# On $k$-total edge product cordial graphs 

Jaroslav Ivančo<br>Institute of Mathematics<br>P. J. Šafárik University<br>Jesenná 5, 04154 Košice<br>Slovakia<br>jaroslav.ivanco@upjs.sk


#### Abstract

A $k$-total edge product cordial labeling is a variant of the well-known cordial labeling. In this paper we characterize graphs admitting a 2 total edge product cordial labeling. We also show that dense graphs and regular graphs of degree $2(k-1)$ admit a $k$-total edge product cordial labeling.


## 1 Introduction

We consider finite undirected graphs without loops, multiple edges and isolated vertices. If $G$ is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and edge set of $G$, respectively. Cardinalities of these sets are called the order and size of $G$. The sum of the order and size of $G$ is denoted by $\tau(G)$, i.e., $\tau(G)=|V(G)|+|E(G)|$. The subgraph of a graph $G$ induced by $A \subseteq E(G)$ is denoted by $G[A]$. The set of vertices of $G$ adjacent to a vertex $v \in V(G)$ is denoted by $N_{G}(v)$. For integers $p, q$ we denote by $[p, q]$ the set of all integers $z$ satisfying $p \leq z \leq q$.

Let $k$ be an integer greater than 1 . For a graph $G$, a mapping $\varphi: E(G) \rightarrow[0, k-1]$ induces a vertex mapping $\varphi^{*}: V(G) \rightarrow[0, k-1]$ defined by

$$
\varphi^{*}(v) \equiv \prod_{u \in N_{G}(v)} \varphi(v u) \quad(\bmod k) .
$$

Set $\mu_{\varphi}(i):=\left|\left\{v \in V(G): \varphi^{*}(v)=i\right\}\right|+|\{e \in E(G): \varphi(e)=i\}|$ for each $i \in[0, k-1]$. A mapping $\varphi: E(G) \rightarrow[0, k-1]$ is called a $k$-total edge product cordial (for short $k$-TEPC) labeling of $G$ if

$$
\left|\mu_{\varphi}(i)-\mu_{\varphi}(j)\right| \leq 1 \quad \text { for all } i, j \in[0, k-1] .
$$

A graph that admits a $k$-TEPC labeling is called a $k$-total edge product cordial ( $k$ TEPC) graph.

The following claim is evident.

Observation 1. A mapping $\varphi: E(G) \rightarrow[0, k-1]$ is a $k$-TEPC labeling of a graph $G$ if and only if

$$
\left\lfloor\frac{\tau(G)}{k}\right\rfloor \leq \mu_{\varphi}(i) \leq\left\lceil\frac{\tau(G)}{k}\right\rceil \quad \text { for each } i \in[0, k-1]
$$

A $k$-total edge product cordial labeling is a version of the well-known cordial labeling defined by Cahit [2]. Vaidya and Barasara [5] introduced the concept of a 2-TEPC labeling as the edge analogue of a total product cordial labeling. They called this labeling the total edge product cordial labeling. In [5, 6] they proved that cycles $C_{n}$ for $n \neq 4$, complete graphs $K_{n}$ for $n>2$, wheels, fans, double fans and some cycle related graphs are 2-TEPC. In $[7]$ they proved that any graph can be embedded as an induced subgraph of a 2-TEPC graph. The concept of $k$-TEPC graphs was defined by Azaizeh et al. in [1]. They proved that paths $P_{n}$ for $n \geq 4$, cycles $C_{n}$ for $3<n \neq 6$, some trees and some unicyclic graphs are 3-TEPC graphs. We refer the reader to [4] for comprehensive references.

In Section 2 we characterize 2-TEPC graphs. In Section 3 we prove that graphs with sufficiently large size and $2(k-1)$-regular graphs are $k$-TEPC.

## 2 2-TEPC graphs

For a graph $G$, denote by $O(G)$ the set of all integers $t$ such that there is a mapping $\varphi: E(G) \rightarrow[0,1]$ satisfying $\mu_{\varphi}(0)=t$.

As $\mu_{\varphi}(0)+\mu_{\varphi}(1)=\tau(G)$, by Observation 1, we immediately have
Observation 2. A graph $G$ is 2 -total edge product cordial if and only if

$$
\left\{\left\lfloor\frac{\tau(G)}{2}\right\rfloor,\left\lceil\frac{\tau(G)}{2}\right\rceil\right\} \cap O(G) \neq \emptyset .
$$

Lemma 1. An integer $t$ belongs to $O(G)$ if and only if there is a subset $A$ of $E(G)$ such that $\tau(G[A])=t$.
Proof. Suppose that $t \in O(G)$. Then there is a mapping $\varphi: E(G) \rightarrow[0,1]$ such that $\mu_{\varphi}(0)=t$. Set $A=\{e \in E(G): \varphi(e)=0\}$. As $\varphi^{*}(v)=0$ whenever $v$ is incident with an edge of $A, \mu_{\varphi}(0)=\tau(G[A])$.

