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Abstract

In 2015, Archdeacon introduced the notion of Heffter arrays and showed
the connection between Heffter arrays and biembedding m-cycle and an
n-cycle systems on a surface. In this paper we exploit this connection and
prove that for every n ≥ 3 there exists an orientable embedding of the
complete graph on 6n+1 vertices with each edge on both a 3-cycle and an
n-cycle. We also give an analogous (but partial) result for biembedding
a 5-cycle system and an n-cycle system.

1 Introduction and definitions

An embedding of the complete graph on v vertices with each edge on both an m-cycle
and an n-cycle is termed a biembedding. A biembedding is necessarily 2-colorable
with the faces that are m-cycles receiving one color while those faces that are n-
cycles receiving the other color. So every edge appears in exactly one m-cycle and
one n-cycle. A k-cycle system on v points is a collection of simple k-cycles with the
property that any pair of points appears as consecutive vertices in a unique k-cycle.
Hence a biembedding is a simultaneous embedding of an m-cycle system and an
n-cycle system on v points. In this paper we will specifically consider the case of
biembeddings of 3-cycle systems (Steiner triple systems) and n-cycle systems where
both of these systems are on 6n+ 1 points.

There has been previous work done in the area of biembedding cycle systems,
specifically Steiner triple systems. In 2004, both Bennett, Grannell, and Griggs [4]
and Grannell and Korzhik [8] published papers on nonorientable biembeddings of
pairs of Steiner triple systems. In [7] the eighty Steiner triple systems of order 15
were also proven to have orientable biembeddings. In addition, Grannell and Korzhik
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[9] gave methods to construct orientable biembeddings of two cyclic Steiner triple
systems from current assignments on Möbius ladder graphs. Brown [5] constructed
a class of biembeddings where one face is a triangle and one face is a quadrilateral.
Recently, Forbes, Griggs, Psomas, and Širáň [6] proved the existence of biembed-
dings of pairs of Steiner triple systems in orientable pseudosurfaces with one pinch
point, Griggs, Psomas and Širáň [11] presented a uniform framework for biembedding
Steiner triple systems obtained from the Bose construction in both orientable and
nonorientable surfaces, and McCourt [13] gave nonorientable biembeddings for the
complete graph on n vertices with a Steiner triple system of order n and a Hamilto-
nian cycle for all n ≡ 3 (mod 36) with n ≥ 39. In [10] Griggs and McCort show that
there exist biembeddings of pairs of symmetric n-cycle systems on 2n + 1 points on
an orientable surface if and only if n ≥ 3 is odd.

In 2015, Archdeacon [1] presented a framework for biembedding m-cycle and n-
cycle systems on v points on a surface for general m and n. It involved the use of
so-called Heffter arrays and is quite general in nature, working in both the orientable
and nonorientable case as well as for many possible values of v for fixed m and n.
This is the first paper to explicitly use these Heffter arrays for biembedding purposes
(they are actually of some interest in their own right). In this paper we consider
basically the smallest (and tightest) case for which this method works, namely we
will prove that for every n ≥ 3 there exists a biembedding of a Steiner triple system
and an n-cycle system on 6n + 1 points. We begin with the definitions of Heffter
systems and Heffter arrays from [1]. Some of the definitions in [1] are more general,
but these suffice for our purpose.

Let Zr be the cyclic group of odd order r whose elements are denoted 0 and ±i
where i = 1, 2, . . . , r−1

2
. A half-set L ⊆ Zr has r−1

2
nonzero elements and contains

exactly one of {x,−x} for each such pair. A Heffter system D(r, k) is a partition
of L into parts of size k such that the sum of the elements in each part equals 0
modulo r. Note that a Heffter system D(n, 3) provides a solution to Heffter’s first
difference problem (see [14]) and hence provides the base blocks for a cyclic Steiner
triple system on n points.

Two Heffter systems, D1 = D(2mn+1, n) and D2 = D(2mn+1, m), on the same
half-set, L, are orthogonal if each part (of size n) in D1 intersects each part (of size
m) in D2 in a single element. A Heffter array H(m,n) is an m×n array whose rows
form a D(2mn + 1, n), call it D1, and whose columns form a D(2mn + 1, m), call
it D2. Furthermore, since each cell ai,j contains the shared element in the ith part
of D1 and the jth part of D2, these row and column Heffter systems are orthogonal.
So an H(m,n) is equivalent to a pair of orthogonal Heffter systems. In Example 1.1
we give orthogonal Heffter systems D1 = D(31, 5) and D2 = D(31, 3) along with the
resulting Heffter array H(3, 5). Note that the elements occurring in the array form
a half set of Z31.

Example 1.1. A Heffter system D1 = D(31, 5) and a Heffter system D2 = D(31, 3):

D1 = {{6, 7,−10,−4, 1}, {−9, 5, 2,−11, 13}, {3,−12, 8, 15,−14}},
D2 = {{6,−9, 3}, {7, 5,−12}, {−10, 2, 8}, {−4,−11, 15}, {1, 13,−14}}.
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The resulting Heffter array H(3, 5):
⎡
⎣ 6 7 −10 −4 1
−9 5 2 −11 13
3 −12 8 15 −14

⎤
⎦ .

Let A be a subset of Z2mn+1 \ {0}. Let (a1, . . . , ak) be a cyclic ordering of the
elements in A and let si =

∑i
j=1 aj (mod 2mn + 1) be the ith partial sum. The

ordering is simple if si �= sj for i �= j. A Heffter system D(2mn + 1, k) is simple
if and only if each part has a simple ordering. Further, a Heffter array H(m,n) is
simple if and only if its row and column Heffter systems are simple.

In the next section we will give the connection between Heffter arrays and biem-
beddings of the complete graph. In Section 3 we use this connection to show that
for all n ≥ 3 there exists a biembedding of the complete graph on 6n + 1 such that
each edge is on a simple face of size n and a face of size 3. In Section 4 we discuss
biembeddings of the complete graph on 10n+1 for 3 ≤ n ≤ 100 such that each edge
is on a simple face of size n and a simple face of size 5.

2 Heffter arrays and biembeddings

In this section we establish the relationship between Heffter arrays and biembeddings.
The following proposition from [1] describes the connection between Heffter systems
and k-cycle systems.

Proposition 2.1. [1] The existence of a simple Heffter system D(v, k) implies the
existence of a simple k-cycle system decomposition of the edges E(Kv). Furthermore,
the resulting k-cycle system is cyclic.

Let D1 = D(2mn + 1, m) and D2 = D(2mn + 1, n) be two orthogonal Heffter
systems with orderings ω1 and ω2 respectively. The orderings are compatible if their
composition ω1 ◦ ω2 is a cyclic permutation on the half-set. The following theorem
relatesm×n Heffter arrays with compatible simple orderings on the rows and columns
to orientable biembeddings of K2mn+1.

