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Abstract

A drawing of a (simple) graph in the plane is a superthrackle if every pair
of edges cross exactly once. This is a variant of a thrackle, in which pairs
of non-adjacent edges cross exactly once but adjacent edges do not cross.
We characterize the graphs that are superthrackleable. They are either
a) bipartite and planar, or b) non-bipartite and projective-planar with
every face an even walk. As a corollary, a graph is superthrackleable if
and only if it can be drawn with all crossings at a single point, or drawn
as a generalized thrackle.

1 Introduction

A drawing of a graph G on a surface S is a representation where vertices are points
and edges are Jordan arcs connecting their endpoints while passing through no other
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vertex. We assume two distinct edges intersect in a finite number of points and that
at each intersection the edges cross transversally. A drawing is cellular if each region
in the complement S − G is homeomorphic to an open disk. An embedding is a
drawing with no crossings.

The usual goal when drawing a graph is to minimize the number of crossings.
To this end we place three restrictions: a) no edge crosses itself, b) no two adjacent
edges cross, and c) no two edges cross more than once. A drawing satisfying these
three conditions is called good. The motivation is that any drawing of G that is not
good can be modified to a good drawing with fewer crossings.

Consider the other extreme: good drawings that have the maximum possible
number of crossings. A thrackle is a planar drawing of a graph in which every pair of
non-adjacent edges cross. A graph is thrackleable if it can be drawn as a thrackle. In
the late 1960’s J.H. Conway conjectured that the number of edges in a thrackleable
graph was at most the number of vertices. His conjecture remains unsolved. D.R.
Woodall [15] showed that to prove Conway’s conjecture it suffices to show that two
even cycles meeting at a single vertex cannot be thrackled. He also gave a complete
characterization of graphs that could be thrackled, assuming Conway’s conjecture
were true. For practice, the reader is invited to show that a 4-cycle cannot be
thrackled, to find a thrackle drawing of a 5-cycle and to find a thrackle drawing of a
6-cycle; this latter task is more difficult.

Many variants of thrackles have been studied: outerplanar thrackles [6], gen-
eralized thrackles [4, 5, 9] (which we will return to later in this paper), tangled
thrackles [10, 13] and spherical thrackles [3], for example. We study a different
variation of thrackles, relaxing the condition that two adjacent edges do not cross.
A superthrackle is a drawing in which every pair of edges cross, adjacent or non-
adjacent. Again for practice, the reader is invited to find a superthrackle drawing
of a 4-cycle. Lemma 5.1 shows that any thrackleable graph can be superthrackled.
A superthrackle drawing of K4 is shown at the end of Figure 2, where every pair of
edges cross transversally at the common central point.

Our goal is to characterize superthrackleable graphs.

The projective plane P 2 is the non-orientable compact surface with a single cross-
cap. Equivalently, it is the sphere with antipodal points identified. It is commonly
represented (and will be here) as a disk where it is understood that each boundary
point x is identified with its antipodal point −x. For an example see Part (a) of
Figure 2 where K4 is embedded in P 2 using this representation.

We now state our Main Theorem.

Theorem 1.1 A graph is superthrackleable if and only if it is either:

1. bipartite and planar, or

2. non-bipartite and projective planar with every face of even length.

Any contractible simple cycle on the projective plane has a neighborhood isomor-
phic to a cylinder; it is 2-sided. Any noncontractible simple (also called essential)



D. ARCHDEACON AND K. STOR/AUSTRALAS. J. COMBIN. 67 (2) (2017), 145–158 147

cycle has a neighborhood isomorphic to a Möbius strip; it is 1-sided. A graph em-
bedded in the projective plane is a parity embedding when a simple cycle is one-sided
if and only if it is of odd length.