On the other hand, let $A$ be a subset of $E(G)$. Consider the mapping $\psi: E(G) \rightarrow$ $[0,1]$ defined by

$$
\psi(e)= \begin{cases}0 & \text { when } \quad e \in A \\ 1 & \text { when } \quad e \notin A\end{cases}
$$

Clearly, $\mu_{\psi}(0)=\tau(G[A])$. Therefore, $\tau(G[A]) \in O(G)$.
Example 1. If $A \subseteq E\left(K_{3}\right)$ then

$$
\tau(G[A])= \begin{cases}0 & \text { when } A=\emptyset \\ 3 & \text { when }|A|=1 \\ 5 & \text { when }|A|=2 \\ 6 & \text { when }|A|=3\end{cases}
$$

Therefore, $O\left(K_{3}\right)=\{0,3,5,6\}$.
Example 2. If $A \subseteq E\left(K_{1, n}\right)$ then

$$
\tau(G[A])= \begin{cases}0 & \text { when } A=\emptyset \\ 2|A|+1 & \text { when } A \neq \emptyset\end{cases}
$$

Thus, $O\left(K_{1, n}\right)=\{0,3,5, \ldots, 2 n+1\}$.
Lemma 2. Let $G$ be a connected graph different from $K_{3}$ and $K_{1, n}$. Then

$$
O(G)=[0, \tau(G)]-\{1,2,4\} .
$$

Proof. Evidently, $\tau(H) \notin\{1,2,4\}$ for any graph $H$ without isolated vertices. Thus, according to Lemma $1, O(G) \cap\{1,2,4\}=\emptyset$.

On the other hand, denote by $p(q)$ the order (size) of $G$. As $G$ is different from $K_{3}$ and $K_{1, n}$, it contains a path $P$ of length 3 . Denote by $e_{1}, e_{2}, e_{3}$ the edges of $P$ in such a way that $e_{1}$ and $e_{3}$ are independent edges of $P$. Clearly, $e_{1}$ and $e_{3}$ are independent edges of $G$. Moreover, there is a spanning tree $T$ of $G$ which contains $P$. Denote by $e_{4}, \ldots, e_{p-1}($ if $p>4)$ the edges of $E(T)-\left\{e_{1}, e_{2}, e_{3}\right\}$ in such a way that the subgraph of $G$ induced by $\left\{e_{1}, \ldots, e_{j}\right\}$ is a connected graph for each $j \in[1, p-1]$. The other edges of $G$ denote by $e_{p}, \ldots, e_{q}$ (if $q \geq p$ ).

Suppose that $t \in[0, \tau(G)]-\{1,2,4\}$. According to Lemma 1, it is enough to find a set $A \subseteq E(G)$ such that $\tau(G[A])=t$. Consider the following cases.
A. $t=0$. Set $A=\emptyset$. Evidently, $\tau(G[A])=0=t$ in this case.
B. $1 \leq t \leq 2 p-1$ and $t \equiv 1(\bmod 2)$. Then there is a positive integer $s$ such that $t=2 s+1$ (clearly, $s \leq p-1$ ). Set $A=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$. The graph $G[A]$ is connected and it is a subgraph of $T$. Thus, it is a tree and so $|E(G[A])|=s,|V(G[A])|=s+1$, i.e., $\tau(G[A])=t$.
C. $1<t<2 p-1$ and $t \equiv 0(\bmod 2)$. Then there is a positive integer $s$ such that $t=2 s+2$ (clearly, $2 \leq s<p-1$ in this case). Set $A=\left\{e_{1}, e_{3}, e_{4}, \ldots, e_{s+1}\right\}$. The graph which we obtain from $G[A]$ by adding the edge $e_{2}$ is a tree. Therefore, $G[A]$ is a forest with two connected components and so $|E(G[A])|=s,|V(G[A])|=s+2$, i.e., $\tau(G[A])=t$.
D. $t \geq 2 p$. Then there is a positive integer $s$ such that $t=s+p(s \geq p$ in this case). Set $A=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$. The graph $G[A]$ is a connected spanning subgraph of $G$. Thus, $|E(G[A])|=s,|V(G[A])|=p$, i.e., $\tau(G[A])=t$.

The union of two disjoint graphs $G$ and $H$ is denoted by $G \cup H$ and the union of $m \geq 1$ disjoint copies of a graph $G$ is denoted by $m G$.

If $A$ is a subset of $E(G \cup H)$ then $A=(A \cap E(G)) \cup(A \cap E(H))$. Thus, according to Lemma 1, we have

