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Abstract

All known direct constructions of designs over finite fields arise by sub-
groups of the normalizer of a Singer cycle, by lifted special linear groups,
or lifted general linear groups. Other types of non-trivial automorphism
groups for which designs over finite fields do exist have not been men-
tioned so far. In this paper we construct the first non-trivial designs over
finite fields admitting the lifted complete monomial group as group of
automorphisms.

1 Introduction

In the following let V denote an n-dimensional vector space over the finite field Fq

with q elements. A t-(n, k, λ; q) design, also called t-(n, k, λ) design over Fq, is a set
B of k-dimensional subspaces, called blocks, of V if each t-dimensional subspace of
V is contained in exactly λ members of B.

More formally, if
[
V
k

]
denotes the set of k-dimensional subspaces of V the set B

is a t-(n, k, λ; q) design if

B ⊆
[
V

k

]
and for all T ∈

[
V

t

]
: |{K ∈ B | T ⊆ K}| = λ.

Since Thomas [15] described the first non-trivial construction of t-designs over Fq

with t > 1 in 1987, a family of 2-(n, 3, 7; 2) designs with n ≡ ±1 mod 6, only a few
explicit constructions have been published. All these constructed designs over finite
fields [1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14] admit

• non-trivial subgroups of the normalizer of a Singer cycle,

• the lifted special linear group, or

• the lifted general linear group.
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In [6, 9] some of these designs were used as base for recursive constructions but au-
tomorphism groups of the resulting designs over finite fields have not been discussed.

In this paper we show that further subgroups can occur as groups of automor-
phisms. We show the following result.

Theorem 1. There exist t-(n, k, λ; q) designs for t > 1 admitting the lifted complete
monomial group as group of automorphisms.

2 Automorphisms

By the fundamental theorem of projective geometry the automorphism group of the
lattice of subspaces of V is the projective semilinear group PΓL(V ) for dimensions
n = dim(V ) ≥ 3. Any mapping α ∈ PΓL(V ) is called an automorphism of a
t-(n, k, λ; q) design B if the blocks are mapped onto blocks of B again, i.e.

α(B) := {α(K) | K ∈ B} = B.
The set of all automorphisms of B forms a subgroup of PΓL(V ) which is called the
automorphism group of B. It is denoted by Aut(B). Any subgroup G ≤ Aut(B) is
called a group of automorphisms of B.

Let G ≤ PΓL(V ). The orbit of G of a k-dimensional K ∈ [
V
k

]
is denoted by

G(K) := {α(K) | α ∈ G}
and the set of all orbits of G on the set of k-dimensional subspaces of V is indicated
by

G\\
[
V

k

]
:=

{
G(K) | K ∈

[
V

k

]}
.

Any t-(n, k, λ; q) design B admits G ≤ PΓL(V ) as a group of automorphisms if
it consists of orbits of G\\[V

k

]
.

To obtain an appropriate selection of orbits of G on
[
V
k

]
we consider the incidence

matrix AG
t,k whose rows are indexed by the G-orbits on the set of t-subspaces of V

and whose columns are indexed by the orbits on k-subspaces. The entry of AG
t,k

corresponding to the orbits G(T ) and G(K) is defined by

aGT,K := |{K ′ ∈ G(K) | T ⊆ K ′}|.
The following result is by Kramer and Mesner [10].

Theorem 2. There exists a t-(n, k, λ; q) design admitting the group G ≤ PΓL(V ) as
group of automorphisms if there is a 0-1-vector x satisfying

AG
t,kx =

⎡
⎢⎣

λ
...
λ

⎤
⎥⎦ .

The 0-1-vector x stands for the selection of G-orbits on
[
V
k

]
whose union form the

corresponding t-(n, k, λ; q) design.
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3 Lifting the complete monomial group

The complete monomial group M(n, q) consists of all n × n matrices over Fq con-
taining exactly one nonzero entry in each row and in each column. In fact M(n, q)
is isomorphic to the wreath product Sn �n F∗

q where Sn denotes the symmetric group
on n elements and it has the order n!(q − 1)n.

Let 〈qi | 0 ≤ i < �〉 denote the standard polynomial basis of Fq� over Fq and let
〈uj | 0 ≤ j < m〉 denote the canonical basis of the vector space Fm

q�
, i.e. ui is the unit

vector having a one in the position i and zero otherwise. Then 〈bk | 0 ≤ k < m�〉
where bi+jm = qiuj for 0 ≤ i < � and 0 ≤ j < m forms a basis of Fm�

q . If α = [αi,j]
denotes an element of GL(m, q�) in matrix representation, it can be represented as
an element of GL(m�, q) in matrix representation by ᾱ = [ᾱi,j] where

αbj =

m�∑
i=0

ᾱi,jbi, 0 ≤ i, j < m�.

Therefore any subgroup of GL(m, q�) can be represented by elements of GL(m�, q).
In particular the complete monomial groupM(m, q�) can be considered as a subgroup
of GL(m�, q) by lifting. In the following we consider the case m > 1 as liftingM(1, q�)
gives exactly a Singer cycle of GL(�, q) which is not of interest in this paper since
designs over finite fields are known to exist with this kind of groups of automorphisms.
However in this paper we want to show that designs over finite fields do exist for
other automorphism groups than the already mentioned ones in the introduction.

