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Abstract

This paper concerns two related enumeration problems on vertex labeled
graphs. Given such a graph G, we investigate the number C(G) of con-
nected subsets of the vertex set and the number P (G) of connected parti-
tions of the vertex set. By connected we mean that the induced subgraphs
are connected. The numbers C(G) and P (G) can be regarded as the (con-
nected) graph analogs of the number of subsets and the number of set
partitions, respectively, of an n-element set.

1 Introduction

Graphical enumeration is a major topic in graph theory; at its origins is the elegant
19th century formula of Cayley for the number of labeled trees on n vertices, and
already four decades ago a book [5] appeared on the subject. Not so common is
counting under connectivity restrictions. Two such enumeration problems are the
topic of this paper. In particular, graph analogs of the Stirling and Bell numbers are
introduced and investigated.

Unless otherwise stated, G is a simple graph, no loops or multiple edges, with
V = V (G) denoting the vertex set and E = E(G) the edge set. The vertices of G
are labeled V = {1, 2, . . . , n}. The number of subsets of an n-element set is 2n. A
graph analog is the number C(G) of connected subsets of V (G), where a nonempty
subset of V (G) is connected if its induced subgraph is connected. If G is the complete
graph Kn, then C(G) is exactly the number of subsets of an n-element set. Bounds
on C(G) in terms of the order and maximum degree of G appear in [2, 6].
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The number of set partitions of a labeled n-element set is the Bell number B(n).
A graph analog is the number P (G) of partitions of the vertex set V (G) of a graph
G of order n, where each part is connected. If G is the complete graph Kn, then
P (G) is exactly the Bell number B(n). It should be noted that our notion of par-
tition numbers is different than the “graphical Sterling numbers” defined in [4] and
references therein.

The subject of this paper are properties of C(G) and P (G). In particular, if G is
an infinite family of graphs, we examine the growth and growth thresholds of C(G)
and P (G) for G ∈ G. Four basic conjectures remain open.

The paper is organized as follows. Section 2 investigates properties of C(G) while
Section 3 investigates properties of P (G). The numbers C(G) and P (G) depend, in
large part, on the density of G, in particular on the number of edges of G and on
the degrees of the vertices. Theorem 4 provides sharp lower and upper bounds on
C(G) in terms of the number of edges of G. The remainder of Section 2 concerns the
growth rate (defined at the begining of Section 2) of C(G) for the graphs G in an
infinite family G of graphs. Exact formulas for C(G) are computed for various fami-
lies of graphs, providing examples of families with polynomial, subexponential, and
exponential growth rates for the number of connected vertex sets. The exponential
growth rate of a family cannot exceed 2, and this bound is attained. Theorem 5 pro-
vides a threshold between polynomial and exponential growth for any infinite family
of graphs, in terms of the degrees of the vertices of the graphs in the family. A more
refined condition sufficient for exponential growth is the subject of Conjecture 1.
Theorems 6 and 7 confirm the conjecture for special cases.

Results concerning the connected partition number P (G), analogous to those for
the connected set number C(P ), are the subject of Section 3 and Section 4. According
to Propositions 5 and 7 we know that 2n−1 ≤ P (G) ≤ 2m, for any graph G with n
vertices and m edges, and these bounds are sharp. The sharp upper bound on P (G)
in terms of n is clearly the Bell number B(n). A sharp lower bound on P (G) in
terms of m is more problematic and is the subject of Conjecture 2. In particular,
contrary to what at first may seem reasonable, the complete graph is conjectured to
have the minimum number of connected partitions among all graphs with an equal
number of edges.

For any infinite family G of graphs, the growth rate of P (G) of the graphs G ∈ G
is either exponential or super-exponential. Exact formulas for P (G) are computed
in Section 3 for various families of graphs, providing examples of both exponential
and super-exponential families. Unlike the situation for C(G), there is no upper
bound on the growth rate for P (G) for an exponential family; Example 11 provides
families of graphs with arbitrarily high exponential growth rate with respect to the
number of connected partitions. Section 4 discusses a threshold, in terms of vertex
degrees, between exponential and super-exponential growth for a family of graphs.
According to Theorem 13, if the set of average degrees of the graphs in a family G is
bounded, then G has exponential growth rate. Example 14 shows, however, that the
following statement is false: If the set of average degrees of the graphs in a family G is
unbounded, then G has super-exponential growth rate. We conjecture (Conjecture 3)
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that if the set of minimum degrees of the graphs in a family G is unbounded, then G
has super-exponential growth rate. We provide an approach to proving Conjecture 3
via Conjecture 4.