Observation 3. If $G$ and $H$ are disjoint graphs then

$$
O(G \cup H)=\{t+l: t \in O(G), l \in O(H)\}
$$

Lemma 3. Let $G_{1}$ and $G_{2}$ be disjoint 2-TEPC graphs. If $\tau\left(G_{1}\right)$ is even then $G_{1} \cup G_{2}$ is also a 2-TEPC graph.
Proof. The graphs $G_{1}$ and $G_{2}$ are both 2-TEPC. Then there are sets $A_{1} \subset E\left(G_{1}\right)$, $A_{2} \subset E\left(G_{2}\right)$ such that $\tau\left(G_{1}\left[A_{1}\right]\right)=\tau\left(G_{1}\right) / 2\left(\tau\left(G_{1}\right)\right.$ is even $)$ and $\tau\left(G_{2}\left[A_{2}\right]\right) \in$ $\left\{\left\lfloor\tau\left(G_{2}\right) / 2\right\rfloor,\left\lceil\tau\left(G_{2}\right) / 2\right\rceil\right\}$. For $A=A_{1} \cup A_{2}$ we have

$$
\begin{aligned}
\tau(G[A]) & =\tau\left(G\left[A_{1}\right]\right)+\tau\left(G\left[A_{2}\right]\right)=\tau\left(G_{1}\left[A_{1}\right]\right)+\tau\left(G_{2}\left[A_{2}\right]\right) \\
& \in\left\{\tau\left(G_{1}\right) / 2+\left\lfloor\tau\left(G_{2}\right) / 2\right\rfloor, \tau\left(G_{1}\right) / 2+\left\lceil\tau\left(G_{2}\right) / 2\right\rceil\right\} \\
& =\{\lfloor\tau(G) / 2\rfloor,\lceil\tau(G) / 2\rceil\},
\end{aligned}
$$

i.e., $G$ is a 2 -TEPC graph.

Lemma 4. Let $G$ be a graph and let $t \in[0, \tau(G)]$. Then there is a set $A \subseteq E(G)$ such that $|t-\tau(G[A])| \leq 1$.

Proof. If $G$ is a connected graph then the assertion follows from Example 1, Example 2 and Lemma 2.

Suppose that $G=G_{1} \cup \cdots \cup G_{c}$, where $G_{i}, i \in[1, c]$, is a connected component of $G$. For every $j \in[0, c]$ define the set $A_{j}$ and the integer $r_{j}$ by $A_{0}=\emptyset, r_{0}=0$, $A_{j}=A_{j-1} \cup E\left(G_{j}\right)$ and $r_{j}=r_{j-1}+\tau\left(G_{j}\right)$. As $t \leq \tau(G)=r_{c}$, there is an integer $i \in[1, c]$ such that $t \in\left[r_{i-1}, r_{i}\right]$. Set $t^{*}=t-r_{i-1}$. Clearly, $t^{*} \in\left[0, \tau\left(G_{i}\right)\right]$. The graph $G_{i}$ is connected and so there is a set $A^{*} \subseteq E\left(G_{i}\right)$ such that $\left|t^{*}-\tau\left(G\left[A^{*}\right]\right)\right| \leq 1$. Then, the set $A=A_{i-1} \cup A^{*}$ satisfies

$$
|t-\tau(G[A])|=\left|\left(r_{i-1}+t^{*}\right)-\left(\tau\left(G\left[A_{i-1}\right]\right)+\tau\left(G\left[A^{*}\right]\right)\right)=\left|t^{*}-\tau\left(G\left[A^{*}\right]\right)\right| \leq 1\right.
$$

because $\tau\left(G\left[A_{i-1}\right]\right)=r_{i-1}$.
Lemma 5. Let $G$ be a graph whose each component is a star. If $G$ is neither $n K_{2}$ nor $K_{1,2} \cup n K_{2}$, for an odd integer $n$, then it is a 2-TEPC graph.

Proof. Suppose that $G$ is a counterexample with a minimum number $c$ of connected components. Then $G=K_{1, t_{1}} \cup \cdots \cup K_{1, t_{c}}$, where $t_{1} \geq \cdots \geq t_{c} \geq 1$.

If $c=1$ then $G=K_{1, t_{1}}$ for $t_{1} \geq 2$, because $G$ is not $1 K_{2}=K_{1,1}$. Clearly, $\tau(G)=2 t_{1}+1$. Let $A$ be a subset of $E(G)$ such that $|A|=\left\lfloor t_{1} / 2\right\rfloor$. Thereout $\tau(G[A])=t_{1}+1=\lceil\tau(G) / 2\rceil$, for $t_{1}$ even, and $\tau(G[A])=t_{1}=\lfloor\tau(G) / 2\rfloor$, for $t_{1}$ odd. According to Lemma 1 and Observation 2, $G$ is a 2-TEPC graph, a contradiction.

If $c=2$ then $\tau(G)=2\left(t_{1}+t_{2}+1\right) \neq 8$, because $G$ is different from $K_{1,2} \cup 1 K_{2}=$ $K_{1,2} \cup K_{1,1}$. If $t_{1}+t_{2}$ is even then choose $A \subset E\left(K_{1, t_{1}}\right)$ such that $|A|=\left(t_{1}+t_{2}\right) / 2$. Thereout $\tau(G[A])=t_{1}+t_{2}+1=\tau(G) / 2$ and by Lemma 1 and Observation $2, G$ is a 2TEPC graph, a contradiction. If $t_{1}+t_{2}$ is odd then $t_{1}+t_{2} \geq 5$ and there are sets $A_{1} \subset$ $E\left(K_{1, t_{1}}\right), A_{2} \subset E\left(K_{1, t_{2}}\right)$ such that $\left|A_{1}\right| \geq\left|A_{2}\right| \geq 1$ and $\left|A_{1}\right|+\left|A_{2}\right|=\left(t_{1}+t_{2}-1\right) / 2$. For $A=A_{1} \cup A_{2}$ we have $\tau(G[A])=\tau\left(G\left[A_{1}\right]\right)+\tau\left(G\left[A_{2}\right]\right)=t_{1}+t_{2}+1=\tau(G) / 2$. Therefore, $G$ is a 2 -TEPC graph, a contradiction.