An even edge-subdivision of a graph is one in which every edge is subdivided
an even number of times. A vertex subdivision at v subdivides every edge incident
with v precisely once. Two graphs G and G′ are parity homeomorphic if there is
a graph H which can be obtained from G and from G′ by the operations of even
edge-subdivision and vertex subdivision. Notice that a cycle’s length modulo 2 is
fixed by both vertex subdivision and even edge-subdivision, so if graphs G and G′

are parity homeomorphic then corresponding cycles in the two graphs have the same
length modulo 2.

A graph has a parity embedding in the projective plane if and only if its parity
homeomorphs have a parity embedding. The two classes of graphs described in The-
orem 1.1 are exactly those with projective-planar parity embeddings. Theorem 2.9
characterizes the graphs with a parity embedding on the projective plane. Together
these give the following variant of Theorem 1.1.

Theorem 1.2 A graph is superthrackleable if and only if:

1. it has a parity embedding in the projective plane, or equivalently

2. no subgraph is a parity homeomorph of one of the graphs of Figure 3 (considered
as unsigned graphs with solid edges subdivided once).

The remainder of the paper is devoted to the proof of Theorem 1.1 and studying
its consequences. In Section 2 we give a basic lemma about superthrackle drawings,
examine some small cases, and discuss signed graphs, signed embeddings, and their
relation to parity embeddings. In Section 3 we show that the graphs in Theorem
1.1 can be superthrackled. Section 4 shows that these are the only superthrack-
leable graphs. Section 5 gives some consequences of our result, in particular relating
superthrackles to other variations of thrackles. Concluding remarks are given in
Section 6.

2 Basic concepts

In this section we give some elementary results and concepts. The following obser-
vation is central in our arguments.

Lemma 2.1 If a graph G can be superthrackled, then any subgraph H of G can be
superthrackled.

Proof: Restrict the superthrackle drawing of G to a drawing of H ; the result is
also a superthrackle drawing.
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We group the remaining background material in two subsections. Section 2.1
concerns graphs with only a few cycles, while Section 2.2 introduces signed graphs
and signed embeddings.

2.1 Superthrackling graphs with few cycles

We turn our attention to when a graph with only a few cycles can be superthrackled.

Lemma 2.2 Two disjoint odd cycles cannot be superthrackled.

Proof: Let the disjoint odd cycles be C1 and C2 and suppose they can be su-
perthrackled. Any superthrackle drawing of C1 forms a planar graph where, con-
sidering the crossings as vertices, every vertex is of degree 2 or 4. We apply the
well-known result that the faces of such a drawing can be properly 2-colored black
and white. Let v be a vertex of C2 lying in a black face of the superthrackle drawing
of C1. In the superthrackle drawing of C2 every edge of C1 crosses every edge of C2.
Each such crossing changes the color of the face in the drawing of C1. Since both
cycles are of odd length, the face color changes an odd number of times, contradicting
the assumption that the cycle is closed.

We next consider a wedge of cycles, two cycles C1 and C2 that intersect in a single
vertex v. In a drawing of a wedge of cycles we say that the cycles are interlaced if in
a small neighborhood around v the two edges incident with C1 are separated by the
two edges incident with C2.

Lemma 2.3 Suppose that a wedge of two cycles is superthrackled. Then the cycles
are interlaced if and only if they are both of odd length.

Proof: Consider a superthrackle drawing of C1. We again 2-color the faces of this
drawing. The cycle C2 is interlaced with C1 at v if and only if its edge-ends incident
with v occur in faces of two different colors. As we walk along C2 each crossing of
an edge of C1 changes the color of the face, so the cycles are interlaced if and only
if the number of such crossings is odd. This happens precisely when both cycles are
odd.

A θ-graph is a graph with two vertices u, v and three internally vertex-disjoint
paths A,B,C joining these vertices, or equivalently, a graph homeomorphic to K2,3.
Consider a drawing of a θ-graph. Each vertex has one of two possible orientations:
either the edges in A,B,C appear in clockwise or anticlockwise order. The drawing is
a preserver if the order on the incident edges in A,B,C is the same at both u, v, and
is a converter otherwise. For example, the drawing of a θ-graph without crossings is
a converter.