Theorem 2.2. [1] Given a Heffter array H(m,n) with simple compatible orderings
ωr on D(2mn+1, n) and ωc on D(2mn+1, n), there exists an embedding of K2mn+1

on an orientable surface such that every edge is on a simple cycle face of size m and
a simple cycle face of size n.

In the following theorem we prove that if m and n are not both even, then there
exist orderings ωr and ωc of the row and column Heffter systems, respectively, that
are compatible. Archdeacon knew this result, however it is not included in [1].

Theorem 2.3. Let H be a m × n Heffter array where at least one of m and n is
odd. Then there exist compatible orderings, ωr and ωc on the row and column Heffter
systems.
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Proof. Without loss of generality we assume that the number of columns H is odd,
so say n = 2t+1 for some integer t. Let H = (hij) be a m×n Heffter array. We first
define ωr, the ordering of the row Heffter system, as ωr = (h11, h12, . . . , h1n)(h21, h22,
. . . , h2n) . . . (hm,1, hm,2, . . . , hm,n). This ordering says that each row in the row Heffter
system of H is ordered cyclically from left to right. We next order the columns.
For 1 ≤ c ≤ t + 1 the ordering for column c is (h1,c, h2,c, . . . , hm,c) (this is basi-
cally top to bottom cyclically) and for t + 2 ≤ c ≤ n the ordering for column c is
(hm,c, hm−1,c, . . . , h1,c) (bottom to top, cyclically). So considering the composition
ωr ◦ ωc we have that

ωr ◦ ωc(hi,j) =

{
hi+1,j+1 if 1 ≤ j ≤ t+ 1
hi−1,j+1 if t + 2 ≤ j ≤ n

where all first subscripts are written as elements from {1, 2, . . . , m} reduced modulo
m and all second subscripts are written as elements from {1, 2, . . . , n} reduced modulo
n.

So by construction, starting at any cell in column 1 we see that ωr ◦ ωc moves
cyclically from left to right and goes “down” t + 1 times and “up” t times. Hence
for any r and c, given an occurrence of hr,c in ωr ◦ ωc the next occurrence of column
c in ωr ◦ ωc will be hr+1,c. It is now straightforward to see that

ωr ◦ ωc = (h1,1, h2,2, . . . , ht+1,t+1, ht,t+2, . . . h3,n

h2,1, h3,2 . . . , ht+2,t+1, ht+1,t+2, . . . h4,n,
h3,1, h4,2 . . . , ht+3,t+1, ht+2,t+2, . . . h5,n,

...
hm,1, hm+1,2 . . . , hm+t+1,t+1, . . . h2,n, h1,1).

Hence we have that ωr ◦ ωc is written as a single cycle on the half set and thus ωr

and ωc are compatible orderings. �

Now from Theorems 2.2 and 2.3 we have the following theorem relating Heffter
arrays and biembeddings.

Theorem 2.4. Given a simple Heffter array H(m,n) where at least one of m and n
is odd, there exists an embedding of K2mn+1 on an orientable surface such that every
edge is on a simple cycle face of size m and a simple cycle face of size n

Restating the previous theorem in terms of biembeddings of cycle systems we
have the following.

Theorem 2.5. Given a simple Heffter array H(m,n) with where at least one of m
and n is odd, there exists an orientable biembedding of an m-cycle system and an
n-cycle system both on 2mn + 1 points.
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3 Constructing simple H(3, n)

In this section we will construct simple H(3, n) for all n ≥ 3. For each n, we will
begin with the 3 × n Heffter array already constructed in [2] and will provide a
reordering so that the resulting Heffter array is simple. We first record the existence
result for H(3, n).

Theorem 3.1. [2] There exists a 3× n Heffter array for all n ≥ 3.

We now restate Theorem 2.4 in the special case when there are 3 rows in the
Heffter array.

Corollary 3.2. If there exists a simple Heffter array H(3, n), then there exists an
embedding of K6n+1 on an orientable surface such that every edge is on a simple cycle
face of size 3 and a simple cycle face of size n.

Suppose H = (hij) is any 3 × n Heffter array. We first note that each column c
in H , 1 ≤ c ≤ n, is simple just using the natural top-to-bottom ordering. Thus if
we can reorder each of the three rows so they have distinct partial sums, the array
will be a simple. In Theorem 3.5 below we will present a single reordering for each
Heffter array that makes ωr simple. In finding a single reordering which works for
all three rows in H , we are actually rearranging the order of the columns without
changing the elements which appear in the rows and columns. For notation, the
ordering (a1, a2, . . . , an) denotes a reordering of the columns of H so that in the
resulting array H ′, column ai of H will appear in column i of H ′. In Example 3.3
we give the original array H(3, 8), the reordering R for the rows, and the reordered
array H ′(3, 8).

Example 3.3. The original 3× 8 Heffter array from [2]:

H =

⎡
⎣−13 −11 6 3 10 −8 14 −1

4 −7 17 19 5 −16 −2 −20
9 18 −23 −22 −15 24 −12 21

⎤
⎦ .

Note that in row 1, s1 = s6 = −13 ≡ 36 (mod 49), and so ωr is not simple.
Consider the reordering R = (1, 2, 6, 8, 5, 3, 4, 7). The reordered 3 × 8 Heffter array
is:

H ′ =

⎡
⎣−13 −11 −8 −1 10 6 3 14

4 −7 −16 −20 5 17 19 −2
9 18 24 21 −15 −23 −22 −12

⎤
⎦ .

We list the partial sums for each row as their smallest positive residue modulo
49:

Row 1: {36, 25, 17, 16, 26, 32, 35, 0},
Row 2: {4, 46, 30, 10, 15, 32, 2, 0},
Row 3: {9, 27, 2, 23, 8, 34, 12, 0}.

Since all the partial sums are distinct, ωr is simple and hence H ′(3, 8) is a simple
Heffter array.
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As the reader can see, the reordering of the columns results in a simultaneous
reordering of the three rows resulting in a simple H(3, n) where the elements in each
row and column remain the same as in the original array. We handle two small cases
in the next theorem.

Theorem 3.4. There exist simple H(3, 3) and H(3, 4).

Proof. We present an H(3, 3) and an H(3, 4) from [2]. It is easy to check that both
are simple.

−8 −2 −9
7 −3 −4
1 5 −6

1 2 3 −6
8 −12 −7 11
−9 10 4 −5

�

In our next theorem we will construct simple H(3, n) for all n ≥ 5. The cases are
broken up modulo 8 and we will consider each individually. We will begin with the
3× n Heffter array H given in [2] and reorder the columns. In all cases we let H ′ be
the 3×n Heffter array where the columns of H have been reordered as given in each
case. We will always write the partial sums as their lowest positive residue modulo
6n+1. For the following theorem we introduce the following notation for intervals in
Z, let [a, b] = {a, a+1, a+2, . . . , b−1, b} and [a, b]2 = {a, a+2, a+4, . . . , b−2, b}.
Theorem 3.5. There exist simple 3× n Heffter arrays for all n ≥ 3.