Thus, $c \geq 3$. If $t_{c-1}=1$ then set $G_{1}=K_{1, t_{c-1}} \cup K_{1, t_{c}}=2 K_{2}$ and $G_{2}=$ $K_{1, t_{1}} \cup \cdots \cup K_{1, t_{c-2}}$. As $G_{1}$ and $G_{2}$ have both less components than $c$, they are 2-TEPC. Moreover, $\tau\left(G_{1}\right)=6$ is even. By Lemma 3, $G$ is a 2-TEPC graph, a contradiction.

Therefore, $t_{c-1} \geq 2$. If $t_{1} \geq 3$ then set $G_{1}=K_{1, t_{1}} \cup K_{1, t_{c}}$ and $G_{2}=K_{1, t_{2}} \cup \cdots \cup$ $K_{1, t_{c-1}}$. They have both less components than $c$ and $\tau\left(G_{1}\right)$ is even. According to Lemma $3, G$ is a 2 -TEPC graph, a contradiction.

So, $t_{1}=\cdots=t_{c-1}=2$. Set $G_{1}=K_{1, t_{1}} \cup K_{1, t_{2}}=2 K_{1,2}$ and $G_{2}=K_{1, t_{3}} \cup \cdots \cup K_{1, t_{c}}$. The graph $G_{1}$ is 2 -TEPC and $\tau\left(G_{1}\right)$ is even. If $G_{2}$ is a 2 -TEPC graph then, by Lemma 3, $G$ is also 2-TEPC, a contradiction. Therefore, $G_{2}$ is either $K_{2}$ or $K_{1,2} \cup K_{2}$. Consequently, $G$ is either $2 K_{1,2} \cup K_{2}$ or $3 K_{1,2} \cup K_{2}$. It is easy to see that both of them are 2-TEPC graphs. This means that there is no counterexample.

Theorem 1. A simple graph with no isolated vertex is 2-TEPC if and only if it is neither of the following graphs:
(i) an unicyclic graph of order 4,
(ii) $K_{3} \cup K_{1,2} \cup K_{2}$,
(iii) $n K_{2}$, for an odd integer $n$,
(iv) $K_{1,2} \cup n K_{2}$, for an odd integer $n$.

Proof. Let $G$ be a graph. Consider the following cases.
A. $\tau(G)=3$. Then $G=K_{2}=K_{1,1}$, i.e., a graph of type (iii). According to Example 2, $\{1,2\} \cap O(G)=\emptyset$. By Observation 2, $G$ is not 2-TEPC.
B. $5 \leq \tau(G) \leq 7$. Let $A$ be a subset of $E(G)$ such that $|A|=1$. As $\tau(G[A])=$ $3 \in\{\lfloor\tau(G) / 2\rfloor,\lceil\tau(G) / 2\rceil\}$, by Observation $2, G$ is 2-TEPC.
C. $\tau(G)=8$. As $\tau(G) / 2=4$ and $\tau(H) \neq 4$ for any graph $H$ without isolated vertices, the graph $G$ is not 2-TEPC. However, $G$ is either an unicyclic graph (type (i)) or $K_{1,2} \cup K_{2}$ (type (iv)) in this case.
D. $\tau(G) \geq 9$ and every component of $G$ is either a star or $K_{3}$. Consider the following subcases.

D1. Every component of $G$ is a star. By Lemma $5, G$ is a 2-TEPC graph except for $G$ is either $n K_{2}$ or $K_{1,2} \cup n K_{2}$, for an odd integer $n$.

If $G=n K_{2}$, for odd $n$, then $\tau(G)=3 n$. As $n$ is odd, $\lfloor\tau(G) / 2\rfloor \equiv 1(\bmod 3)$ and $\lceil\tau(G) / 2\rceil \equiv 2(\bmod 3)$. However, $\tau(G[A])=3|A| \equiv 0(\bmod 3)$ for any set $A \subset E(G)$. Therefore, $G$ is not a 2-TEPC graph in this case.

If $G=K_{1,2} \cup n K_{2}$, for an odd integer $n$, then $\tau(G)=3 n+5$ and $\tau(G) / 2=$ $3(n+1) / 2+1 \equiv 1(\bmod 3)$. However, $\tau(G[A])=3|A| \equiv 0(\bmod 3)$ for any set $A \subset E(G)$ containing at most one edge of $K_{1,2}$ and $\tau(G[A])=3|A|-1 \equiv 2(\bmod 3)$ for any set $A \subset E(G)$ containing both edges of $K_{1,2}$. Therefore, $G$ is not a 2-TEPC graph.

