from
the point-graph of each type of non-singular quadric. Further, we list the number
of new non-isomorphic graphs with these parameters arising from our construction
(that is, not including Γ0 = Γ).

Table 4: Parameters of the strongly regular graphs Γs, 0 ≤ s < g

quadric E2r+1, r ≥ 2 H2r+1, r ≥ 1 P2r, r ≥ 2
v 22r+1 − 2r − 1 22r+1 + 2r − 1 22r − 1
k 22r − 2r − 2 22r + 2r − 2 22r−1 − 2
λ 22r−1 − 2r − 3 22r−1 + 2r − 3 22r−2 − 3
µ 22r−1 − 2r−1 − 1 22r−1 + 2r−1 − 1 22r−2 − 1

number of new

non-isomorphic

graphs

r − 2 r − 1 r − 2
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