The following lemma is a variation of Lemma 2.3 from [9].

Lemma 2.4 A superthrackle drawing of a θ-graph H is a converter if and only if at
most one of the paths is of odd length.
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Proof: Let H be the θ-graph labelled as described where the paths A,B,C have
lengths a, b, c respectively. We look at properties of a superthrackle drawing of H .

First consider the induced superthrackle drawing D of the cycle A ∪ B. As in
Lemma 2.2 we consider crossings as vertices and properly 2-color the faces of D
black and white. Walking along A from u to v, each crossing changes the black face
between being on the right or left. The total number of such crossings is ab + 2

(
a
2

)

(each of the a edges of A crosses the b edges of B, and each crossing of two distinct
edges in A is counted once for each involved edge). Hence walking from u to v the
faces to the right of the first and last edges of A are the same color if and only if
ab+ 2

(
a
2

)
is even.

We add the path C. In our supposed superthrackle drawing C crosses edges of
A ∪ B exactly c(a + b) times. Each such crossing changes the color of the resident
face in D, so the ends of C are in faces of A ∪ B with the same color if and only if
c(a + b) is even.

The key observation is that when ab + 2
(
a
2

)
is even, the drawing is a converter

if and only if the ends of C are in faces of the same color, and when ab + 2
(
a
2

)
is

odd, the drawing is a converter if and only if the ends of C are in faces of different
colors. Hence the drawing is a converter if and only if ab+2

(
a
2

) ≡ c(a+ b) (mod 2).
Equivalently, the drawing is a converter if and only if ab + ac + bc ≡ 0 (mod 2). A
simple calculation shows that the equation holds if and only if at most one of a, b, c
is odd, giving our desired result

We use Lemma 2.4 to determine the clockwise/anticlockwise orientation of an
ordered triple of edge-ends incident with a vertex. To this end we need an easy way
to describe a θ-graph. Our notation is most easily shown by example. Consider K3,3

where the vertex parts are a, b, c versus x, y, z. Consider a θ-graph with degree three
vertices a, x and paths A = [a, x], B = [a, y, b, x], and C = [a, z, c, x]. Denote this
θ-graph by 〈ax, aybx, azcx〉. Our example is a preserver in a superthrackle drawing
since every path is of odd length.

Lemma 2.5 Let H be a θ-subgraph with degree 3 vertices u, v. Then any subdivision
H ′ of H obtained by even subdivisions and vertex subdivisions at w �= u, v is a
preserver if and only if H is. A vertex subdivision at one of u, v changes preservers
to converters, while vertex subdivisions at both leaves its status unchanged.

Proof: A vertex subdivision changes the parity of the paths A,B,C precisely when
it is at vertex u, v. An even subdivision does not change the parity of any path.

2.2 Signed graphs and their embeddings

A signed graph G± is a graph G together with a sign (plus or minus) associated with
each edge. The sign of a cycle is the product of the signs on its edges, that is, a cycle
is signed plus if and only if it has an even number of edges signed minus. Recall
that a vertex switch at a vertex v changes the signs on every edge incident with v.
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A vertex switch does not change the sign of any cycle. Two signatures are switching
equivalent if there is a sequence of vertex switches changing one into the other.

A signed subdivision of a signed graph is formed by replacing each edge uv with
a path joining u and v with new interior vertices such that the product of the signs
on these edges is the same as the sign on uv. Two signed graphs are switching
homeomorphs if they have signed subdivisions that are switching equivalent.

A signed embedding of G± is an embedding of G such that any cycle C of G is
1-sided if and only if it is negative. A signed graph is projective-planar if it has a
signed embedding on the projective plane.

Lemma 2.6 If G± has a signed embedding on a surface S, then any switching home-
omorph H± has a signed embedding on S.

We need the following theorem of Zaslavsky [17].