D2. Every component of $G$ is $K_{3}$. Thus, $G=r K_{3}$. Let $A$ be a subset of $E(G)$ such that $A$ contains exactly one edge of each its component. Clearly, $|A|=r$. As $\tau(G[A])=3 r=\tau(G) / 2$, by Observation 2, $G$ is 2-TEPC.

D3. $G=r K_{3} \cup S$, where $r \geq 1$ and every component of $S$ is a star.
If $S$ is a 2 -TEPC graph then, by Lemma $3, G$ is also a 2 -TEPC graph.
If $S=n K_{2}$, for odd $n$, then $\tau(G)=6 r+3 n$. As $n$ is an odd integer, $\lceil\tau(G) / 2\rceil=$ $3 r+2+3(n-1) / 2$. Let $A_{1}$ be a subset of $E\left(r K_{3}\right)$ such that $A_{1}$ contains at least
one edge of each component of $r K_{3}$ and $\left|A_{1}\right|=1+r$. Similarly, let $A_{2}$ be a subset of $E(S)$ such that $\left|A_{2}\right|=(n-1) / 2$. For $A=A_{1} \cup A_{2}$ we have $\tau(G[A])=\tau\left(r K_{3}\left[A_{1}\right]\right)+$ $\tau\left(S\left[A_{2}\right]\right)=3 r+2+3(n-1) / 2$. Therefore, $G$ is a 2 -TEPC graph.

If $S=K_{1,2} \cup n K_{2}$, for an odd integer $n$, then $\tau(G)=6 r+5+3 n$. As $n$ is odd, $\tau(G) / 2=3 r+4+3(n-1) / 2$. Set $G^{*}=G-K_{1,2}\left(i . e ., G^{*}=r K_{3} \cup n K_{2}\right)$. In the same way as above we choose a set $A^{*} \subset E\left(G^{*}\right)$ such that $\tau\left(G^{*}\left[A^{*}\right]\right)=3 r+2+3(n-1) / 2$. If $G\left[A^{*}\right]$ contains an isolated edge $e \in A^{*}$ then for $A=\left(A^{*}-e\right) \cup E\left(K_{1,2}\right)$ we have

$$
\tau(G[A])=\tau\left(G^{*}\left[A^{*}\right]\right)-3+5=\tau(G) / 2,
$$

therefore, $G$ is a 2-TEPC graph. $G\left[A^{*}\right]$ contains no isolated edge when $r=1$ and $n=1$. In this case $G=K_{3} \cup K_{1,2} \cup K_{2}$, i.e., a graph of type (ii). It is easy to see that $7 \notin O(G)$. According to Observation 2, $G$ is not 2-TEPC.
E. $\tau(G) \geq 9$ and $G$ contains a component $C$ different from $K_{3}$ and a star. Note that $\tau(C) \geq 7$.

If $G$ is connected (i.e., $G=C$ ) then $\lceil\tau(G) / 2\rceil \geq 5$. By Lemma $2,\lceil\tau(G) / 2\rceil \in$ $O(G)$. Thus, $G$ is a 2-TEPC graph.

If $C \neq G$ then set $H=G-C$ (i.e., $G=C \cup H$ ). If $\tau(C) \geq \tau(H)$ then $5 \leq\lceil\tau(G) / 2\rceil=\lceil(\tau(C)+\tau(H)) / 2\rceil \leq \tau(C)$. According to Lemma $2,\lceil\tau(G) / 2\rceil \in$ $O(C) \subset O(G)$, i.e., $G$ is a 2-TEPC graph. If $\tau(C)<\tau(H)$ then set $t=\lceil\tau(G) / 2\rceil-6$. As $\tau(H)>\tau(C) \geq 7, t \in[0, \tau(H)]$. By Lemma 4, there is a set $A_{H} \subset E(H)$ such that $\left|t-\tau\left(H\left[A_{H}\right]\right)\right| \leq 1$. Similarly, by Lemma 2 , there is a set $A_{C} \in E(C)$ such that

$$
\tau\left(C\left[A_{C}\right]\right)= \begin{cases}5 & \text { when } t-\tau\left(H\left[A_{H}\right]\right)=-1 \\ 6 & \text { when } t-\tau\left(H\left[A_{H}\right]\right)=0 \\ 7 & \text { when } t-\tau\left(H\left[A_{H}\right]\right)=1\end{cases}
$$

For $A=A_{C} \cup A_{H}$ we have $\tau(G[A])=\tau\left(C\left[A_{C}\right]\right)+\tau\left(H\left[A_{H}\right]\right)=\lceil\tau(G) / 2\rceil$. Therefore, $G$ is a 2 -TEPC graph

## 3 Dense graphs

A matching in a graph is a set of pairwise nonadjacent edges. A matching is perfect if every vertex of the graph is incident with exactly one edge of the matching. A maximum matching is a matching that contains the largest possible number of edges. The number of edges in a maximum matching of a graph $G$ is denoted by $\alpha(G)$. An edge cover of a graph $G$ is a subset $A$ of $E(G)$ such that every vertex of $G$ is incident with an edge in $A$. The smallest number of edges in any edge cover of $G$ is denoted by $\rho(G)$. Note that only graphs with no isolated vertices have an edge cover. For such graphs Gallai [3] proved that $\alpha(G)+\rho(G)=|V(G)|$.

