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Abstract

A good drawing of Kn is a drawing of the complete graph with n vertices
in the sphere such that: no two edges with a common end cross; no two
edges cross more than once; and no three edges all cross at the same
point. Gioan’s Theorem asserts that any two good drawings of Kn that
have the same rotations of incident edges at every vertex are equivalent
up to triangle-flips. At the time of preparation, 10 years had passed
between the statement in the WG 2005 conference proceedings and our
interest in the proposition. Shortly after we completed our preprint,
Gioan independently completed a preprint.

1 Introduction

The main result of this work is the proof of the following result, presented by Gioan
at the International Workshop on Graph-Theoretic Concepts in Computer Science
2005 (WG 2005) [7].

Theorem 1.1 (Gioan’s Theorem) Let D1 and D2 be good drawings (defined be-
low) of Kn in the sphere that have the same rotation schemes. Then there is a
sequence of triangle-flips (example below, defined in Section 2) that transforms D1

into D2.

We are only using a triangle-flip to shift a bit of the interior of an edge across
another crossing (without crossing anything else). Figure 1.2 shows a typical example
of “before” and “after” the move.
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Figure 1.2: A triangle-flip that transforms one drawing into another.

The Harary-Hill Conjecture asserts that the crossing number of the complete
graph Kn is equal to
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Throughout this work, all drawings of graphs are good drawings :
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• no two edges incident with a common vertex cross;

• no two edges cross each other more than once; and

• no three edges cross at a common point.

Some of our interest in this problem derives from Dan Archdeacon’s combinatorial
generalization of this problem. Since his website may soon be lost and there is no
other version that we know of, we reproduce it here.

Suppose the vertex set of Kn is In = {1, ..., n}. A local neighborhood of a
vertex k in a planar drawing determines a cyclic permutation of the edges
incident with k by considering the clockwise ordering in which they occur.
Equivalently (looking at the edges’ opposite endpoints), it determines a
local rotation ρ(k): a cyclic permutation of In − k. A (global) rotation is
a collection of local rotations ρ(k), one for each vertex k in In.

It is well known that the rotations of Kn are in a bijective correspondence
with the embeddings of Kn on oriented surfaces. The rotation arising
from a planar drawing also determines which edges cross. Namely, [two
edges of the K4 induced by {a, b, c, d}] cross in the drawing if and only
if the induced local rotations on the vertices {a, b, c, d} give a nonplanar
embedding of that induced K4.

The stated conjecture on the crossing number of Kn asserts that the
minimum number (over all planar drawings) of induced nonplanar K4’s
satisfies the given lower bound. We generalize this to all rotations.

Conjecture: In any rotation of Kn, the number of induced nonplanar
K4’s is at least (1/4)[n/2][(n − 1)/2][(n − 2)/2][(n − 3)/2] where [m] is
the integer part of m.

Not every rotation corresponds to a drawing (see the related problem
“Drawing rotations in the plane”), so this conjecture is strictly stronger
than the one on the crossing number of Kn. However, this conjecture has
the advantage of reducing a geometric problem to a purely combinatorial
one.

The problem arose from my attempts to prove the lower bound on the
crossing number. It is supported by computer calculations. Namely, I
wrote a program which started with a rotation of Kn and using a local
optimization technique (hill-climbing), randomly swapped edges in a lo-
cal rotation whenever that swap did not increase the number of induced
nonplanar K4’s. The resulting locally minimal rotations tended to resem-
ble the patterns apparent in an optimal drawing of Kn. For small n this
minimum was the conjectured upper bound. For larger n it was usually
slightly larger.
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It is well-known that the rectilinear crossing number (all edges are required to be
straight-line segments) of Kn is, for n ≥ 10, strictly larger than H(n) [4]. In fact,
this applies to the more general pseudolinear crossing number [2].