Theorem 2.7 A signed graph is projective-planar if and only if it contains no sub-
graph that is switching homeomorphic to one of the graphs of Figure 3 (considered
as signed graphs with dotted edges negative).

Recall that a parity embedding is one in which a cycle is 1-sided if and only if
it is of odd length. Form the signed graph G− from a given unsigned G by making
every edge negative. A cycle in G− is negative if and only if it has odd length. This
immediately yields:

Lemma 2.8 A signed embedding of G− is a parity embedding of G.

We restate Theorem 2.7 for parity embeddings.

Theorem 2.9 A graph has a parity embedding in the projective plane if and only if
it does not contain a subgraph that is parity homeomorphic to one of the graphs of
Figure 3 (considered as unsigned graphs with solid edges subdivided once).

3 When you can superthrackle

In this section we prove one direction of Theorem 1.1: namely, we show that the
graphs described therein can be superthrackled. We deal with the two classes indi-
vidually.

Proposition 3.1 Let G be a planar bipartite graph. Then G is superthrackeable.
Moreover, it can be drawn so that all crossings occur at a common point.
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Figure 1: Embedding of bipartite graph, the cube, on the sphere with contractible
cycle giving a superthrackle on the sphere.

Proof: The proof uses a “cut-and-paste” construction illustrated in Figure 1. In
this figure the underlying graph is the cube.

Consider a planar embedding of the bipartite G. Our first goal is a simple closed
curve C in the plane that crosses each edge of G exactly once. We form an embedded
bipartite graph G′ containing G by adding edges to G until every face has size at
most 4. A simple closed curve C ′ crossing every edge of G′ exactly once does the
same for G, so renaming if necessary we assume every face of G is of size 4.

We consider the embedded dual G∗ of G. Every vertex of G∗ is of degree 4,
so G∗ is Eulerian. Belyi [2] showed that every embedded Eulerian graph (in any
surface) has a non-self-intersecting Eulerian circuit, that is, an Eulerian circuit such
that every pair of consecutive edges are on the same face. We replace each degree
4 vertex of G∗ by two degree 2 vertices paired with the edges as they appear in the
Eulerian circuit. This splits the Eulerian circuit into our desired C.

We next cut along the curve C. This disconnects the plane into two pieces, the
inside and the outside. Along the boundary of both pieces C intersects the edges in
order e1, . . . , em. We flip the inside region (reversing its orientation) so that it now
intersects the edges in order em, . . . , e1. We next reconnect the corresponding edge
ends. When doing so note that every edge now crosses every other edge exactly once.
More strongly, we can do so such that there is a common point of intersection.

The drawing resulting from this construction is a superthrackle of G as desired.

We next show the second class of graphs in Theorem 1.1 can be superthrackled.
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Proposition 3.2 Let G be a non-bipartite graph embedded in the projective plane
so that every face is of even size. Then G is superthrackeable. Moreover, it can be
drawn so that all crossings occur at a common point.

Proof: The proof again uses a “cut-and-paste” construction, this time illustrated
in Figure 2 where the underlying graph is K4.
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Figure 2: Parity embedding of non-bipartite K4 on P 2 with an essential cycle giving
a superthrackle on the sphere.

Consider a projective-planar embedding of G such that every face is of even size.
Our goal this time is an essential (i.e., 1-sided) closed curve C in the projective
plane that crosses each edge of G exactly once. As in Proposition 3.1 we add edges
as necessary to form G′ with every face of size at most 4, and so without loss of
generality every face of G is of size 4. We find our non-self-intersecting Eulerian
circuit again using Belyi’s Theorem [2]. As before, we can split this to our desired
curve C.

We must show that C is essential. If it isn’t, then it is contractible and divides
the projective plane P 2 into two pieces. Any crossing of an edge in G with C changes
between these pieces, so every cycle of G is even. This contradicts the assumption
that G is non-bipartite.