2 Counting Connected Vertex Sets

An infinite family G of graphs is said to have exponential growth rate with respect to
the number of connected sets if

C(G) := lim inf
G∈G

n
√
C(G) > 1,

where n is the number of vertices in G. An infinite family G of graphs is said to have
subexponential growth rate with respect to number of connected sets if

C(G) := lim sup
G∈G

n
√
C(G) = 1.

If there is a positive integer a such that

lim sup
G∈G

C(G) < na,

then G has polynomial growth rate. If C(G) = C(G), then the common value is re-
ferred to as the exponential growth rate and denoted C(G). The following proposition
is clear.

Proposition 1. For any infinite family G of graphs, C(G) ≤ 2.

Example 1 (Paths, Cycles, Complete Graphs, Complete Bipartite Graphs, Stars,
Wheels). For the complete graph Kn, complete bipartite graph Km,n, the path Pn,
the cycle Cn, the star K1,n, and the wheel Wn with n spokes (see Figure 1), it is not
hard to determine the number of connected vertex sets:

C(Kn) = 2n − 1

C(Km,n) = 2m+n − 2m − 2n +m+ n+ 1

C(Pn) = (n2 + n)/2

C(Cn) = n2 − n+ 1

C(Kn,1) = 2n + n

C(Wn) = 2n + n2 − n+ 1

The family of paths and the family of cycles have polynomial growth rate, while the
families of complete graphs, of stars, and of wheels have exponential growth rate 2,
which is as large as possible. Note that, although all trees on n vertices have the
same number of edges and average degree, the family of paths has polynomial growth
rate, while the family of star graphs has exponential growth rate.
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Example 2 (A family with subexponential, but not polynomial, growth). Let Mn

be the tree on n vertices that is the one vertex union of a star graph with b
√
nc

spokes and a path with n − b
√
nc vertices. (The single common vertex of the star

and the path can be taken to be the hub of the star.) See Figure 1. It is easy to
check that the family of such graphs has subexponential, but not polynomial, growth
rate.

Example 3 (Ladders). For the ladder Ln with n = 2r vertices and r rungs (see
Figure 1), a formula for the number of connected vertex sets can be obtained:

C(Ln) =
1

4

(
β

n
2
+3 + β

n
2
+3
)
− n− 7

2
,

where β = 1 +
√

2 and β = 1 −
√

2. This was derived as follows. If the rungs are
labeled 1 to r, in linear order along the ladder, then the number of connected vertex
sets containing a vertex in both rung 1 and rung r is in bijection with the number of
sequences of length r using digits 0, 1, 2, for which the digits 1 and 2 cannot appear
consecutively. This leads to a recursion to which generating function techniques can
be applied. Using the above formula, the exponential growth rate for the family G
of ladders can be obtained:

C(G) =

√
1 +
√

2 ≈ 1.55.

W L M6 12 9

Figure 1: The wheel W6, the ladder L12, and the graph M9 from Example 2.

Theorem 4. For a connected graph G with m edges (independent of the number of
vertices), (

m+ 2

2

)
≤ C(G) ≤ 2m +m.

The upper bound is attained by the star graphs, and the lower bound is attained by
paths.
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Proof. Concerning the upper bound, 2m−1 is clearly at least as great as the number
of non-empty subgraphs with at least one edge, and m+ 1 is at least as great as the
number of one vertex subgraphs.

Concerning the lower bound, asume that G is a connected graph with m edges
that minimizes the number of connected subsets of vertices. It is easy to confirm
that G is not a complete graph. Assume that G is not a tree. Then there is an
edge e = {u, v} of G that is contained in a cycle and such that the neighborhood
of u is not a complete graph. Consider the graph G′ obtained from G by deleting
e and adding an edge e′ = {u, v′}, where deg(v′) = 1. The number of connected
sets in G′ not containing v′ equals the number of connected sets in G not containing
v. The number of connected sets in G′ containing v′ is less than the number of
connected sets in G containing v. This contradicts the minimality of G, thus proving
that G must be a tree. The set of connected vertex sets in a path is in bijection
with the set of pairs {u, v} of (not necessarily distinct) vertices. Hence there are are(
m+2
2

)
connected sets. For a tree, each pair {u, v} of vertices determines a distinct

connected set, namely the unique path joining u and v. Therefore, of all trees with
m vertices, the path minimizes the number of connected sets.