An arrangement of pseudolines Σ is a finite set of simple open arcs in the plane
R2 such that: for each σ ∈ Σ, R2 \ σ is not connected; and for distinct σ and σ′ in
Σ, σ ∩ σ′ consists of a single point, which is a crossing.

A drawing of Kn is pseudolinear if there is an arrangement Σ of
(
n
2

)
pseudolines

such that the edges of Kn are all contained in different pseudolines of Σ. It is clear
that a rectilinear drawing (chosen so no two edges are parallel) is pseudolinear.

The arguments (originally due to Lovász et al. [11] and, independently, Ábrego
and Fernández-Merchant [1]) that show every rectilinear drawing of Kn has at least
H(n) crossings apply equally well to pseudolinear drawings.

The proof that every optimal pseudolinear drawing of Kn has its outer face
bounded by a triangle [6] uses the “allowable sequence” characterization of pseu-
doline arrangements of Goodman and Pollack [8]. Our principal result in [5] is that
there is another, topological, characterization of pseudolinear drawings of Kn.

A drawing D of Kn is face-convex if there is an open face F of D such that, for
every 3-cycle T of Kn, if ∆ is the closed face of D[T ] disjoint from F , then, for any
two vertices u, v such that D[u], D[v] are both in ∆, the arc D[uv] is also contained
in ∆.

The main result in [5] is that every face-convex drawing of Kn is pseudolinear
and conversely. An independent proof has been found by Aichholzer et al. [3]; their
proof uses Knuth’s CC systems [9], which are an axiomatization of sets of pseudo-
lines. Moreover, their statement is in terms of a forbidden configuration. Properly
speaking, their result is of the form, “there exists a face relative to which the forbid-
den configuration does not occur”. Their face and our face are the same. However,
our proof is completely different, yielding directly a polynomial time algorithm for
finding the pseudolines.

Aichholzer et al. show that there is a pseudolinear drawing of Kn having the same
crossing pairs of edges as the given drawing of Kn. Gioan’s Theorem [7] (Theorem
1.1 above) is then invoked to show that the original drawing is also pseudolinear.

The proof in [5] is completely self-contained; in particular, it does not invoke
Gioan’s Theorem. An earlier version anticipated an application of Gioan’s Theorem
similar to that in [3]; hence our interest in having a proof.

A principal ingredient in our argument is a consideration of the facial structure
of an arrangement of arcs in the plane. An arrangement of arcs is a finite set Σ of
open arcs in the plane such that, for every σ ∈ Σ, R2 \ σ is not connected and any
two elements of Σ have at most one point in common, which must be a crossing.
(Note that, in an arrangement of pseudolines, the pairs of arcs must cross; this is not
required in an arrangement of arcs.)



A. ARROYO ET AL. /AUSTRALAS. J. COMBIN. 67 (2) (2017), 131–144 135

Let Σ be an arrangement of arcs. Since Σ is finite, there are only finitely many
faces of Σ: these are the components of R2 \ (

⋃
σ∈Σ σ). As it comes up often, we let

P(Σ) be the pointset
⋃
σ∈Σ σ.

The dual Σ∗ of Σ is the finite graph whose vertices are the faces of Σ and there
is one edge for each segment α of each σ ∈ Σ such that α is one of the components
of σ \ P(Σ \ {σ}). The dual edge corresponding to α joins the faces of Σ on either
side of α.

Although we do not need it here, the following lemma motivates one that we
need in our proof of Gioan’s Theorem. Its simple proof and close connection to
Levi’s Extension Lemma are given in [5].

Lemma 1.3 (Existence of dual paths) Let Σ be an arrangement of arcs in the
plane and let a, b be points of the plane not in any line in Σ. Then there is an ab-path
in Σ∗ crossing each arc in Σ at most once.

2 Proof of Gioan’s Theorem

In this section, we give a simple, self-contained proof Gioan’s Theorem [7]. When
we completed the proof in August 2015, we corresponded with Gioan, who was
independently preparing his own version. Each version has had some impact on the
other. We do not include any of the first order logical considerations that occur in
Gioan’s version.