We next take an ε-neighborhood of C, which is a Möbius strip as C is 1-sided.
Cut this out, sew in a disk and reconnect the edges through this disk. Any two edges
now cross, and again this can be done with a single point of intersection.
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The drawing resulting from this construction is a superthrackle of G on the sphere
as desired.

4 When you can’t superthrackle

In this section we show that some graphs cannot be superthrackled. This is exactly
the set of graphs not in the two classes of Theorem 1.1.

Proposition 4.1 Suppose that G contains a subgraph that is parity homeomorphic
of one of the graphs shown in Figure 3 (considered as unsigned graphs with solid
edges subdivided once). Then G is not superthrackleable.

Proof: By Lemma 2.1 it suffices to show that no parity homeomorph of a graph
in Figure 3 can be superthrackled. We examine these eight graphs in turn. In each
case we use Lemma 2.2, 2.3, and/or 2.4.
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Figure 3: The obstruction set. As signed graphs, solid edges are positive and dotted
edges are negative. As unsigned graphs each solid edge is subdivided once.

Case 1, V2 : Any graph parity homeomorphic to V2 is the disjoint union of two
odd cycles. By Lemma 2.2 it cannot be superthrackled.

Case 2, K+
3,3 : Consider K3,3 with vertex bipartition 1, 2, 3 versus a, b, c. We first

use Lemma 2.4 and in particular the notation for θ-graphs introduced immediately
after that lemma to show that K3,3 cannot be superthrackled. By way of contra-
diction suppose that we have a superthrackle drawing and without loss of generality
suppose that the edges (a1, a2, a3) appear in clockwise order around vertex a.

We first consider the θ-graph 〈a1, a2b1, a3c1〉. Every path is of odd length, so by
Lemma 2.4 this is a preserver. Since (a1, a2, a3) appear in clockwise order around
a, (a1, b1, c1) appear in clockwise order around 1. Next we consider the θ-graph
〈a1, a2c1, a3b1〉. Again, this is a preserver, and (a1, a2, a3) in clockwise order about
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a implies that (a1, c1, b1) are clockwise around 1. This gives our desired contradiction
since the two cyclic orders of edges {a1, b1, c1} are different.

Any vertex subdivision at v changes the length of any path incident to v. A θ-
graph changes from being a converter and preserver if and only if it has v as a degree
3 vertex. In either case we still get the same contradiction of two different cyclic
orders. The same holds for even subdivisions, so no graph switching equivalent to
K3,3 is superthrackleable. The graph K+

3,3 is parity homeomorphic to K3,3 by vertex
switches at a, b, c, completing this case.

Case 3, K3,3(e) : The argument is the same as that of the previous case. We first
start with the switching equivalent graphK3,3 with a single edge subdivided. The two
θ-graphs involved in the argument have at most one path of even length, and so by
Lemma 2.4 are still preservers leading to the same contradiction. The argument for
parity homeomorphs follows mutatis mutandis. Since K3,3(e) is a parity homeomorph
of the graph of K3,3 with a single edge subdivided (again by vertex switches at a, b, c)
it, along with its other parity homeomorphs, are not superthrackleable.

Case 4, K+
5 : Let the degree 4 vertices be 0, 1, 2, 3, 4, and again by contradiction

suppose that we have a superthrackle drawing. Each path from i to j is of even
length, so K+

5 is bipartite. Without loss of generality at vertex 0 the edges appear in
clockwise cyclic order (01, 02, 03, 04). Hence the cycle through (0, 1, 3) is interlaced
with the cycle through cycle (0, 2, 4), contradicting Lemma 2.3 since both cycles are
of even length. Any parity homeomorph of K+

5 is also bipartite and so the same
argument holds.

Case 5, K5(e) : The argument is the same as that of the previous case. Here we
subdivide every edge except for 01. The cycles described are interlaced with one odd
and one even, again contradicting Lemma 2.3.