Proof. When n = 3 or 4 the result follows from Theorem 3.4 above. We now assume
that n ≥ 5. We begin with H , a 3×n Heffter array from [2]. Let R be the reordering
for each row. For each i = 1, 2, 3 define Pi as the set of partial sums of row i. We will
divide each Pi into four subsets, Pi,1, Pi,2, Pi,3 and Pi,4, based on a natural partition
of the columns ofH . For each case modulo 8 we will present the original construction
from [2], followed by the reordering R and the subsets Pi,j.

If n ≡ 0 (mod 8), n ≥ 8: The case of n = 8 is given above in Example 3.3. For
n > 8, define m = n−8

8
, so n = 8m+ 8 and hence all the arithmetic in this case will

be in Z48m+49. The first four columns are:

A =

⎡
⎣−12m− 13 −10m− 11 4m+ 6 4m+ 3

4m+ 4 −8m− 7 18m+ 17 18m+ 19
8m+ 9 18m+ 18 −22m− 23 −22m− 22

⎤
⎦ .

For each 0 ≤ r ≤ 2m define

Ar = (−1)r

⎡
⎣ (8m+ r + 10) (−8m+ 2r − 8) (14m− r + 14) (−4m+ 2r − 1)

(8m− 2r + 5) (−16m− r − 16) (−4m+ 2r − 2) (−18m− r − 20)
(−16m+ r − 15) (24m− r + 24) (−10m− r − 12) (22m− r + 21)

⎤
⎦ .
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Beginning with the matrix A, we add on the remaining n− 4 columns by concate-
nating the Ar arrays for each value of r between 0 and 2m. So the final array will
be:

H =
[
A A0 A1 · · · A2m

]
.

Let R = (9, 13, . . . , n − 3; 1, 11, 15, . . . , n − 1; 2, 10, 14, . . . , n − 2; 6, 8, 12, 16, . . . ,
n, 5, 3, 7, 4) be a reordering of the rows. Note that we use semi-colons to designate
the partitions of Pi into its four subsets. So in this case, Pi,1 is the set of partial
sums from row i and columns {9, 13, . . . , n − 3} = {4k + 5 : 1 ≤ k ≤ 2m} in H ,
Pi,2 is the set of partial sums from row i and columns {1, 11, 15, . . . , n − 1} from
H starting with the last partial sum from Pi,1, Pi,3 is the set of partial sums from
row i and columns {2, 10, 14, . . . , n− 2} starting from the last partial sum from Pi,2,
and Pi,4 is the set of partial sums from row i and columns {6, 8, 12, 16, . . . , n, 5, 3, 7}
starting from the last partial sum from Pi,3. We must show that the partial sums of
the rows of reordered array are all distinct. To check this, we provide the following
table where we give the ranges of the partial sums:

R = (9, 13, . . . , n− 3; 1, 11, 15, . . . , n− 1; 2, 10, 14, . . . , n− 2; 6, 8, 12, 16, . . . , n, 5, 3, 7, 4)

P1,1 = [39m+ 39, 40m + 38] ∪ [1,m]

P1,2 = [36m+ 36, 37m + 36] ∪ [23m+ 23, 24m + 22]

P1,3 = [26m+ 25, 28m + 25]2 ∪ [32m+ 33, 34m + 31]2
P1,4 = [16m+16, 18m+16]2 ∪ [18m+17, 20m+17]2 ∪ {26m+26, 30m+32, 44m+46, 0}

One can count the number of sums in each of these partitions to show that
all the sums must be distinct. For example, in the first partition there will be
((n− 3)− 9)/4 = 2m− 1 partial sums. Since there are 2m− 1 elements in the range
[39m+ 39, 40m+ 38] ∪ [1, m] it must be that all the partial sums are distinct.

We see that the ranges of the partial sums of elements in the first row are:

P1 = {0}∪ [1, m]∪ [16m+16, 18m+16]2∪ [18m+17, 20m+17]2∪ [23m+23, 24m+22]
∪[26m + 25, 28m + 25]2 ∪ {26m + 26, 30m+ 32} ∪ [32m + 33, 34m + 31]2 ∪ [36m +
36, 37m+ 36] ∪[39m+ 39, 40m+ 38] ∪ {44m+ 46}.
For the second row we get the following ranges:

P2,1 = [40m+ 46, 42m + 44]2 ∪ [46m + 49, 48m + 47]2
P2,2 = [2m+ 4, 4m + 6]2 ∪ [4m+ 8, 6m + 4]2
P2,3 = [12m+ 14, 13m + 13] ∪ [43m+ 46, 44m + 46]

P2,4 = [27m+30, 28m+30] ∪ [8m+10, 9m+10] ∪ {16m+15, 34m+32, 30m+30, 0}
Thus the ranges of the partial sums of elements in the second row are:

P2 = {0} ∪ [2m + 4, 4m + 6]2 ∪ [4m + 8, 6m + 4]2 ∪ [8m + 10, 9m + 10] ∪ [12m +
14, 13m+13]∪ {16m+15}∪ [27m+30, 28m+30]∪ {30m+30, 34m+32}∪ [40m+
46, 42m+ 44]2 ∪ [43m+ 46, 44m+ 46] ∪ [46m+ 49, 48m+ 47]2.

For the third row we have:
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P3,1 = [1, m] ∪ [15m+ 15, 16m+ 14]
P3,2 = [8m+ 9, 9m+ 9] ∪ [19m+ 22, 20m+ 21]
P3,3 = [2m+ 4, 3m+ 3] ∪ [25m+ 27, 26m+ 27]
P3,4 = [m+ 2, 2m+ 2] ∪ [22m+ 22, 23m+ 23] ∪ {6m+ 8, 32m+ 34, 0}

Thus the ranges of the partial sums of elements in the third row are:

P3 = {0} ∪ [1, m] ∪ [m + 2, 2m+ 2] ∪ [2m + 4, 3m+ 3] ∪ {6m + 8} ∪ [8m+ 9, 9m+
9] ∪ [15m + 15, 16m+ 14] ∪ [19m + 22, 20m+ 21] ∪ [22m + 22, 23m+ 23] ∪ [25m +
27, 26m+ 27] ∪ {32m+ 34}.

Several things are worth noting. Notice that each partion of the partial sums
covers two disjoint ranges of numbers (some sets contain a few extra numbers). For
example, P1,1 contains the range 39m+ 39 to 40m+ 38 and the range 1 to m. This
is by design. Also, within these ranges the sets of partial sums either contain every
number in the range, or every other number in the range. Note that any overlap of
the sets of partial sums occurs with one set covering the odds and one covering the
evens. Therefore one can check by looking at the ranges that the partial sums Pi in
each row are distinct. Similar arguments can be used for each case of n modulo 8.
In all subsequent cases we will provide the reader with the original construction, the
reordering, and a table of the partial sums. For further details see [12].