For convenience, we restate our main result here. The definition of a triangle-flip
is given just after this statement.

Theorem 1.1 Let D1 and D2 be drawings of Kn in the sphere that have the same ro-
tation schemes. Then there is a sequence of triangle-flips that transforms D1 into D2.

In order to define triangle-flip and prove our first intermediate lemmas, we require
a small new consideration. Let Σ be an arrangement of arcs in the plane. A vertex
of Σ is a point that is the intersection of two or more arcs in Σ.

At a vertex v, the rotation of the arcs containing v is of the form σ1, σ2, . . . , σk, σ1,
σ2, . . . , σk; each arc occurs twice here, once for each of the “rays” it contains that
start at v. Let (F0, F1, . . . , Fk−1, Fk, Fk+1, . . . , F2k−1) be the cyclic sequence of faces
around v.

Suppose P is a dual path containing the subpath (F0, F1, . . . , Fk) such that P
crosses each arc in Σ at most once. The path obtained from P by sliding over
the vertex v is the path P , except (F0, F1, . . . , Fk) is replaced by the dual path (of
the same length) (F0, F2k−1, F2k−2, . . . , Fk+1, Fk). (None of F2k−1, F2k−2, . . . , Fk+1 can
occur in P , as P crosses each arc of Σ at most once. Thus, the result of the sliding
is indeed a new dual path.)
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We remark that we may interpret the change as either rerouting P across v or
moving v across P and adjusting the edges incident with v.

A triangle-flip is a sliding over a vertex v that is in precisely two arcs in Σ. The
following may be viewed as a supplement to Lemma 1.3.

Lemma 2.1 Let Σ be an arrangement of arcs in the plane and let a and b be any
two points in the plane not in P(Σ). Let Fa and Fb be the faces of Σ containing
a and b, respectively. Then, any distinct FaFb-paths P and Q in Σ∗, each crossing
every arc in Σ at most once, are equivalent up to sliding over vertices. Moreover,
there is a sequence of slidings such that every sliding involves moving a vertex across
P from inside to outside, always relative to a closed disc bounded by P ∪Q.

Proof. Let P1 and Q1 be subpaths of P and Q having common end points but
otherwise disjoint. Then (any natural image in the plane of) P1 ∪Q1 bounds a disc
∆ and each arc in Σ that crosses one of P1 and Q1 crosses the other. We will show
that there is a vertex in ∆ over which we can slide P1.

Since P1 and Q1 are distinct dual paths, there is a vertex of Σ in ∆. Let σ ∈ Σ
have an arc across ∆ and contain a vertex of Σ; let v be the first vertex of Σ
encountered as we traverse σ across ∆ from its P1-end. Among all the σ ∈ Σ that
contain v, either all have v as their first encountered vertex or there are two, σ and
σ̄, consecutive in the rotation at v, such that v is the first encountered vertex for σ,
but not for σ̄. In the former case, we can slide v across P1.

Suppose σ′ ∈ Σ has a crossing with σ̄ between v and the intersection of σ̄ with P1.
Let ∆′ be the disc bounded by P1, σ, and σ̄. Then σ′∩∆′ intersects the boundary of
∆′ at least twice, but not on σ ∩∆′. Thus, σ′ crosses P1 between σ ∩ P1 and σ̄ ∩ P1.

Let v̄ be the first vertex of Σ encountered as we traverse σ̄ from σ̄ ∩ P1. Then
every other arc in Σ that contains v̄ intersects P1 between σ ∩ P1 and σ̄ ∩ P1.

Letting b(v) denote the number of arcs in Σ that cross P1 between σ ∩ P1 and
σ̄ ∩P1, we see that b(v̄) < b(v). Therefore, there is always a vertex w of Σ such that
b(w) = 0 and we can slide w across P1.

After sliding w across P1, the disc bounded by P1 and Q1 has fewer vertices of Σ.
An easy induction completes the proof.

