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Abstract

A magic rectangle set M = MRS(a, b; c) is a collection of c arrays (a× b)
with entries 1, 2, . . . , abc, each appearing once, with all row sums in every
rectangle equal to a constant ρ and all column sums in every rectan-
gle equal to a constant σ. It was proved by the author [AKCE Int. J.
Graphs Comb. 10 (2013), 119–127] that if an MRS(a, b; c) exists, then
a ≡ b (mod 2). It was also proved there that if a ≡ b ≡ 0 (mod 2)
and b ≥ 4, then an MRS(a, b; c) exists for every c, and if a ≡ b ≡ 1
(mod 2) and an MRS(a, b; c) exists, then c ≡ 1 (mod 2). For a, b, c not
all relatively prime, the existence of an MRS(a, b; c) follows from Hage-
dorn’s construction of a 3-dimensional magic rectangle 3-MR(a, b, c) [T.R.
Hagedorn, Discrete Math. 207 (1999), 53–63]. We prove that if a ≤ b
and both a, b are odd, then an MRS(a, b; c) exists if and only if 3 ≤ a
and c is any odd positive integer. This completely settles the existence
of magic rectangle sets.

1 Introduction

Magic squares are among the oldest known mathematical structures, having been
studied for thousands of years. The first known magic square originates in the 4th

century BC. A magic square of order n is an n×n array with entries 1, 2, . . . , n2, each
appearing once, such that the sum of each row, column, and both main diagonals
is equal to n(n2 + 1)/2. For a comprehensive survey of magic squares, see Chapter
34 in [1]. Magic rectangles are a natural generalization of magic squares. An a × b
magic rectangle is an a× b array with entries 1, 2, . . . , ab, each appearing once, such
that the sum of each row is equal to b(ab+ 1)/2 and the sum of each column is equal
to a(ab+ 1)/2. Finally, an n-dimensional magic rectangle is a natural generalization
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of magic rectangles to n dimensions. The author has introduced another, weaker
generalization of magic rectangles, namely the magic rectangle sets [2, 3]. A magic
rectangle set MRS(a, b; c) is a collection of c arrays (a× b) with entries 1, 2, . . . , abc,
each appearing once, with all row sums in every rectangle equal to a constant ρ and
all column sums in every rectangle equal to a constant σ.

The author proved in [2] that an MRS(a, b; c) can exist only when a ≡ b (mod 2)
(and a, b > 1) and showed that for a and b both even an MRS(a, b; c) exists for any
positive integer c. For a, b odd it was shown in [2] that c must be odd as well. A
partial solution of that case follows from Hagedorn’s result on 3-dimensional magic
rectangles [4].

Magic rectangle sets can be used to construct handicap distance antimagic graphs,
which in turn are models of incomplete handicap tournaments (see [2, 3]). A handi-
cap incomplete tournament of n teams with known strengths ranked 1, 2, . . . , n is a
tournament in which every team plays the same number of games and the sum of
rankings of opponents of the strongest team, ranked number 1, is the lowest, while
the sum of rankings of opponents of the weakest team, ranked number n, is the
highest. In other words, a stronger team plays stronger opponents than a weaker
team.

In this paper, we prove the existence of MRS(a, b; c) for all admissible triples of
odd numbers a, b, c.

2 Definitions and known results

Definition 2.1 A magic rectangle MR(a, b) is an a × b array whose entries are
{1, 2, . . . , ab}, each appearing once, with all its row sums equal to a constant ρ and
all column sums equal to a constant σ.

The sum of all entries in the array is ab(ab + 1)/2; it follows that

ρ =

b∑

j=1

mij = b(ab+ 1)/2 for all i

and

σ =

a∑

i=1

mij = a(ab+ 1)/2 for all j.

Hence a and b must have the same parity. An example is shown in Figure 1.

15 2 14 4 5
8 10 7 9 6
1 12 3 11 13

Figure 1: Magic rectangle MR(3, 5) with ρ = 40 and σ = 24

The following existence result was proved by Harmuth [5, 6] more than 130 year ago.
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Theorem 2.2 [5, 6] A magic rectangle MR(a, b) exists if and only if a, b > 1, ab > 4,
and a ≡ b (mod 2).

Hagedorn introduced an n-dimensional version of magic rectangles in [4].

Definition 2.3 An n-dimensional magic rectangle n-MR(a1, a2, . . . , an) is an a1 ×
a2×· · ·×an array with entries di1,i2,...,in which are elements of {1, 2, . . . , a1a2 . . . an},
each appearing once, such that all sums in the k-th direction are equal to a constant
σk. That is, for every k, 1 ≤ k ≤ n, and every selection of indices i1, i2, . . . , ik−1,
ik+1, . . . , in, we have

ak∑

j=1

di1,i2,...,ik−1,j,ik+1,...,in = σk,

where σk = ak(a1a2 . . . an + 1)/2.

The following existence results were also proved by Hagedorn in [4].