If n ≡ 1 (mod 8), n ≥ 9: Here m = n−9
8

and note that all the arithmetic in this
case will be in Z48m+55. The first five columns are:

A =

⎡
⎣ 8m+ 7, 10m+ 12 16m+ 18 4m+ 6 4m+ 3

8m+ 10 8m+ 9 −12m− 14 −22m− 26 18m+ 22
−16m− 17 −18m− 21 −4m− 4 18m+ 20 −22m− 25

⎤
⎦ .

For each 0 ≤ r ≤ 2m define

Ar = (−1)r

⎡
⎣(−8m+ 2r − 5), (−10m− r − 13) (−24m+ r − 27) (−4m+ 2r − 1)
(16m− r + 16) (−4m+ 2r − 2) (8m− 2r + 8) (−18m− r − 23)
(−8m− r − 11) (14m− r + 15) (16m+ r + 19) (22m − r + 24)

⎤
⎦ .

To construct H , begin with A and add on the remaining n − 5 columns by
concatenating the Ar arrays for each value of r between 0 and 2m. Let the reordering
be R =

(8, 12, 16, . . . , n−1; 3, 7, 11, 15, . . . , n−2; 5, 6, 10, 14, . . . , n−3; 1, 9, 13, 17, . . . , n, 2, 4).

Then

P1,1 = [24m+ 28, 25m+ 28] ∪ [47m+ 55, 48m+ 54]
P1,2 = [41m+ 46, 42m+ 46] ∪ [30m+ 33, 31m+ 33]
P1,3 = [32m+ 36, 34m+ 36]2 ∪ [26m+ 31, 28m+ 31]2
P1,4 = [34m+ 38, 36m+ 38]2 ∪ [32m+ 37, 34m+ 37]2 ∪ {44m+ 49, 0}

Thus P1 = {0} ∪ [24m+ 28, 25m+ 28] ∪ [26m+ 31, 28m+ 31]2 ∪ [30m+ 33, 31m+
33]∪ [32m+36, 34m+36]2 ∪ [32m+37, 34m+37]2 ∪ [34m+38, 36m+38]2 ∪ [41m+
46, 42m+ 46] ∪ {44m+ 49} ∪ [47m+ 55, 48m+ 54].
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P2,1 = [2, 2m]2 ∪ [6m+ 8, 8m+ 8]2
P2,2 = [38m+ 47, 40m+ 47]2 ∪ [40m+ 49, 42m+ 49]2
P2,3 = [10m+ 14, 11m+ 14] ∪ [25m+ 30, 26m+ 30]
P2,4 = [14m+ 17, 15m+ 17] ∪ [33m+ 40, 34m+ 40] ∪ {22m+ 26, 0}

Thus P2 = {0}∪ [2, 2m]2∪ [6m+8, 8m+8]2∪ [10m+14, 11m+14]∪ [14m+17, 15m+
17] ∪ {22m+ 26} ∪ [25m+ 30, 26m+ 30] ∪ [33m+ 40, 34m+ 40] ∪ [38m+ 47, 40m+
47]2 ∪ [40m+ 49, 42m+ 49]2.

P3,1 = [47m+ 55, 48m+ 54] ∪ [16m+ 19, 17m+ 19]
P3,2 = [13m+ 15, 14m+ 15] ∪ [26m+ 30, 27m+ 30]
P3,3 = [43m+ 49, 44m+ 49] ∪ [4m+ 5, 5m+ 5]
P3,4 = [27m+ 32, 28m+ 32] ∪ [1, m+ 1] ∪ {30m+ 35, 0}

So P3 = {0}∪ [1, m+1]∪ [4m+5, 5m+5]∪ [13m+15, 14m+15]∪ [16m+19, 17m+19]
∪[26m+30, 27m+30]∪ [27m+32, 28m+32]∪{30m+35}∪ [43m+49, 44m+49]∪
[47m+ 55, 48m+ 54].

If n ≡ 2 (mod 8), n ≥ 10: In this case m = n−10
8

. All the arithmetic in this case
will be in Z48m+61. The first six columns are:

A =

⎡
⎣24m+ 30 16m+ 21 10m+ 13 8m+ 8 4m+ 5 8m+ 9
24m+ 29 −8m− 11 −10m− 14 12m+ 16 16m+ 20 12m+ 17

2 −8m− 10 1 −20m− 24 −20m− 25 −20m− 26

⎤
⎦ .

For each 0 ≤ r ≤ 2m define

Ar = (−1)r

⎡
⎣(−8m+ 2r − 7) (10m+ r + 15) (−22m+ r − 27) (−8m+ 2r − 6)
(16m− r + 19) (4m− 2r + 3) (4m− 2r + 4) (−16m− r − 22)
(−8m− r − 12) (−14m+ r − 18) (18m+ r + 23) (24m− r + 28)

⎤
⎦ .

To construct H , begin with A and add on the remaining n − 6 columns by
concatenating the Ar arrays for each value of r between 0 and 2m. Let the reordering
be R =

(10, 14, . . . , n;n− 3, n− 7, . . . , 7, 4; 6, 8, 12, . . . , n− 2; 5, 9, 13, . . . , n− 1, 2, 3, 1).

Then

P1,1 = [40m+ 55, 42m+ 55]2 ∪ [46m+ 61, 48m+ 59]2
P1,2 = [36m+ 48, 38m+ 48]2 ∪ [42m+ 57, 44m+ 55]2 ∪ {44m+ 56}
P1,3 = [3m+ 4, 4m+ 4] ∪ [14m+ 19, 15m+ 19]
P1,4 = [18m+ 24, 19m+ 24] ∪ [45m+ 58, 46m+ 58] ∪ {14m+ 18, 24m+ 31, 0}

Thus P1 = {0} ∪ [3m + 4, 4m + 4] ∪ {14m + 18} ∪ [14m + 19, 15m + 19] ∪ [18m +
24, 19m+24]∪{24m+31}∪ [36m+48, 38m+48]2∪ [40m+55, 42m+55]2∪ [42m+
57, 44m+ 55]2 ∪ {44m+ 56} ∪ [45m+ 58, 46m+ 58] ∪ [46m+ 61, 48m+ 59]2.
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P2,1 = [1, m] ∪ [31m+ 39, 32m+ 39]
P2,2 = [45m+ 58, 46m+ 58] ∪ [30m+ 39, 31m+ 38] ∪ {10m+ 13}
P2,3 = [22m+ 30, 24m+ 30]2 ∪ [24m+ 33, 26m+ 33]2
P2,4 = [40m+53, 42m+53]2 ∪ [42m+57, 44m+57]2 ∪ {34m+46, 24m+32, 0}

Thus P2 = {0}∪ [1, m]∪ {10m+13}∪ [22m+30, 24m+30]2 ∪ {24m+32}∪ [24m+
33, 26m+33]2 ∪ [30m+39, 31m+38]∪ [31m+39, 32m+39]∪ {34m+46}∪ [40m+
53, 42m+ 53]2 ∪ [42m+ 57, 44m+ 57]2 ∪ [45m+ 58, 46m+ 58].