Gioan’s Theorem considers two drawings D1 and D2 ofKn in the sphere that have
the same rotation scheme. Let t, u, v, w be four distinct vertices of Kn. Let T be the
3-cycle induced by t, u, v. Then D1[T ] is a simple closed curve in the sphere. The
rotations at t, u, and v determine where bits of the edges D1[tw], D1[uw], and D1[vw]
go from their ends t, u, and v, respectively, relative to D1[T ]. The side of D1[T ] that
has the majority (two or three) of these bits of edges is where D1[w] is. If tw is the
minority edge, then D1[tw] crosses D1[uv]; conversely, a crossing K4 produces, for
each of its 3-cycles, a minority edge. This simple observation immediately yields the
following fundamental fact.
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(F1) LetD1 andD2 be two (labelled) drawings ofK4 with the same rotation schemes.
Then there is an orientation-preserving homeomorphism of the sphere to itself
mapping D1[K4] onto D2[K4] that preserves the vertex-labels.

There are some elementary corollaries of (F1):

(F2) the pairs of crossing edges in a drawing of Kn are determined by the rotation
scheme;

(F3) if the edges of Kn are oriented, then the directed crossings are determined by
the rotation scheme; and

(F4) if u, v, w, x are distinct vertices of Kn, then the side of the 3-cycle (relative to
any of its oriented edges) induced by u, v, w that contains x is determined by
the rotation scheme.

By (F3), we mean that, if e and f cross, then the rotation scheme determines, as we
look along the oriented edge e, whether the direction of f crossing e is left-to-right
in all drawings or right-to-left in all drawings with the given rotation scheme.

These facts can hardly be new. In fact, variations of some of them appear in
Kynčl [10].

Lemma 2.2 Let D1 and D2 be two drawings of Kn in the sphere with the same
rotation scheme. Let G be a subgraph of Kn and suppose that, for each edge e of G, as
we traverse e from one end to the other, the edges of G that cross e occur in the same
order in both D1 and D2. Then there is an orientation-preserving homeomorphism
of the sphere mapping D1[G] onto D2[G] that preserves all vertex- and edge-labels.

Proof. We construct a planar map from each of D1[G] and D2[G] by inserting a
vertex of degree 4 at each crossing point. By (F3) and the hypothesis, respectively,
the oriented crossings and the orders of the crossings of each edge are the same in
both D1 and D2. Therefore, the two planar graphs are the same. By [12, Lem. 5]
they are 3-connected; Whitney’s unique embedding theorem [13] shows they are the
same embedding. That is, D1 and D2 are the same drawing, as required.

Lemma 2.2 asserts that the orders of crossings determine the drawing. Thus, we
need to consider the situation that some edge has two edges crossing it in different
orders in the two drawings.

Let e, f , and g be three distinct edges in a drawing D of Kn, no two having a
common end. Suppose each two of e, f , and g have a crossing, labelled ×e,f , ×e,g, and
×f,g. The union of the segments of each of e, f , and g between their two crossings
is a simple closed curve. If one of the two sides of this simple closed curve does not
have an end of any of e, f , and g, then this closed disc is the pre-triangle-flip triangle
constituted by e, f , and g.
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Let D1 and D2 be drawings of Kn in the sphere with the same rotation scheme.
A triangle-flip triangle for D1 and D2 is a pre-triangle-flip triangle T for both D1

and D2 constituted by the edges e, f , and g but with the clockwise traversal of the
three segments between pairs of crossings giving the opposite cyclic ordering of the
three crossings.

Let J be a K4 in D1 with a crossing. Then (F2) shows that D2[J ] also has a
crossing, with the same pair of edges crossing. For α ∈ {1, 2}, let ×α denote the
crossing in Dα[J ]. Then Dα[J ] has five faces: one 4-face bounded by a 4-cycle in J ;
and four 3-faces , each incident with ×α.