The monomial group G = M(3, 8) ≤ GL(3, 8) which is generated by the following
five matrices〈⎡

⎣0 1 0
1 0 0
0 0 1

⎤
⎦ ,

⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦ ,

⎡
⎣2 0 0
0 1 0
0 0 1

⎤
⎦ ,

⎡
⎣1 0 0
0 2 0
0 0 1

⎤
⎦ ,

⎡
⎣1 0 0
0 1 0
0 0 2

⎤
⎦〉

yields the following isomorphic subgroup Ḡ ≤ GL(9, 2)

〈⎡
⎣Z U Z
U Z Z
Z Z U

⎤
⎦ ,

⎡
⎣Z U Z
Z Z U
U Z Z

⎤
⎦ ,

⎡
⎣S Z Z
Z U Z
Z Z U

⎤
⎦ ,

⎡
⎣U Z Z
Z S Z
Z Z U

⎤
⎦ ,

⎡
⎣U Z Z
Z U Z
Z Z S

⎤
⎦〉

where

Z =

⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦ , U =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ , S =

⎡
⎣0 0 1
1 0 0
0 1 1

⎤
⎦ .

The multiplication in the corresponding finite field F8 (in polynomial representation)
is considered with respect to the irreducible reduction polynomial

p(z) = z3 + z2 + 1,

such that 2 · 4 = 4 + 1 holds which explains the submatrix S.
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4 Result

We construct a new 2-(9, 3, 49; 2) design admitting the lifted complete monomial
subgroup Ḡ ≤ GL(9, 2) (which was described in the previous section) as group of
automorphisms. Up to our knowledge a design with these parameters has not yet
been constructed. As vector space we consider the canonical vector space V = F

9
2.

The design is given by a set of orbit representatives of M(3, 8) on the set of 3-
dimensional subspaces of V which can be obtained by solving the Kramer–Mesner
system given in Theorem 2. Each orbit representative is a 3-dimensional subspace
of V which is represented by a 9× 3 matrix over F2

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 y0 z0
x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5
x6 y6 z6
x7 y7 z7
x8 y8 z8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

whose columns form a basis of the subspace. To get a compact representation of Γ
we use the triple of integers[

8∑
i=0

xi2
i,

8∑
i=0

yi2
i,

8∑
i=0

zi2
i

]
.

Table 1 shows the orbit representatives of the constructed 2-(9, 3, 49; 2) design.
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Table 1: Orbit representatives of a 2-(9, 3, 49; 2) design admitting the lifted complete
monomial group

[100,128,256] [132,32,256] [212,32,256] [76,32,256] [204,32,256]
[132,160,256] [148,160,256] [84,160,256] [12,160,256] [140,160,256]
[92,160,256] [68,96,256] [196,96,256] [20,96,256] [84,96,256]
[140,96,256] [92,96,256] [220,96,256] [148,224,256] [12,224,256]
[76,224,256] [204,224,256] [28,224,256] [92,224,256] [146,36,256]
[114,36,256] [242,36,256] [10,36,256] [74,36,256] [42,36,256]
[170,36,256] [234,36,256] [218,36,256] [58,36,256] [105,36,256]
[187,36,256] [210,164,256] [114,164,256] [202,164,256] [234,164,256]
[201,164,256] [105,164,256] [217,164,256] [121,164,256] [219,164,256]
[388,144,288] [196,144,288] [452,144,288] [332,144,288] [204,144,288]
[324,400,288] [196,400,288] [452,400,288] [76,400,288] [132,80,288]
[388,80,288] [68,80,288] [12,80,288] [140,80,288] [460,80,288]
[132,336,288] [68,336,288] [196,336,288] [204,336,288] [132,464,288]
[324,464,288] [452,464,288] [140,464,288] [402,260,288] [338,260,288]
[466,260,288] [330,260,288] [458,260,288] [329,260,288] [473,260,288]
[219,260,288] [475,260,288] [146,132,288] [402,132,288] [210,132,288]
[10,132,288] [74,132,288] [330,132,288] [154,132,288] [346,132,288]
[17,132,288] [81,132,288] [209,132,288] [9,132,288] [73,132,288]
[457,132,288] [89,132,288] [339,132,288] [139,132,288] [203,132,288]
[459,132,288] [27,132,288] [155,132,288] [91,132,288] [475,132,288]
[210,388,288] [394,388,288] [74,388,288] [202,388,288] [154,388,288]
[410,388,288] [346,388,288] [273,388,288] [337,388,288] [73,388,288]
[201,388,288] [473,388,288] [339,388,288] [219,388,288] [458,68,288]
[154,68,288] [410,68,288] [474,68,288] [145,68,288] [209,68,288]
[201,68,288] [457,68,288] [147,68,288] [403,68,288] [139,68,288]
[459,68,288] [155,68,288] [219,68,288] [74,148,288] [458,148,288]
[73,148,288] [201,148,288] [75,148,288] [331,148,288] [475,148,288]
[202,404,288] [218,404,288] [474,404,288] [201,404,288] [457,404,288]
[217,404,288] [75,404,288] [331,404,288] [459,404,288] [475,404,288]
[138,84,288] [458,84,288] [410,84,288] [474,84,288] [393,84,288]
[201,84,288] [153,84,288] [395,84,288] [203,84,288] [411,84,288]
[475,84,288] [458,340,288] [410,340,288] [201,340,288] [409,340,288]
[155,340,288] [410,212,288] [329,212,288] [331,212,288] [74,468,288]
[73,146,292] [329,146,292] [233,402,292] [89,402,292] [345,402,292]
[377,402,292] [233,82,292] [153,338,292] [153,202,292]
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