P3,1 = [1, m] ∪ [23m+ 28, 24m+ 28]
P3,2 = [13m+ 16, 14m+ 16] ∪ [22m+ 28, 23m+ 27] ∪ {42m+ 53}
P3,3 = [8m+ 9, 9m+ 9] ∪ [21m+ 27, 22m+ 27]
P3,4 = [7m+ 7, 8m+ 7] ∪ [36m+ 45, 37m+ 45] ∪ {48m+ 58, 48m+ 59, 0}

So P3 = {0} ∪ [1, m] ∪ [7m+ 7, 8m+ 7] ∪ [8m+ 9, 9m+ 9] ∪ [13m+ 16, 14m+ 16] ∪
[21m+27, 22m+27]∪ [22m+28, 23m+27]∪ [23m+28, 24m+28]∪ [36m+45, 37m+
45] ∪ {42m+ 53} ∪ {48m+ 58, 48m+ 59}.

If n ≡ 3 (mod 8), n ≥ 11: Define m = n−11
8

. All the arithmetic in this case will
be in Z48m+67. The first seven columns are: A =
⎡
⎣24m+ 33 8m+ 11 8m+ 13 4m+ 6 1 −12m− 17 8m+ 10
24m+ 32 −16m− 23 −12m− 18 10m+ 15 20m+ 27 −8m− 9 14m+ 20

2 8m+ 12 4m+ 5 −14m− 21 −20m− 28 20m+ 26 −22m− 30

⎤
⎦ .

For each 0 ≤ r ≤ 2m define

Ar = (−1)r

⎡
⎣(−16m+ r − 22) (24m− r + 31) (4m− 2r + 4) (−4m+ 2r − 3)

(8m− 2r + 8) (−8m+ 2r − 7) (−22m+ r − 29) (−10m− r − 16)
(8m+ r + 14) (−16m− r − 24) (18m+ r + 25) (14m− r + 19)

⎤
⎦ .

To construct H , begin with A and add on the remaining n − 7 columns by
concatenating the Ar arrays for each value of r between 0 and 2m. Let the reordering
be

R = (9, 13, . . . , n− 2; 8, 12, . . . , n− 3; 1, 11, 15, . . . , n; 6, 7, 10, 14, . . . , n− 1, 5, 2, 3, 4).

Then

P1,1 = [1, m] ∪ [23m+ 31, 24m+ 31]
P1,2 = [7m+ 9, 8m+ 9] ∪ [22m+ 31, 23m+ 30]
P1,3 = [28m+ 39, 30m+ 39]2 ∪ [30m+ 42, 32m+ 42]2
P1,4 = {18m+ 22} ∪ [26m+ 32, 28m+ 32]2 ∪ [28m+ 38, 30m+ 36]2

∪{28m+ 36, 28m+ 37, 36m+ 48, 44m+ 61, 0}
Thus P1 = {0}∪ [1, m]∪ [7m+9, 8m+9]∪{18m+22}∪ [22m+31, 23m+30]∪ [23m+
31, 24m+ 31] ∪ [26m + 32, 28m+ 32]2 ∪ {28m + 36, 28m+ 37} ∪ [28m + 38, 30m+
36]2 ∪ [28m+ 39, 30m+ 39]2 ∪ [30m+ 42, 32m+ 42]2 ∪ {36m+ 48, 44m+ 61}.
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P2,1 = [40m+ 60, 42m+ 60]2 ∪ [46m+ 67, 48m+ 65]2
P2,2 = [42m+ 62, 44m+ 60]2 ∪ [1, 2m+ 1]2
P2,3 = [13m+ 17, 14m+ 17] ∪ [24m+ 33, 25m+ 33]
P2,4 = {5m+ 8} ∪ [45m+ 66, 46m+ 66] ∪ [18m+ 28, 19m+ 28]

∪{18m+ 26, 2m+ 3, 38m+ 52, 0}

Thus P2 = {0} ∪ [1, 2m+ 1]2 ∪ {2m+ 3, 5m+ 8} ∪ [13m+ 17, 14m+ 17] ∪ {18m+
26} ∪ [18m+28, 19m+ 28]∪ [24m+ 33, 25m+33]∪ {38m+ 52} ∪ [40m+ 60, 42m+
60]2 ∪ [42m+ 62, 44m+ 60]2 ∪ [45m+ 66, 46m+ 66] ∪ [46m+ 67, 48m+ 65]2.

P3,1 = [1, m] ∪ [31m+ 43, 32m+ 43]
P3,2 = [30m+ 43, 31m+ 42] ∪ [39m+ 57, 40m+ 57]
P3,3 = [40m+ 59, 41m+ 59] ∪ [5m+ 11, 6m+ 11]
P3,4 = {25m+ 37} ∪ [2m+ 7, 3m+ 7] ∪ [21m+ 32, 22m+ 32]

∪{2m+ 4, 10m+ 16, 14m+ 21, 0}

So P3 = {0} ∪ [1, m] ∪ {2m+ 4} ∪ [2m+ 7, 3m+ 7] ∪ [5m + 11, 6m+ 11] ∪ {10m+
16, 14m+ 21} ∪ [21m+ 32, 22m+32]∪ {25m+ 37} ∪ [30m+ 43, 31m+42]∪ [31m+
43, 32m+ 43] ∪ [39m+ 57, 40m+ 57] ∪ [40m+ 59, 41m+ 59].

If n ≡ 4 (mod 8), n ≥ 12: Let m = n−12
8

. All the arithmetic in this case will be
in Z48m+73. The first eight columns are: A =⎡
⎣ 8m+13 10m+16 22m+34 −4m−5 4m+7 −22m−35 −12m−18 −1

4m+6 8m+11 −4m−8 22m+33 −14m−22 4m+10 −2 −20m−30
−12m−19 −18m−27 −18m−26 −18m−28 10m+15 18m+25 12m+20 20m+31

⎤
⎦.

For 0 ≤ r ≤ 2m define

Ar = (−1)r

⎡
⎣(−16m+ r − 23) (−8m+ 2r − 12) (14m− r + 21) (4m− 2r + 3)

(8m+ r + 14) (−16m− r − 24) (−10m− r − 17) (18m+ r + 29)
(8m− 2r + 9) (24m− r + 36) (−4m+ 2r − 4) (−22m+ r − 32)

⎤
⎦ .