Case 6, W−
4 : Let v be the vertex of degree 4 and let (1234) be the cycle in

W−
4 − v. Triangles (v, 1, 2) and (v, 3, 4) are both odd, so by Lemma 2.3 around v

the edge v1 is opposite to v2. Similarly, triangles (v, 1, 4) and (v, 2, 3) are interlaced,
so v1 is opposite to v4. But v1 can be opposite to only one of these two edges, a
contradiction. The same argument holds for any parity homeomorph since the cycles
involved are all still odd.

Case 7, Φ4 : Consider the graph where each solid edge is subdivided once. Let v
be the vertex of degree 6, let a, b, c be the vertices of degree four, and let 1, 2, 3, 4 be
the degree 2 vertices on the subdivided edges av, ac, ab, bc respectively.

By way of contradiction suppose this graph can be superthrackled and consider
the rotation of edges incident with vertex a. Edges a1, av cannot be interlaced with
a2, a3 since the cycles (a, 1, v) and (a, 2, c, 4, b, 3) are not both odd. Edges av, a2
cannot be interlaced with edges a1, a3 since the cycles (a, 3, b, v, 1) and (a, 2, c, v) are
not both odd. By symmetry, edges av, a3 cannot be interlaced with a1, a2. We have
our desired contradiction. Again, the argument holds for any parity homeomorph.

Case 8, Ψ5 : We suppose that every solid edge is subdivided exactly once. Let u
be the degree 6 vertex, v the nonadjacent degree 3 vertex, a, b, c the remaining degree
3 vertices, and label 1, 2, 3 so that (u, a, 1), (u, b, 2), and (u, c, 3) are all triangles. We
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let va, vb, vc denote the paths of length two from v to a, b, c respectively. Suppose by
way of contradiction that we have a superthrackle drawing and consider the rotation
around u.

Assume without loss of generality that at vertex v we have edges (va, vb, vc)
in clockwise order. We use a sequence of θ-graphs to find the complete clockwise
rotation at u. Preservers 〈vau, vb2u, vcu〉, and 〈va1u, vbu, vcu〉 force clockwise rota-
tions of (ua, u2, uc) and (u1, ub, uc) respectively at u. Converters 〈va1u, vb2u, vcu〉,
and 〈vau, vb2u, vc3u〉 force clockwise rotations of (u1, uc, u2) and (ua, u3, u2) at u.
This gives the complete clockwise rotation of (u3, u2, u1, ub, uc, ua) at u. Preserver
〈vau, vbu, vc3u〉 forces the clockwise rotation of (ua, ub, u3) at u which contradicts
the rotation at u we have already found. The same argument holds for any parity
homeomorph of Ψ5 mutatis mutandis.

Having examined the eight graphs in turn, the proposition is shown.

We now summarize our results as together providing a proof of our main theorems,
Theorems 1.1 and 1.2.

Proof: (of Theorems 1.1 and 1.2) By Propositions 3.1 and 3.2 the two classes
of graphs can be superthrackled. For the converse, by Theorem 2.9 any graph G
that does not have a parity embedding in the projective plane must contain a parity
homeomorph of one of the eight graphs of Figure 3. By Proposition 4.1 no such
graph can be superthrackled.

5 Consequences of our Main Theorem

We begin by relating thrackles and superthrackles.

Lemma 5.1 If a simple graph G can be drawn as a thrackle, then it can be drawn
as a superthrackle.

Proof: Suppose that we have a thrackle drawing of G. Around each vertex we
replace a small neighborhood of the drawing with a new neighborhood as shown in
Figure 4. Since G has no loops or parallel edges, this introduces a single crossing
between every pair of adjacent edges, so the resulting drawing is a superthrackle.

Figure 4: Twisting edges about a vertex

Lovász, Pach and Szegedy [9] showed that any thrackleable bipartite graph is
planar. They also showed that the number of edges e in a thrackle drawing of a
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graph of order v has e ≤ 2v − 3. Cairns and Nikolayevsky [4] improved this bound
to e ≤ 3(v − 1)/2 and Fulek and Pach [7] further improved it to e ≤ 167

117
v < 1.428v.