Both the star graphs and the paths have average degree essentially 2. Hence, in
view of Theorem 4, the average degree of the graphs in a family G implies little about
the growth rate of G. The remainder of this section concerns a threshold involving
vertex degrees that does separate polynomial and exponential growth. The proof of
the next lemma is obvious.

Lemma 1. If H is a subgraph of G, then C(H) ≤ C(G).

For a graph G and vertex v, let C(G, v) denote the number of connected vertex
sets of G containing v.

Lemma 2. If G is a connected graph with minimum degree at least 3, then G has a
spanning tree T with an interior vertex v such that C(T, v) ≥ 2

n
4 .

Proof. Let T be a spanning tree with at least n/4 + 2 leaves. The existence of such a
spanning tree is proved in [7]. Let v be an interior vertex of T . There in an injective
map from the set of subsets of the set of leaves into the set of subtrees of T containing
v. In this injection a subset of leaves is mapped to the subtree that is the union of
all the unique paths joining v to each leaf in the subset. Therefore C(T, v) ≥ 2

n
4 .

Theorem 5. Let G be a family of connected graphs.

1. If the minimum degree is at least 3 for all G ∈ G, then G has exponential growth
rate with respect to the number of connected sets.

2. If the maximum degree is 2 for all G ∈ G, then G has polynomial growth rate
with respect to the number of connected sets.
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Proof. Statement (2) follows from Example 1. Concerning statement (1), for the
spanning tree of Lemma 2, and using Lemma 1, we have C(G) ≥ C(T, v) ≥ 2

n
4 for

any G ∈ G.

In an attempt to refine Theorem 5, we pose the following conjecture.

Conjecture 1. Let G be an infinite family of connected graphs. If N3(G) denotes
the number of vertices of degree at least 3 in G, and if

N3(G) := lim inf
G∈G

N3(G)

n(G)
> 0,

then G has exponential growth.

Remark 1. The converse of Conjecture 1 is not true. The family G of star graphs
has exponential growth, but N3(G) = 1 for all G ∈ G. The following two results
show that the conjecture is true under additional assumptions.

Theorem 6. If G is an infinite family of trees for which N3(G) > 0, then G has
exponential growth.

Proof. For any tree T we have n1(T ) ≥ N3(T ) + 2, where n1(T ) is the number of
leaves. By assumption, there is a constant α > 0 such that for all ε > 0 we have
N3(T ) ≥ (α − ε)n(T ) for all but finitely many T ∈ G. As in the proof of Lemma 2,
for all ε > 0 we have

C(T ) ≥ 2n1(T ) > 2N3(T ) ≥ 2(α−ε)n(T )

for all but finitely many T ∈ G. Therefore n
√
C(T ) ≥ 2(α−ε) for all but finitely many

T ∈ G, and hence C(G) ≥ 2α > 1.

Let ∆(G) denote the maximum degree of the vertices of G. An infinite family of
graphs has bounded degree if

D(G) := {∆(G) : G ∈ G}
is a bounded set.

Theorem 7. If the family G has bounded degree, and if N3(G) > 0, then G has
exponential growth.

Proof. Let B be the maximum of D(G). Let G ∈ G. As in the proof of Lemma 2,
let T be a spanning tree of G such that n1(T ) > n

4
, where nk, k ≥ 1, is the number

of vertices of degree k of T . Now∑
k>1

nk(T ) = 2 |E(T )| = 2

(∑
k>1

nk(T )− 1

)
,

which implies that

n

4
< n1(T ) = 2 +

B∑
k=3

(k − 2)nk(T ) ≤ 2 + (B − 2)N3(T ).

Therefore N3(T ) > n−8
4(B−2) , and hence this theorem follows from Theorem 6.
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3 Counting Graph Partitions

If G is a graph with labeled vertiex set V = {1, 2, . . . , n}, then a partition of V such
that each part is connected will be called a connected partition. The number P (G, k)
of connected partitions of G into k parts will be called the connected k-partition
number of G, and the total number of connected partitions

P (G) =
n∑
k=1

P (G, k)

of G will be called the connected partition number of G.