To construct H , begin with A and add on the remaining n − 8 columns by
concatenating the Ar arrays for each value of r between 0 and 2m. Let the reordering
be R =

(9, 13, . . . , n− 3; 11, 15, . . . , n− 1; 4, 10, 14, . . . , n− 2; 12, 16, . . . , n, 1, 2, 6, 5, 7, 8, 3).

Then

P1,1= [32m+ 50, 33m+ 50] ∪ [47m+ 73, 48m+ 72]
P1,2= [46m+ 71, 47m+ 71] ∪ [33m+ 51, 34m+ 50]
P1,3= [34m+ 54, 36m+ 54]2 ∪ [40m+ 66, 42m+ 66]2
P1,4= [37m+ 59, 40m+ 57]2 ∪ [36m+ 56, 38m+ 54]2
∪{38m+ 57, 38m+ 58, 46m+ 70, 8m+ 13, 34m+ 51, 26m+ 40, 26m+ 39, 0}
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Thus P1 = {0, 8m+13, 26m+39, 26m+40}∪ [32m+50, 33m+50]∪ [33m+51, 34m+
50]∪{34m+51}∪ [34m+54, 36m+54]2∪ [36m+56, 38m+54]2∪{38m+57, 38m+
58}∪ [38m+59, 40m+57]2∪ [40m+66, 42m+66]2∪{46m+70}∪ [46m+71, 47m+
71] ∪ [47m+ 73, 48m+ 72].

P2,1 = [8m+ 14, 9m+ 14] ∪ [47m+ 73, 48m+ 72]
P2,2 = [9m+ 15, 10m+ 14] ∪ [46m+ 70, 47m+ 70]
P2,3 = [3m+ 6, 4m+ 6] ∪ [20m+ 30, 21m+ 30]
P2,4 = [2m+ 6, 3m+ 5] ∪ [21m+ 35, 22m+ 35]

∪{26m+ 41, 34m+ 52, 38m+ 62, 24m+ 40, 24m+ 38, 4m+ 8, 0}

Thus P2 = {0}∪ [2m+6, 3m+5]∪ [3m+6, 4m+6]∪{4m+8}∪ [8m+14, 9m+14]∪
[9m+15, 10m+14]∪ [20m+30, 21m+30]∪ [21m+35, 22m+35]∪{24m+38, 24m+
40, 26m+ 41, 34m+ 52, 38m+ 62} ∪ [46m+ 70, 47m+ 70] ∪ [47m+ 73, 48m+ 72].

P3,1 = [2, 2m]2 ∪ [6m+ 9, 8m+ 9]2
P3,2 = [2m+ 5, 4m+ 5]2 ∪ [4m+ 9, 6m+ 7]2
P3,3 = [9m+ 13, 10m+ 13] ∪ [34m+ 50, 35m+ 50]
P3,4 = [8m+ 13, 9m+ 12] ∪ [35m+ 54, 36m+ 54]

∪{24m+ 35, 6m+ 8, 24m+ 33, 34m+ 48, 46m+ 68, 18m+ 26, 0}

So P3 = {0} ∪ [2, 2m]2 ∪ [2m+ 5, 4m+ 5]2 ∪ [4m+ 9, 6m+ 7]2 ∪ {6m + 8} ∪ [6m +
9, 8m+9]2 ∪ [8m+13, 9m+12]∪ [9m+13, 10m+13]∪ {18m+26, 24m+33, 24m+
35, 34m+ 48} ∪ [34m+ 50, 35m+ 50] ∪ [35m+ 54, 36m+ 54] ∪ {46m+ 68}.

If n ≡ 5 (mod 8), n ≥ 5: Here m = n−5
8
. All the arithmetic in this case will be in

Z48m+31. The first five columns are:

A =

⎡
⎣ 8m+ 6 10m+ 7 −16m− 10 −4m− 4 4m+ 1
−16m− 9 8m+ 5 4m+ 2 −18m− 11 18m+ 13
8m+ 3 −18m− 12 12m+ 8 22m+ 15 −22m− 14

⎤
⎦ .

For each 0 ≤ r ≤ 2m− 1 define

Ar = (−1)r

⎡
⎣(−8m+ 2r − 1) (−14m+ r − 8) (16m + r + 11) (4m− 2r − 1)

(16m− r + 8) (4m− 2r) (8m− 2r + 4) (18m+ r + 14)
(−8m− r − 7) (10m+ r + 8) (−24m+ r − 15) (−22m+ r − 13)

⎤
⎦ .

To construct H , begin with A and add on the remaining n− 5 columns by concate-
nating the Ar arrays for each value of r between 0 and 2m − 1. Let the reordering
be

R = (9, 13, . . . , n; 5, 6, 10, . . . , n− 3; 3, 7, 11, . . . , n− 2; 1, 8, 12, . . . , n− 1, 4, 2).

Then
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P1,1 = [2, 2m]2 ∪ [2m+ 1, 4m− 1]2
P1,2 = [46m+ 31, 48m+ 29]2 ∪ [4m+ 1, 6m+ 1]2
P1,3 = [35m+ 22, 36m+ 22] ∪ [22m+ 14, 23m+ 13]
P1,4 = [42m+ 28, 43m+ 28] ∪ [11m+ 8, 12m+ 7] ∪ {38m+ 24, 0}

Thus P1 = {0} ∪ [2, 2m]2 ∪ [2m+ 1, 4m− 1]2 ∪ [4m+ 1, 6m+ 1]2 ∪ [11m+ 8, 12m+
7] ∪ [22m+ 14, 23m+ 13] ∪ [35m+ 22, 36m+ 22] ∪ {38m+ 24} ∪ [42m+ 28, 43m+
28] ∪ [46m+ 31, 48m+ 29]2.

P2,1 = [47m+ 31, 48m+ 30] ∪ [18m+ 14, 19m+ 13]
P2,2 = [17m+ 13, 18m+ 13] ∪ [32m+ 22, 33m+ 21]
P2,3 = [22m+ 15, 24m+ 15]2 ∪ [24m+ 17, 26m+ 15]2
P2,4 = [8m+ 6, 10m+ 6]2 ∪ [14m+ 12, 16m+ 10]2 ∪ {40m+ 26, 0}

Thus P2 = {0} ∪ [8m + 6, 10m + 6]2 ∪ [14m + 12, 16m + 10]2 ∪ [17m + 13, 18m +
13]∪ [18m+14, 19m+13]∪ [22m+15, 24m+15]2 ∪ [24m+17, 26m+15]2 ∪ [32m+
22, 33m+ 21] ∪ {40m+ 26} ∪ [47m+ 31, 48m+ 30].