Theorem 2. Let $k$ be an integer greater than 1 and let $G$ be a simple graph with no isolated vertex. If $|E(G)|>(2 k-1)|V(G)|-k(\alpha(G)+1)$ then $G$ is a $k$-total edge product cordial graph.

Proof. For $G$ we have

$$
\tau(G)=|V(G)|+|E(G)|>k(2|V(G)|-\alpha(G)-1)=k(|V(G)|+\rho(G)-1)
$$

Therefore, $\lceil\tau(G) / k\rceil \geq|V(G)|+\rho(G)$. Thus, there exists an edge cover $A_{0} \subset E(G)$ such that $\left|A_{0}\right|=\lceil\tau(G) / k\rceil-|V(G)|$. Then

$$
\left|E(G)-A_{0}\right|=\tau(G)-\left(|V(G)|+\left|A_{0}\right|\right)=\tau(G)-\lceil\tau(G) / k\rceil
$$

and there is a partition $A_{1}, \ldots, A_{k-1}$ of $E(G)-A_{0}$ such that

$$
\lceil\tau(G) / k\rceil \geq\left|A_{1}\right| \geq \cdots \geq\left|A_{k-1}\right| \geq\lfloor\tau(G) / k\rfloor
$$

Now consider the mapping $\varphi: E(G) \rightarrow[0, k-1]$ given by

$$
\varphi(e)=i \text { when } e \in A_{i} .
$$

As every vertex of $G$ is incident with an edge in $A_{0}, \varphi^{*}(v)=0$ for each $v \in V(G)$. So, $\mu_{\varphi}(0)=|V(G)|+\left|A_{0}\right|=\lceil\tau(G) / k\rceil$. Similarly, for $i \in[1, k-1], \mu_{\varphi}(i)=\left|A_{i}\right| \in$ $\{\lfloor\tau(G) / k\rfloor,\lceil\tau(G) / k\rceil\}$. According to Observation 1, the mapping $\varphi$ is a $k$-TEPC labeling of $G$.

We consider only graphs without isolated vertices. So $\alpha(G) \geq 1$ and we have immediately:

Corollary 1. Let $G$ be a graph of size at least $(2 k-1)(|V(G)|-1)$. Then $G$ is a $k$-TEPC graph.

For a composite number $k$ we are able to prove a stronger result. First we prove the following auxiliary assertion.

Lemma 6. Let $G$ be a connected graph with minimum degree $\delta(G) \geq 2$ which is different from an odd cycle. Then $G$ contains two disjoint edge covers where each of them has size at most $|V(G)|-1$.
Proof. If $A$ is an edge cover of $G$ and $G[A]$ contains a cycle then the set which we get from $A$ by deleting an edge of the cycle is also an edge cover. Thus, any edge cover contains a subset $A^{\prime}$ which is also an edge cover and $G\left[A^{\prime}\right]$ is acyclic, i.e., $\left|A^{\prime}\right| \leq|V(G)|-1$. Therefore, it is sufficient to find two disjoint edge covers.

If $G$ is a regular graph of degree 2 then it is an even cycle. Two perfect matchings of $G$ are desired edge covers in this case.

If the maximum degree of $G$ is at least 3 then choose a vertex $v \in V(G)$ of maximum degree. Suppose that $G$ has $2 s$ vertices of odd degree. Let $G^{*}$ be a graph which we get from $G$ by adding $s$ new pairwise nonadjacent edges joining vertices of odd degree $\left(G^{*}=G\right.$ when $\left.s=0\right)$. Clearly, $G^{*}$ is an Eulerian graph. Therefore, there is an ordering $e_{1}, e_{2}, \ldots e_{q}$ of $E\left(G^{*}\right)$ which forms an Eulerian trail of $G^{*}$ starting (and finishing) at $v$. Moreover, we can assume that $e_{1}$ is an adding (new) edge when $v$ is of odd degree in $G$. For $p \in\{0,1\}$, set $A_{p}:=\left\{e_{i} \in E(G): i \equiv p(\bmod 2)\right\}$. Evidently, $A_{0} \cap A_{1}=\emptyset$. Also, any vertex of $G$ is incident with two consecutive edges (belonging to $E(G)$ ) of the Eulerian trail. One of the consecutive edges belongs to $A_{0}$, the other to $A_{1}$. Thus, $A_{0}$ and $A_{1}$ are desired edge covers.

Theorem 3. Let $k$ be a composite number greater than 4. Let $G$ be a graph of minimum degree $\delta(G) \geq 2$. If $|E(G)| \geq(k-1)(|V(G)|-1)$ then $G$ is a $k$-total edge product cordial graph.

Proof. As $k>4$ is a composite number, there are integers $p, q$ such that $k>p>$ $q>1$ and $p q \equiv 0(\bmod k)$.