For the complete graph P (Kn, k) = S(n, k), the Stirling number of the second
kind, and P (Kn) = B(n), the Bell number. For the n-cycle, the connected k-partition
number, as will be shown in the next section, equals

(
n
k

)
, the binomial coefficient.

The following results are useful.

Proposition 2. If G is the union of two disjoint graphs G1 and G2, then

P (G1 ∪G2, k) =
k∑
i=1

P (G1, i)P (G2, k − i), P (G1 ∪G2) = P (G1)P (G2).

If G is the union of two graphs G1 and G2 that have exactly one vertex in common,
then

P (G1 ∪G2, k) =
k∑
i=1

P (G1, i)P (G2, k+ 1− i), P (G1 ∪G2) = P (G1)P (G2).

Proof. The proof of the first formula is clear. Concerning the second formula, if v is
the common vertex of G1 and G2, then any connected partition of G corresponds to
connectd partitions P1 and P2 of G1 and G2, respectively, where the total number of
parts is k + 1, and the two parts containing v are combined into one part.

Proposition 3. If H is a subgraph of G, then P (H, k) ≤ P (G, k).

Proof. If U is a set of vertices of H that induces a connected graph, then U obviously
induces a connected graph in G.

Proposition 4. The connected partition number P (G) equals the number of subsets
S of the edge set of G such that no cycle in G contains exactly one edge in S.

Proof. The removal of a set S of edges determines a partition, namely the partition
obtained by removing those edges (but not the endpoints). This would be a bijection,
except in the case that an edge e ∈ S is the only edge of S on some cycle in G. In
this case, removing e is superflous.

An infinite family G of graphs is said to have exponential growth rate with respect
to the connected partition number if

P (G) := lim sup
G∈G

n
√
P (G) <∞,
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where n is the number of vertices in G. An infinite family G of graphs is said to have
super-exponential growth rate with respect to the connected partition number if

P (G) := lim inf
G∈G

n
√
P (G) =∞.

If P (G) = P (G) <∞, then the common value is referred to as the exponential growth
rate and denoted P (G).

Example 8 (Trees, Cycles, Compete Graphs). The connected partition numbers of
the complete graph Kn, any tree Tn on n vertices, and the cycle Cn are as follows:

P (Kn, k) = S(n, k)

P (Kn) = B(n)

P (Tn, k) =

(
n− 1

k − 1

)

P (Tn) = 2n−1

P (Cn, k) =

{(
n
k

)
if k ≥ 2

1 if k = 1.

P (Cn) = 2n − n
The first formula is clear because, in the complete graph, any subset of vertices
induces a connected subgraph. For a tree, any connected partition into k parts is
determined by the removal of k − 1 edges. For the cycle, any connected partition
into k, k ≥ 2, parts is determined by the removal of k edges.

For the families of trees and of cycles, the exponential growth rate is 2. For
the family of complete graphs, the growth rate is super-exponential. This last fact
follows from known asymptotics of the Bell numbers. From a formula of de Bruijn
[3], it follows that B(n) >

(
n

e lnn

)n
, for n sufficiently large. It is shown in [1] that

B(n) <
(

.792n
ln(n+1)

)n
for all n.

Example 9 (Wheels). Let Wn be the wheel graph with n spokes and n+ 1 vertices,
v denoting the hub of the wheel and c the cycle of n vertices. Then the connected
partition number is given by:

P (Wn) = f2n−1 + f2n+1 − n,
where fn is the nth Fibonacci number with f0 = 0, f1 = 1.

To derive this formula, first note that there are 2 connected partitions for which
all n vertices of c are in the same part. To count the other connected partitions first
delete k, 2 ≤ k ≤ n, edges on c; this uniquely determines a connected partition of c.
If the k parts are deoted p1, p2, . . . , pk, then a connected partition of Wn is uniquely
determined by first choosing any subset S of P = {p1, p2, . . . , pk} for which no two
cyclicly consecutive parts are in the subset, then taking the union of those parts and
v as a single part in the connected partition of Wn. The other parts in the connected
partition of Wn are the remaining parts of P . The number of such subsets S is in
bijection with the number of circular binary sequences of length n using digits 0, 1
with no two circularly consecutive ones. It is not hard to show that this is equal to
fk+2 − fk−2 = fk+1 + fk−1. Therefore

P (Wn) = 2 +
n∑
k=2

(
n

k

)
(fk+1 + fk−1) = 2 +

n∑
k=0

(
n

k

)
(fk+1 + fk−1)− n− 2

= f2n−1 + f2n+1 − n,
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the last equality proved by induction. This leads to the exponential growth rate of
the family G of wheels:

P (G) = τ 2 ≈ 2.618,

where τ is the golden ratio (1 +
√

5)/2.