P3,1 = [47m+ 31, 48m+ 30] ∪ [26m+ 18, 27m+ 17]
P3,2 = [16m+ 11, 17m+ 10] ∪ [25m+ 17, 26m+ 17]
P3,3 = [2, m+ 1] ∪ [37m+ 25, 38m+ 25]
P3,4 = [21m+ 13, 22m+ 12] ∪ [44m+ 28, 45m+ 28] ∪ {18m+ 12, 0}

So P3 = {0} ∪ [2, m + 1] ∪ [16m + 11, 17m+ 10] ∪ {18m + 12} ∪ [21m + 13, 22m +
12] ∪ [25m+ 17, 26m+ 17] ∪ [26m+ 18, 27m+ 17] ∪ [37m+ 25, 38m+ 25] ∪ [44m+
28, 45m+ 28] ∪ [47m+ 31, 48m+ 30].

If n ≡ 6 (mod 8), n ≥ 6: In this case, m = n−6
8
. All the arithmetic in this case

will be in Z48m+37. The first six columns are:

A =

⎡
⎣24m+ 18 −16m− 13 −1 8m+ 4 −4m− 3 −8m− 5

2 8m+ 6 −10m− 8 −20m− 14 −16m− 12 −12m− 11
24m+ 17 8m+ 7 10m+ 9 12m+ 10 20m+ 15 20m+ 16

⎤
⎦ .

For each 0 ≤ r ≤ 2m− 1 define

Ar = (−1)r

⎡
⎣(−8m+ 2r − 3) (−4m+ 2r − 1) (−4m+ 2r − 2) (8m− 2r + 2)
(16m− r + 11) (−10m− r − 10) (22m− r + 16) (16m+ r + 14)
(−8m− r − 8) (14m− r + 11) (−18m− r − 14) (−24m+ r − 16)

⎤
⎦ .

To construct H , begin with A and add on the remaining n − 6 columns by
concatenating the Ar arrays for each value of r between 0 and 2m − 1. Let the
reordering be

R = (10, 14, . . . , n; 2, 9, 13, . . . , n− 1; 4, 7, 11, . . . , n− 3; 1, 8, 12, . . . , n− 2, 5, 3, 6).

Then
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P1,1 = [2, 2m]2 ∪ [6m+ 4, 8m+ 2]2
P1,2 = [30m+ 22, 32m+ 20]2 ∪ [32m+ 24, 34m+ 24]2
P1,3 = [32m+ 25, 34m+ 23]2 ∪ [38m+ 28, 40m+ 28]2
P1,4 = [10m+ 8, 12m+ 6]2 ∪ [12m+ 9, 14m+ 9]2 ∪ {8m+ 6, 8m+ 5, 0}

Thus P1 = {0} ∪ [2, 2m]2 ∪ [6m+ 4, 8m+ 2]2 ∪ {8m+ 5, 8m+ 6} ∪ [10m+ 8, 12m+
6]2 ∪ [12m+ 9, 14m+ 9]2 ∪ [30m+ 22, 32m+ 20]2 ∪ [32m+ 24, 34m+ 24]2 ∪ [32m+
25, 34m+ 23]2 ∪ [38m+ 28, 40m+ 28]2.

P2,1 = [16m+ 14, 7m+ 13] ∪ [47m+ 37, 48m+ 36]
P2,2 = [7m+ 6, 8m+ 6] ∪ [28m+ 23, 29m+ 22]
P2,3 = [36m+ 29, 37m+ 29] ∪ [3m+ 4, 4m+ 3]
P2,4 = [26m+ 22, 27m+ 21] ∪ [37m+ 31, 38m+ 31] ∪ {22m+ 19, 12m+ 11, 0}

Thus P2 = {0}∪ [3m+4, 4m+3]∪ [7m+6, 8m+6]∪{12m+11}∪ [16m+14, 7m+
13] ∪ {22m+ 19} ∪ [26m+ 22, 27m+ 21] ∪ [28m+ 23, 29m+ 22] ∪ [36m+ 29, 37m+
29] ∪ [37m+ 31, 38m+ 31] ∪ [47m+ 37, 48m+ 36].

P3,1 = [24m+ 21, 25m+ 20] ∪ [47m+ 37, 48m+ 36]
P3,2 = [36m+ 31, 37m+ 30] ∪ [7m+ 7, 8m+ 7]
P3,3 = [20m+ 17, 21m+ 17] ∪ [11m+ 10, 12m+ 9]
P3,4 = [10m+ 9, 11m+ 8] ∪ [45m+ 34, 46m+ 34] ∪ {18m+ 12, 28m+ 21, 0}

So P3 = {0} ∪ [7m+ 7, 8m+7]∪ [10m+ 9, 11m+8]∪ [11m+ 10, 12m+ 9]∪ {18m+
12} ∪ [20m+17, 21m+ 17]∪ [24m+ 21, 25m+20]∪ {28m+ 21} ∪ [36m+ 31, 37m+
30] ∪ [45m+ 34, 46m+ 34] ∪ [47m+ 37, 48m+ 36].

If n ≡ 7 (mod 8), n ≥ 7: Now let m = n−7
8
. All the arithmetic in this case will be

in Z48m+43. The first seven columns are: A =

⎡
⎣24m+ 21 16m+ 15 4m+ 3 −4m− 4 −20m−18 −12m− 11 −8m− 6

2 −8m− 8 −12m− 12 14m+ 14 1 20m+ 16 −14m− 13
24m+ 20 −8m− 7 8m+ 9 −10m− 10 20m+17 −8m− 5 22m+ 19

⎤
⎦.

For each 0 ≤ r ≤ 2m− 1 define

Ar = (−1)r

⎡
⎣(−16m+ r − 14) (−8m+ 2r − 3) (−18m− r − 16) (4m− 2r + 1)

(8m+ r + 10) (−16m− r − 16) (22m− r + 18) (10m+ r + 11)
(8m− 2r + 4) (24m− r + 19) (−4m+ 2r − 2) (−14m+ r − 12)

⎤
⎦ .

To construct H , begin with A and add on the remaining n− 7 columns by concate-
nating the Ar arrays for each value of r between 0 and 2m − 1. Let the reordering
be

R = (10, 14, . . . , n− 1; 2, 8, 12, . . . , n− 3; 6, 11, 15, . . . , n; 7, 9, 13, . . . , n− 2, 4, 3, 1, 5).

Then
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P1,1 = [1, m] ∪ [29m+ 28, 30m+ 27]
P1,2 = [m+ 1, 2m] ∪ [16m+ 15, 17m+ 15]
P1,3 = [6m+ 7, 8m+ 5]2 ∪ [4m+ 4, 6m+ 4]2
P1,4 = [38m+ 38, 40m+ 36]2 ∪ [44m+ 41, 46m+ 41]2 ∪

{40m+ 37, 44m+ 40, 20m+ 18, 0}
Thus P1 = {0}∪ [1, m]∪ [m+1, 2m]∪ [4m+4, 6m+4]2 ∪ [6m+7, 8m+5]2 ∪ [16m+
15, 17m+15]∪{20m+18}∪ [29m+28, 30m+27]∪ [38m+38, 40m+36]2 ∪{40m+
37, 44m+ 40} ∪ [44m+ 41, 46m+ 41]2.