Let $G_{1}, \ldots, G_{c}$ be connected components of $G$. For all $i \in[0, c]$ and $s \in[1,3]$, define the set $B_{i}^{s}$ recursively in the following way.

Set $B_{0}^{s}=\emptyset$, for all $s \in[1,3]$.
If $G_{i}$ is an odd cycle then we choose its edge $e_{i}$. The set $E\left(G_{i}\right)-\left\{e_{i}\right\}$ can be partitioned into disjoint matchings $M_{i}^{2}$ and $M_{i}^{3}$ of $G_{i}$, where $\left|M_{i}^{2}\right|=\left|M_{i}^{3}\right|=$ $\left(\left|V\left(G_{i}\right)\right|-1\right) / 2$. Set $B_{i}^{1}=B_{i-1}^{1} \cup\left\{e_{i}\right\}, B_{i}^{2}=B_{i-1}^{2} \cup M_{i}^{2}$, and $B_{i}^{3}=B_{i-1}^{3} \cup M_{i}^{3}$.

If $G_{i}$ is not an odd cycle then, by Lemma 6 , there are disjoint edge covers $C_{i}^{2}$ and $C_{i}^{3}$ of $G_{i}$, where $\left|C_{i}^{2}\right| \leq\left|C_{i}^{3}\right| \leq\left|V\left(G_{i}\right)\right|-1$. Set $B_{i}^{1}=B_{i-1}^{1}, B_{i}^{2}=B_{i-1}^{2} \cup C_{i}^{2}$, and $B_{i}^{3}=B_{i-1}^{3} \cup C_{i}^{3}$.

Clearly, the sets $B_{c}^{1}, B_{c}^{2}, B_{c}^{3}$ are disjoint subsets of $E(G),\left|B_{c}^{1}\right|=r$ where $r$ denote the number of components of $G$ isomorphic to an odd cycle, $\left|B_{c}^{2}\right| \leq|V(G)|-c-r$ and similarly $\left|B_{c}^{3}\right| \leq|V(G)|-c-r$.

Let $t_{0}, \ldots, t_{k-1}$ be integers such that

$$
\lceil\tau(G) / k\rceil \geq t_{0} \geq \cdots \geq t_{k-1} \geq\lfloor\tau(G) / k\rfloor \quad \text { and } \quad t_{0}+\cdots+t_{k-1}=\tau(G)
$$

Evidently, $t_{j} \in\{\lfloor\tau(G) / k\rfloor,\lceil\tau(G) / k\rceil\}$ for each $j \in[0, k-1]$.
For $G$ we have

$$
\begin{aligned}
\tau(G)=|V(G)|+|E(G)| & \geq|V(G)|+(k-1)(|V(G)|-1) \\
& =k|V(G)|-k+1>k(|V(G)|-1)
\end{aligned}
$$

Therefore, $\lceil\tau(G) / k\rceil \geq|V(G)|$. Thus, there is a partition $A_{0}, \ldots, A_{k-1}$ of $E(G)$ satisfying
(i) $\left|A_{0}\right|=t_{0}-|V(G)|+2 r$,
(ii) $B_{c}^{1} \subset A_{1}$ and $\left|A_{1}\right|=t_{1}$,
(iii) $B_{c}^{2} \subset A_{p}$ and $\left|A_{p}\right|=t_{p}-r$,
(iv) $B_{c}^{3} \subset A_{q}$ and $\left|A_{q}\right|=t_{q}-r$,
(v) $\left|A_{j}\right|=t_{j}$ for $j \in[2, k-1]-\{p, q\}$.

Now consider the mapping $\varphi: E(G) \rightarrow[0, k-1]$ given by

$$
\varphi(e)=j \text { when } e \in A_{j} .
$$

If a vertex $v$ is incident with a chosen edge $e_{i}$ then $\operatorname{deg}(v)=2$ and it is also incident with the second edge $e^{\prime}$ where $\varphi\left(e_{i}\right)=1$ and $\varphi\left(e^{\prime}\right)$ is equal to either $p$ or $q$. Therefore, $\varphi^{*}(v) \in\{p, q\}$. Moreover, if $v$ and $v^{\prime}$ are incident with $e_{i}$ then $\left\{\varphi^{*}(v), \varphi^{*}\left(v^{\prime}\right)\right\}=$ $\{p, q\}$. If $u \in V(G)$ is not incident with any chosen edge then it is incident with
an edge belonging to $B_{c}^{2}$ and another belonging to $B_{c}^{3}$. As the values of these edges are $p$ and $q($ and $p q \equiv 0(\bmod k)), \varphi^{*}(u)=0$. Since there are precisely $r$ chosen edges, we have: $\mu_{\varphi}(0)=\left|A_{0}\right|+|V(G)|-2 r=t_{0}, \mu_{\varphi}(p)=\left|A_{p}\right|+r=t_{p}, \mu_{\varphi}(q)=\left|A_{q}\right|+r=t_{q}$ and similarly $\mu_{\varphi}(j)=\left|A_{j}\right|=t_{j}$ for all $j \in[1, k-1]-\{p, q\}$. This means that $\varphi$ is a $k$-TEPC labeling of $G$.