Example 10 (Ladders). As in Example 3, let Ln be the ladder of order n with
r = n/2 rungs. Letting ar and br denote the number of connected partitions of L2r

for which the two vertices on the last rung are in the same part and in different parts,
respectively, we have the recursions: a0 = −1, b0 = 1, and

ar+1 = 2ar + 3br, br+1 = 3ar + 4br.

Generating function techniques lead to

P (Ln) =
1√
10

(
α

n
2 − α

n
2

)
,

where α = 3 +
√

10 and α = 3−
√

10. The exponential growth rate for the family G
of ladders is

P (G) =

√
3 +
√

10 ≈ 2.48.

Example 11 (Exponential families with arbitrarily high growth rate). Let Gd(k)
denote the graph that is a chain of k copies of the complete graph Kd, each sharing
a single vertex with the next. The graph Gd(k) has n = k(d− 1) + 1 vertices. Using
Proposition 2 and the bounds on the Bell numbers given at the end of Example 8,
there is a constant c such that

d

ln d
<

(
d

ln d

) kd
n

< (P (Kd))
k
n = n

√
P (Gd(k)) = (P (Kd))

k
n <

(
cd

ln d

) kd
n

<

(
cd

ln d

)2

.

Therefore, with d fixed but sufficiently large, the familty Gd of graphs {Gd(k) : k ≥ 1}
has exponential growth with rate

P (Gd) >
d

ln d
.

Example 12 (A super-exponential family). On the other hand (referring to the
previous example), with k fixed, the family Gk of graphs {Gd(k) : d ≥ 3} has super-
exponential growth. Moreover, let d = (d1, d2, . . . ) be a (possibly very slowly) in-
creasing sequence of integers and k = (k1, k2, . . . ) a (possibly very rapidly) increasing
sequence of integers. The family

Gd,k = {Gdi(ki)}
∞
i=1

has super-exponential growth because, as in Example 11, n
√
P (Gdi(ki)) >

di
ln di

.

Proposition 6 below concerns lower and upper bounds on the growth rate for a
family of graphs with exponential growth rate. Example 11 verifies the last statement
of Proposition 6. The first statement is a consequence of Proposition 5.
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Proposition 5. If G is a connected graph on n vertices, then P (G) ≥ 2n−1. Equality
holds when G is a tree.

Proof. Let T be any spanning tree of G. By Lemma 3 and Example 11, we have

P (G) ≥ P (T ) =
n∑
k=1

P (T, k) =
n∑
k=1

(
n− 1

k − 1

)
= 2n−1.

Corollary 1. There is no infinite family of graphs with subexponential growth rate
with respect to the number of connected partitions.

Proposition 6. If G is an infinite family of connected graphs, then P (G) ≥ 2. There
is no finite upper bound on P (G) for a family of connected graphs with exponential
growth rate.

Concerning a result similar to Theorem 4 for connected partitions, there is an
easy upper bound given in the following propositon. A lower bound is addressed in
Conjecture 2.

Proposition 7. For a graph G with m edges (independent of the number of vertices),
we have

P (G) ≤ 2m,

with equallity for any forest and no other graph.

Proof. The bound and the last statement of the theorem follow from Proposition 4
since, for a forest and only for a forest, any subset of E(G) is a set S of the type in
the proposition.

Concerning a lower bound, let K(m) be the graph with m edges defined as follows.
Let p be the largest integer such that

(
p
2

)
≤ m, and let K(m) be the graph obtained

from the complete graph Kp by adding one additional vertex joined to m −
(
p
2

)
vertices of Kp. Note that K(m) is, up to isomorphism, independent of the particular
edges added. The graph K(12) is shown in Figure 2. If m =

(
p
2

)
, then K(m) is the

complete graph Kp.

Conjecture 2. For a connected graph G with m edges (independent of the number
of vertices), we have

P (G) ≥ P (K(m)) .