P2,1 = [1, m] ∪ [21m+ 19, 22m+ 18]
P2,2 = [m+ 2, 2m+ 1] ∪ [40m+ 35, 41m+ 35]
P2,3 = [11m+ 8, 12m+ 8] ∪ [22m+ 19, 23m+ 18]
P2,4 = [45m+ 38, 46m+ 38] ∪ [28m+ 23, 29m+ 22] ∪

{12m+ 9, 48m+ 40, 48m+ 42, 0}

Thus P2 = {0} ∪ [1, m]∪ [m+ 2, 2m+ 1]∪ [11m+ 8, 12m+ 8]∪ {12m+ 9} ∪ [21m+
19, 22m+18]∪ [22m+19, 23m+18]∪ [28m+23, 29m+22]∪ [40m+35, 41m+35]∪
[45m+ 38, 46m+ 38] ∪ {48m+ 40, 48m+ 42}.

P3,1 = [46m+ 43, 48m+ 41]2 ∪ [44m+ 41, 46m+ 39]2
P3,2 = [44m+ 42, 46m+ 40]2 ∪ [38m+ 36, 40m+ 36]2
P3,3 = [18m+ 19, 19m+ 18] ∪ [31m+ 31, 32m+ 31]
P3,4 = [5m+7, 6m+7] ∪ [28m+27, 29m+26]∪ {44m+40, 4m+6, 28m+26, 0}

So P3 = {0} ∪ {4m+ 6} ∪ [5m+ 7, 6m+ 7] ∪ [18m+ 19, 19m+ 18] ∪ {28m+ 26} ∪
[28m+27, 29m+26]∪ [31m+31, 32m+31]∪ [38m+36, 40m+36]2 ∪ {44m+40}∪
[44m+ 41, 46m+ 39]2 ∪ [44m+ 42, 46m+ 40]2 ∪ [46m+ 43, 48m+ 41]2. �

Now that we have established that for every n ≥ 3 there exists simple row and
column orderings for each Heffter array H(3, n) from [2] we can prove the main result
of this paper.

Theorem 3.6. For every n ≥ 3, there exists an orientable biembedding of K6n+1

such that every edge is on a 3-cycle and a simple n-cycle, or equivalently, for every
n ≥ 3, there exists an orientable biembedding of a Steiner triple system and a simple
n-cycle system, both on 6n+1 points. Furthermore, each of the two cycle systems is
cyclic modulo 6n+ 1.

Proof. By Theorem 3.5, given any n ∈ Z with n ≥ 3, there exists a 3 × n simple
Heffter array. By Corollary 3.2 it follows that there exists an embedding of K6n+1

on an orientable surface such that every edge is on a simple cycle face of size 3 and
a simple cycle face of size n. From Proposition 2.1 we have that each cycle system
is cyclic. �



J.H. DINITZ AND A.R.W. MATTERN/AUSTRALAS. J. COMBIN. 67 (2) (2017), 327–344 342

It is interesting to note on which orientable surface we are biembedding. Euler’s
formula, V −E+F = 2−2g, can be used to determine the genus of the surface. It is
easy to compute that for K6n+1; the number of vertices is V = 6n+1, the number of
edges is E =

(
6n+1

2

)
, and the number of faces is F =

(
6n+1

2

)
(1/3+1/n). Substituting

these values into Euler’s formula we get the following proposition.

Proposition 3.7. For n ≥ 3, K6n+1 can be biembedded such that every edge is on
an n-cycle and a 3-cycle on the orientable surface with genus

g = 1− 1/2
[
6n + 1 +

(
6n+ 1

2

)
(1/3 + 1/n− 1)

]
.

Example 3.8. Letting n = 5 in Proposition 3.7 above we get

g = 1− 1/2
[
31 +

(
31

2

)
(1/3 + 1/5− 1)

]
= 1− 1/2(31 + 465(−7/15)) = 94.

So K31 can be embedded on an orientable surface with genus 94 such that every edge
is on both a 3-cycle and a 5-cycle.

4 5× n Heffter Arrays

An obvious continuation of the 3×n result is to ask whether we can use 5×n Heffter
arrays to biembed K10n+1 such that every edge is on both a 5-cycle and an n-cycle.
Via Theorem 2.4, since 5 is odd we have the following corollary.

Corollary 4.1. If there exists a simple Heffter array H(5, n), then there exists an
orientable embedding of K10n+1 such that every edge is on a simple cycle face of size
5 and a simple cycle face of size n.

As was done in the case of the H(3, n) we start with an H(5, n) and rearrange
it so that the resulting H(5, n) is simple. All of the necessary H(5, n) exist via the
following theorem.

Theorem 4.2. [2] There exists a 5× n Heffter array for every n ≥ 3.

Considering the H(5, n) from [2] one can easily verify that the columns are simple
in the standard ordering and so again we only need to reorder to rows. However,
unlike the 3 × n case, we were unable to do this in general. In order to obtain a
partial result we found reorderings for 3 ≤ n ≤ 100 using a computer (this was not
difficult). We again use a single permutation for every row, which in fact reorders
the Heffter array by permuting the columns as units. We do not list the computed
permuations here; the interested reader can find them in Appendix A of [12].

Proposition 4.3. [12] There exists a simple 5× n Heffter array for every 3 ≤ n ≤
100.

So via Theorem 4.2 and Proposition 4.3 we have the main result of this section.

Theorem 4.4. For every 3 ≤ n ≤ 100, there exists an orientable biembedding of
K10n+1 such that every edge is on a simple cycle face of size 5 and a simple cycle
face of size n.
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5 Conclusion

In this paper we have shown that for every n ≥ 3, there exists an orientable biembed-
ding of a Steiner triple system and a simple n-cycle system, both on 6n + 1 points.
This paper is the first to exploit the connection which Archdeacon found between
Heffter arrays and biembeddings the complete graph on a surface to explicitly biem-
bed a class of graphs. We considered only the case of biembeddings arising from
the existence of Heffter arrays H(3, n) and H(5, n). In [2] Heffter arrays H(m,n)
are given for all m,n ≥ 3. Hence there is certainly an opportunity to use these for
the biembedding problem (if one can find simple orderings of the rows and columns
of these arrays). In addition, a more general definition of Heffter arrays from [1]
leads to biembeddings of other complete graphs (in addition to K2mn+1) as well as to
biembeddings on nonorientable surfaces. More Heffter arrays which could possibly
be used to construct biembeddings can be found in the paper [3].
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