Theorem 2.4 [4] If there exists an n-dimensional magic rectangle n-MR(a1, a2,
. . . , an), then a1 ≡ a2 ≡ · · · ≡ an (mod 2).

For a1 ≡ a2 ≡ · · · ≡ an ≡ 0 (mod 2), Hagedorn found a complete existence
characterization.

Theorem 2.5 [4] An n-dimensional magic rectangle n-MR(a1, a2, . . . , an) with a1 ≤
a2 ≤ · · · ≤ an and all ai even exists if and only if 2 ≤ a1 and 4 ≤ a2 ≤ · · · ≤ an.

For odd dimensions, only the following 3-dimensional result is known so far.

Theorem 2.6 [4] A 3-dimensional magic rectangle 3-MR(a1, a2, a3) with 3 ≤ a1 ≤
a2 ≤ a3 exists whenever gcd(ai, aj) > 1 for some i, j ∈ {1, 2, 3}.

The author introduced the notion of magic rectangle sets [2], which is a less
restrictive generalization of magic rectangles. Magic rectangle sets can be viewed as
3-dimensional a × b × c arrays in which each horizontal layer (an a × b rectangle)
has all row and column sums equal, while there is no restriction on vertical column
sums.

Such sets are useful tools for constructions of handicap tournaments as mentioned
above. Hence, we want to know whether they can be found even for triples (a, b, c)
for which 3-dimensional magic rectangles 3-MR(a, b, c) do not exist.

Definition 2.7 A magic rectangle set M = MRS(a, b; c) is a collection of c arrays
(a × b) whose entries are elements of {1, 2, . . . , abc}, each appearing once, with all
row sums in every rectangle equal to a constant ρ = b(abc+1)/2 and all column sums
in every rectangle equal to a constant σ = a(abc + 1)/2.
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The existence of magic rectangle sets for a, b both even was completely settled
by the author in [2].

Theorem 2.8 [2] If a ≡ b ≡ 0 (mod 2) and b ≥ 4, then a magic rectangle set
MRS(a, b; c) exists for every c.

Notice that while a 3-dimensional magic rectangle 3-MR(a1, a2, a3) forms a set
M = MRS(ai, aj ; ak) for every permutation of indices 1, 2, 3, it does not exist when
a1, a2, a3 do not all have the same parity.

While for a and b both even the number of rectangles in a magic rectangle set
MRS(a, b; c) can be either even or odd, for odd values of a or b the number c must
be odd as well. This follows from an easy observation, which was also made in [2].

Theorem 2.9 [2] If a or b is odd and abc is even, then the magic rectangle set
MRS(a, b; c) does not exist.

In the following section, we prove the existence of such sets with a, b, c odd,
even for the cases that do not follow from Hagedorn’s result on 3-dimensional magic
rectangles.

In the proof we use the notion of Kotzig arrays, which share some properties of
Latin and magic rectangles.

Definition 2.10 A Kotzig array KA(a, c) is an a×c array with entries from the set
{1, 2, . . . , c}, each of them appearing exactly once in every row, such that the sum of
every column is equal to a(c+ 1)/2.

An example of a 3× 7 Kotzig array KA(3, 7) is shown in Figure 2.

1 2 3 4 5 6 7
7 5 3 1 6 4 2
4 5 6 7 1 2 3

Figure 2: Kotzig array KA(3, 7)

Kotzig arrays are known to exist except when a is odd and c is even (see [7]).

Theorem 2.11 [7] An a × c Kotzig array KA(a, c) exists if and only if a > 1 and
a(c− 1) is even.

It is obvious that the sum of every row is equal to c(c+1)/2 and therefore KA(a, c)
has the “magic-like” property with respect to the sums of rows and columns, but at
the same time allows entry repetitions in columns.
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3 New results

Now we prove that magic rectangle sets with a, b, c all odd and both a, b greater than
one always exist.

Theorem 3.1 Let a, b, c be positive odd integers such that 1 < a ≤ b. Then a magic
rectangle set MRS(a, b; c) exists.

Proof: We construct an MRS(a, b; c) with rectangles W 1,W 2, . . . ,W c in several
steps. First we take a magic rectangle MR(a, b) with entries mij , row sums ρ and
column sums σ. Then we create an a × b underlying rectangle U(a, b) with entries
uij defined as uij = c(mij − 1). The sum of each row is then

ρU =

b∑

j=1

c(mij − 1) = cb(ab − 1)/2 for all i

and the sum of each column is

σU =

a∑

i=1

c(mij − 1) = ca(ab− 1)/2 for all j.

We present several figures to illustrate an example of how a magic rectangle set
MRS(3, 5; 7) is constructed. An example of an underlying rectangle U(3, 5) is shown
in Figure 3. It is based on the magic rectangle MR(3, 5) presented in Figure 1.