Notation If x and r are the two vertices of J incident with a 3-face with crossing
edges e and f , then we use Tαx,r to denote this 3-face and xr×αe,f to denote its
boundary.

Our next lemma corresponds to Lemma 3.2 of [7]. This result is a central, non-
trivial point in the argument.

Lemma 2.3 Let D1 and D2 be two drawings of Kn in the sphere with the same ro-
tation scheme. Then, for any triangle-flip triangle R for D1 and D2, D1[R] contains
no vertex of D1[Kn].

Proof. Let R be a triangle-flip triangle in D1[Kn] for D1 and D2. We use the same
labelling e = xy, f = uv, and g = rs as above for the edges determining R; all of r,
s, u, v, x, and y are in the same face F of D1[R]. By way of contradiction, suppose
there is a vertex a of Kn in the other face Fa of D1[R]. See the left-hand figure in
Figure 2.4.
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Figure 2.4: The triangle-flip triangle in D1 and D2.

In the K4 induced by {u, v, x, y}, a is in the 3-face T 1
u,y bounded by uy×1

e,f and,
therefore, in the discs bounded by the 3-cycles uyx and yuv that do not contain D1[v]
and D1[x], respectively. By (F1), this holds true also for D2. Analogous statements
hold for the other two K4’s involving two of the three edges from e, f, g.
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Using the labelling described above for D2, the faces T 2
u,y, T 2

r,v, and T 2
x,s are

bounded by uy×2
e,f , rv×2

f,g, and xs×2
e,g, respectively. Moreover, a is in all three of

the faces T 2
u,y, T 2

r,v, and T 2
x,s, so no two of them are disjoint.

In the same K4 induced by {u, v, x, y}, in both D1 and D2, yx crosses uv. In
D2, as we traverse uv from u, we first travel along the boundary of T 2

u,y, then pass
through ×2

e,f , followed by ×2
f,g, showing that ×2

f,g is separated by uy×2
e,f from a.

Thus, ×2
f,g is not in T 2

uy and, therefore, T 2
rv is not contained in T 2

uy.

By symmetry, this works for all pairs from T 2
rv, T 2

uy, and T 2
xs. Since no two are

disjoint, we deduce that any two of rv×2
f,g, uy×2

e,f , and xs×e,g intersect. Since they
intersect each other an even number of times, they intersect each other at least twice.

Therefore, the 6-cycle rvuyxs has at least nine crossings in D2, consisting of
the three that define R and the at least six mentioned at the end of the preceding
paragraph. Since nine is the most crossings a 6-cycle can have in a good drawing, we
conclude that it is exactly nine (so the drawing of the 6-cycle is a thrackle). Thus,
any two of uy×2

e,f , rv×2
f,g, and xs×2

e,g cross exactly twice. Moreover, every pair of
non-adjacent edges in the 6-cycle must cross. In particular, rv crosses uy.

When we consider the two crossings of uy×2
e,f and rv×2

f,g, for example, one of
them is rv crossing uy. Since e, f , and g pairwise cross at the corners of R, no two
of them can provide the second crossing of uy×2

e,f and rv×2
f,g. Therefore, the second

crossing involves either rv or uy. That is, either rv crosses uy×2
e,f twice or uy crosses

rv×2
f,g twice.

Since these conclusions are symmetric, we may assume the former. The final
piece of information that we require is the order in which these two crossings occur.
By way of contradiction, suppose that, as we traverse D2[rv] from D2[v], we first
cross the xy-segment of uy×2

e,f before crossing uy. See Figure 2.5.
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Figure 2.5: D2[rv] crosses T 2
u,y in the wrong order.

Consider the simple closed curve Ω consisting of the arc in D2[uv] from ×2
e,f to

D2[v], then along D2[rv] from D2[v] to the crossing of D2[rv] with the xy-segment of
uy×2

e,f , and then along D2[xy] back to ×2
e,f .