In particular, the complete graph Kn has the minimum number of connected partitions
among all graphs with an equal number of edges.

Figure 3 shows graphs G1, G2, both with 6 vertices and 11 edges. The graph G1

is the one that is conjectured extremal (minimum) with respect to the number of
connected partitions.
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K(12)

Figure 2: The graph with the minimum number of connected partitions among
graphs with 12 edges.

P(G  ) = 1041 P(G  ) = 1182

Figure 3: Comparison P (G1) < P (G2).

4 A Threshold for Exponential Growth

For a graph G, let δ(G) and d(G) denote the minimum and the average degrees,
respectively, of G. Call an infinite family G of graphs sparse if there is a constant c
such that d(G) ≤ c for all G ∈ G. Call G dense if, for all positive c, we have δ(G) > c
for all but finitely many G ∈ G. The families of cycles, of wheels, of ladders, and the
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family Gd of Example 11 are sparse. The family of complete graphs and the family
Gd,k of Example 12 are dense.

This section concerns a threshold between exponential and super-exponential
growth, with respect to connected partitions, for a general family of graphs. The
examples in the preceeding section show that the families of trees, cycles, wheels,
and ladders have exponential growth. The family of complete graphs and the family
Gd,k of Example 12 are super-exponential. More generally:

Theorem 13. If the infinite family G is sparse, then G has exponential growth with
respect to connected partitions. The converse of this statement is false.

Proof. Assume that there is a bound c on the average degree 2E(G)/V (G) of the
graphs in G. By Theorem 7 the connected partition number is not more than 2|E(G)| ≤
2cn/2 = (

√
2
c)n

for every G ∈ G , where n = |V (G)|. Therefore P (G) <
√

2
c
< ∞.

The second statement in the theorem is shown via the following example.

Example 14 (The converse of Theorem 13 is false). This is an example of a family
of graphs with exponential growth, but whose set of average degrees is unbounded.
Let Gn be the graph on n vertices that is the union of a complete graph Kr of order
r = d

√
n lnne and the path P of order n− r+ 1. The graphs Kr and P have exactly

one vertex v in common. Let G = {Gn, n ≥ 4}.
The number of edges in Gn is

(
r
2

)
+n−r > cn lnn for some constant c independent

of n. Therefore the average degee is unbounded. For a connected partition of Gn,
there are (n− r) 2r−1 possibilities for the part X containing the vertex v. There are
at most 2n−r possibilities for the graph partition of P not in X, and, for r sufficiently
large, at most

(
r

ln r

)r
possibilities for the graph partition of Kr not in X. Therefore,

P (Gn) < (n− r) 2r−12n−r
( r

ln r

)r
< n2n

(
2
√
n
)√n lnn

,

and
P (G) < 2 n

√
n
(√

n
) lnn√

n → 2

as n→∞. Therefore G has exponential growth.

Conjecture 3. If G is a dense family of graphs, then G has super-exponential growth.

Remark 2. To conclude that a family G has super-exponential growth, it is not
sufficient to assume that the set of average degrees of the graphs in the family is
unbounded. This is shown by Example 14, a family of graphs whose set of average
degrees is unbounded but nevertheless has exponential growth.

Consider the super-exponential family Gd,k = {Gdi(ki)}
∞
i=1 of Example 12, except

now we assume that the copies of Kd are mutually disjoint, not joined at a single
vertex. The fact that Gdi(ki) is now disconnected does not alter the calculation
showing that Gd,k is super-exponential. The order of the graph Gdi(ki) is now ni =
kidi, and all vertices have degree di − 1.
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Conjecture 4. Given n = k(d + 1), the graph Gd+1(k) as defined above minimizes
P (G) over all graphs G (not necessarily connected) of order n all of whose vertices
have degree at least d.

Proposition 8. If Conjecture 4 is true, then Conjecture 3 is true.

Proof. Let G be a dense family of graphs. For any graph G ∈ G, of order n(G)
and minimum degree δ(G), let H(G) be the graph in Gdi(ki) ∈ Gd+1,k such that
ni ≤ n(G) < ni+1 and di ≤ δ(G) < di1 . Assuming Conjecture 4, we have P (G) ≥
P (H(G)) for all G ∈ G. Since the family {H(G) : G ∈ G} is super-exponential, so
is G.
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