105 14 98 28 35
56 70 49 63 42
7 84 21 77 91

Figure 3: Underlying rectangle U(3, 5) with ρU = 280 and σU = 168

Now we construct an a × c Kotzig array KA(a, c) with entries kij . Based on this
Kotzig array, we build c different a × b residual rectangles Rs(a, b) with entries rsij
for 1 ≤ s ≤ c as follows. In the first column of a given Rs(a, b), we place the
s-th column of KA(a, c). That is, rsi1 = kis. In the following a − 1 columns, we
place a circulant array constructed from the first column. More formally, we have
rsij = rsi+j−1 1 for j = 2, 3, . . . , s with the addition in the first subscript performed
modulo a. We observe that the first a columns of Rs(a, b) form a Latin square-like
array with the entries of LS(a) replaced by entries of the s-th column of KA(a, c).
Notice that unlike in a Latin square, an entry can appear repeatedly in each of the
first a columns, when the s-th column of KA(a, c) contained repeated entries. It
should be obvious that the sum of every column (denoted σR) and every partial sum
of the first a entries of each row is equal to a(c+ 1)/2 in each Rs(a, b). When b > a,
the remaining b − a columns will be filled as follows. All even columns will be the
same as the first column, while the odd columns will be filled with the complements
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of the entries in the previous column with respect to c+ 1. Formally, rsij = rsi1 when
j is even and j > a, and rsij = c + 1 − rsi1 when j is odd and j > a. Then the sum
of every even column is again a(c+ 1)/2 = σR and for the odd columns we have the
sum a(c+ 1)− a(c+ 1)/2 = a(c + 1)/2 = σR as well. The sum of each row is now

ρR =
c∑

j=1

rsij = a(c+ 1)/2 + (b− a)(c+ 1)/2 = b(c+ 1)/2.

First three residual rectangles R1(3, 5), R2(3, 5), R3(3, 5) based on the Kotzig array
KA(3, 7) presented in Figure 2 are shown in Figure 4.

1 7 4 1 7 2 5 5 2 6 3 3 6 3 5
7 4 1 7 1 5 5 2 5 3 3 6 3 3 5
4 1 7 4 4 5 2 5 5 3 6 3 3 6 2

Figure 4: Residual rectangles R1(3, 5), R2(3, 5), R3(3, 5)

Each rectangle W s with entries ws
ij in our MRS(a, b; c) is now constructed by adding

the entries of the residual rectangle Rs(a, b) to the entries of the underlying rectangle
U(a, b), that is, ws

ij = uij + rsij for 1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ s ≤ c. The row and
column sums are

ρ = ρU + ρR = bc(ab− 1)/2 + b(c + 1)/2 = (ab2c− bc + bc+ b)/2 = b(abc + 1)/2

and

σ = σU + σR = ac(ab− 1)/2 + a(c + 1)/2 = (a2bc− ac+ ac + a)/2 = a(abc + 1)/2

as desired.

First three rectangles W 1,W 2,W 3 of a magic rectangle set MRS(3, 5; 7) are shown
in Figure 5.

106 21 102 29 42 107 19 103 30 41 108 17 104 31 40
63 74 50 70 43 61 75 51 68 45 59 76 52 66 47
11 85 28 81 95 12 86 26 82 94 13 87 24 83 93

Figure 5: Rectangles W 1,W 2,W 3 of MRS(3, 5; 7)

We still need to verify that every number 1, 2, . . . , abc appears exactly once among the
entries of our set W 1,W 2, . . . ,W c. First we observe that for any pairs (i, j) �= (i′, j′)
we have |uij − ui′j′| ≥ c and |rsij − rti′j′| ≤ c − 1. Therefore, if ws

ij = wt
i′j′, we must

have (i, j) = (i′, j′). Suppose that ws
ij = wt

ij and s �= t. Then we have ws
ij − wt

ij = 0
and

ws
ij − wt

ij = (uij + rsij)− (uij + rtij) = rsij − rtij = 0.

Hence rsij = rtij = r and because both entries are in the same row, they both corre-
spond to the same entry in the first column. That is, if j = 1 or j > a and j is even,
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then r = rsi1 = rti1. Recall that rsi1 is an entry of the Kotzig array KA(a, b), namely
kis, while rti1 = kit. Because s �= t, we have two identical entries in the i-th row of
KA(a, b), which is impossible.

The case of j > a and j odd is very similar. We have r = c + 1 − kis = c + 1 − kit,
implying kis = kit, a contradiction. Finally, if 2 ≤ j ≤ a, then r = rsl1 = rtl1 for some
l �= i and we have kls = klt, the same contradiction as above. This completes the
proof. �

As we mentioned in Section 2, the case when a ≡ b ≡ 0 (mod 2) was completely
solved in [2], similarly as the non-existence of certain classes of magic rectangle
squares with at least one of a, b odd. Together with Theorem 2.8 we now get a com-
plete solution, summarized in the following theorem. The assertion follows directly
from Theorems 2.8, 2.9, and 3.1.

Theorem 3.2 Let a, b, c be positive integers such that 1 < a ≤ b. Then a magic
rectangle set MRS(a, b; c) exists if and only if either a, b, c are all odd, or a and b are
both even, c is arbitrary, and (a, b) �= (2, 2).
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