In Xu’s thesis [16], the bound is shown to be e ≤ 1.4v.

Lemma 5.2 If G can be superthrackled, then e ≤ 2v − 2.

Proof: A planar bipartite graph has at most 2v − 4 edges and a cellular projec-
tive planar graph with all faces of size at least 4 has e ≤ 2v − 2. These are the
superthrackleable graphs.

Non-bipartite projective planar quadrangulations show that this bound cannot
be improved. By Lemma 5.1 this comes close to the bound of [9] for thrackles.

Two edges meet at a point if it is either a crossing point or a common endpoint.
A generalized thrackle is a drawing in which every two edges meet at an odd number
of points. In a generalized thrackle of a simple graph non-adjacent edges cross an
odd number of times, while adjacent edges cross an even number of times.

Lemma 5.3 Any superthrackable graph is also a generalized thrackle.

Proof: Consider a superthrackle drawing of G. As in Lemma 5.1 add a twist so
that now adjacent edges cross twice. The result is a generalized thrackle drawing.

The converse is by no means obvious. However, Cairns and Nikolayevsky [5]
showed the following.

Theorem 5.4 A graph is generalized thrackleable on the sphere if and only if it has
a parity embedding on the projective plane.

This is exactly the same as our characterization of superthrackable graphs, so the
classes of graphs are the same.

One is tempted to prove generalized thrackleable graphs are superthrackleable by
removing two crossings at a time between pairs of edges. This can be done in some
circumstances, see [12]. It is false in general since the odd crossing number is not
equal to the crossing number, see [11] for definitions and details.

Notice, if a graph G can be drawn as a superthrackle, then by Lemma 5.3 it
can also be drawn as a generalized thrackle, which, by Theorem 5.4 implies it has a
parity embedding on the projective plane. Theorem 2.9 then implies that it does not
contain any subgraph which is parity homeomorphic to any of the graphs in Figure
3. This provides us with an alternate proof of our Proposition 4.1.

We say a graph has a 1-point superthrackle if it has a superthrackle drawing
in which all edge crossings occur at a common point. Any 1-point superthrackle
drawing is a superthrackle drawing. On the other hand, Propositions 3.1 and 3.2
show that any superthrackleable graph has a 1-point superthrackle. We combine the
observations in this section with Theorem 1.1.
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Theorem 5.5 Let G be a graph. The following are equivalent:

1. G is a superthrackle;

2. G is a 1-point superthrackle;

3. G is a generalized thrackle;

4. G has a parity embedding in the projective plane;

5. G has no subgraph parity homeomorphic to any graph in Figure 3 (considered
as unsigned graphs with solid edges subdivided once).

6 Conclusion

Of course, it would be nice if the techniques of this paper would help prove Conway’s
original Thrackle Conjecture. We have tried without success.

The proofs in Section 4 involve when drawings of θ-graphs are converters or
preservers. The method is similar to a characterization of planarity given in [1]. The
arguments could be phrased in terms of balance in an associated signed triple graph.

A generalization is to consider thrackle drawings on other surfaces, that is, to draw
a graph on some surface such that every edge crosses every other nonadjacent edge
exactly once. Every graph can be thrackled when drawn on a surface of sufficiently
large genus [8]. The thrackle genus of G is the smallest genus of an orientable surface
on which G has a thrackle drawing.

Question 6.1 Can we find a characterization of graphs with a given thrackle genus?
Is there a “forbidden subgraph” characterization?

One could ask more specifically:

Question 6.2 When can a graph be drawn as a thrackle on the projective plane?
On the torus?

Similar questions could be asked about the superthrackle genus. The second
author’s dissertation [14] has some results about superthrackling graphs on a surface.
Cairns and Nikolayevsky [5] examined generalized thrackles on a surface with results
again tantalizingly similar to [14].
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