We are able to prove a similar result also for $k=4$.
Theorem 4. Let $G$ be a graph with a 2-factor. If $|E(G)|>3(|V(G)|-1)$ then $G$ is a 4-total edge product cordial graph.

Proof. A 2-factor of a graph $G$ denote by $F$. For $G$ we have

$$
\begin{aligned}
\tau(G)=|V(G)|+|E(G)| & \geq|V(G)|+3(|V(G)|-1)+1 \\
& =4(|V(G)|-1)+2
\end{aligned}
$$

Therefore, $\lceil\tau(G) / 4\rceil \geq|V(G)|$ and there is a partition $A_{0}, \ldots, A_{3}$ of $E(G)$ satisfying
(i) $\left|A_{0}\right|=\lceil\tau(G) / 4\rceil-|V(G)|$,
(ii) $E(F) \subset A_{2}$ and $\left|A_{2}\right| \geq|V(G)|$,
(iii) $\lceil\tau(G) / 4\rceil \geq\left|A_{2}\right| \geq\left|A_{1}\right| \geq\left|A_{3}\right| \geq\lfloor\tau(G) / 4\rfloor$.

Now consider the mapping $\psi: E(G) \rightarrow[0,3]$ given by

$$
\psi(e)=j \text { when } e \in A_{j} .
$$

As every vertex $v \in V(G)$ is incident with two edges belonging to $F \subset A_{2}$, we have: $\psi^{*}(v)=0$ and consequently $\mu_{\psi}(0)=|V(G)|+\left|A_{0}\right|=\lceil\tau(G) / 4\rceil$. Similarly, for each $i \in[1,3]$ we have: $\mu_{\psi}(i)=\left|A_{i}\right| \in\{\lfloor\tau(G) / 4\rfloor,\lceil\tau(G) / 4\rceil\}$. Thus, $\psi$ is a 4-TEPC labeling.

We conclude this paper with the following result.
Theorem 5. Let $k$ be an integer greater than 2. Then any regular graph of degree $2(k-1)$ is a $k$-total edge product cordial graph.

Proof. As $G$ is a regular graph of degree $2(k-1)$, it is decomposable into $k-1$ edge-disjoint 2-factors $F_{1}, \ldots, F_{k-1}$. Moreover, $|V(G)| \geq 2 k-1$ and $|E(G)|=$ $(k-1)|V(G)|$. According to Theorems 3 and 4, the assertion is true for any composite number $k$.

Suppose that $k \geq 3$ is a prime number. $F_{1}$ is a 2 -regular graph of order at least 5 and, by Theorem 1, it is a 2 -TEPC graph. Therefore, there is a 2 -TEPC labeling $\eta: E\left(F_{1}\right) \rightarrow[0,1]$. Clearly, $\mu_{\eta}(0)=\mu_{\eta}(1)=\left|E\left(F_{1}\right)\right|=|V(G)|$. Now consider the mapping $\varphi: E(G) \rightarrow[0, k-1]$ given by

$$
\varphi(e)= \begin{cases}\eta(e) & \text { when } \quad e \in E\left(F_{1}\right), \\ j & \text { when } \quad e \in E\left(F_{j}\right), j \in[2, k-1]\end{cases}
$$

As each vertex $v \in V(G)$ is incident with precisely two edges belonging to $F_{j}, j \in$ [ $1, k-1$ ], we have:

$$
\varphi^{*}(v) \equiv \eta^{*}(v) \cdot\left(\prod_{j=2}^{k-1} j^{2}\right) \equiv \eta^{*}(v) \quad(\bmod k)
$$

Therefore, $\mu_{\varphi}(0)=\mu_{\eta}(0)=|V(G)|=\mu_{\eta}(1)=\mu_{\varphi}(1)$ and similarly for all $j \in[2, k-1]$ we have: $\mu_{\varphi}(j)=\left|E\left(F_{j}\right)\right|=|V(G)|$. So, $\varphi$ is a $k$-total edge product cordial labeling of $G$.

## Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0116 and by the Slovak VEGA Grant 1/0368/16.

## References

[1] A. Azaizeh, R. Hasni, A. Ahmad and G-C. Lau, 3-total edge product cordial labeling of graphs, Far East J. Math. Sci. 96 (2015), 193-209.
[2] I. Cahit, Cordial Graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987), 201-207.
[3] T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 2 (1959), 133-138.
[4] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2016), \#DS6.
[5] S. K. Vaidya and C. M. Barasara, Total edge product cordial labeling of graphs, Malaya J. Mathematik 3(1) (2013), 55-63.
[6] S. K. Vaidya and C. M. Barasara, On total edge product cordial labeling, Int. J. Math. Scientific Comput. 3(2) (2013), 12-16.
[7] S. K. Vaidya and C. M. Barasara, On embedding and NP-complete problems of equitable labelings, IOSR J. Math. 11 (2015), 80-85.