Because D2 is a good drawing, the portion of D2[rs] from ×2
f,g to D2[r] cannot

cross Ω, so D2[r] is on the side of Ω that is different from the side containing the
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crossing of rv with uy. Again D2 is good, so Ω does not cross the portion of D2[rv]
from r to the crossing with uy. This contradiction shows that the first crossing of
uy×2

e,f by D2[rv], as we start at v, is with uy. See Figure 2.6.
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Figure 2.6: This is how D2[rv] crosses T 2
u,y.

The vertex a is in T 2
r,v ∩ T 2

u,y. As D1[a] and D1[y] are on different sides of D1[R],
D1[ay] crosses at least one ofD1[rs], D1[uv], andD1[xy]. Thus, (F2) impliesD2[ay] 6⊆
T 2
u,y.

As D2 is good, D2[ay] must cross the uv-segment of uy×2
e,f . In order to do that,

it must cross rv first. But now y and the crossing × of D2[ay] with D2[uv] are
separated by the simple closed curve Ω′ consisting of the portion of uv from ×2

e,f to
v, rv from v to its crossing with xy, and the portion of xy between this crossing and
×2
e,f .

However, the portion of ay from × to y cannot cross any of the three parts of Ω′,
because each part is contained either in an edge incident with y or is crossed by the
complementary part of ay. This contradiction completes the proof.

We are now ready to prove Gioan’s Theorem. The structure of our proof is very
much the same as that given by the algorithm in [7].

Proof of Theorem 1.1. Label the vertices of Kn as v1, v2, . . . , vn. For each
i = 1, 2, . . . , n, let Ki denote the complete subgraph induced by v1, v2, . . . , vi. We
shall show, by induction on i, that there is a sequence Σi of triangle-flips so that,
if Di

1 is the drawing of Kn obtained by performing the moves Σi on D1[Kn], then
there is an orientation-preserving homeomorphism of the sphere that maps Di

1[Ki]
onto D2[Ki] (of course preserving the labels v1, . . . , vi).

The claim is trivial for i < 4 and is (F1) for i = 4. Thus, we may assume
i ≥ 5 and the result holds for i − 1. In particular, replacing D1 with Di−1

1 , we may
assume D1[Ki−1] is the same as D2[Ki−1]. For ease of notation and reference, we
will use Ki−1 to also denote this common drawing of Ki−1. We may assume that,
for α = 1, 2, Dα[Ki] is obtained from Ki−1 by using dual paths for each edge vivj
(j ∈ {1, 2, . . . , i− 1}), together with a segment in the last face to get from the dual
vertex in that face to vj.
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This understanding needs a slight refinement, since, for example, it is possible for
two edges incident with vi to use the same sequence of faces (in whole or in part).
Thus, as dual paths, they would actually use the same segments. We allow this, as
long as the two edges do not cross on the common segments. They can be slightly
separated at the end to reconstruct the actual drawing.

The rest of the proof is complicated by the fact that our drawing D1[Kn], which
has Ki−1 in common with D2[Kn], does not contain the D2-version of vi and its
incident edges to Ki−1. To discover the appropriate sequence of triangle-flips in
D1[Kn], we introduce this version of vi and some of its incident edges into D1[Kn].
It is precisely for this reason that we use dual paths.

Since each face F of Ki−1 is the intersection of all the F -containing discs bounded
by 3-cycles, (F4) shows that vi is in the same face of Ki−1 in both D1 and D2. If
there is an orientation-preserving homeomorphism of the sphere that maps D1[Ki]
onto D2[Ki], then we are already done, so we may assume there is some least j ∈
{1, 2, . . . , i− 1} such that D1[vivj] and D2[vivj] use different dual paths in Ki−1. Let
F1, F2, . . . , Fr be the faces of Ki−1 traversed by D2[vivj].

Each Fk is (essentially) a union of faces of D1[Kn]. The (planar) dual of the
graph in Fk is connected, so there are paths in each Fk to obtain a dual path in
D1[Kn] that restricts to the dual path of Ki−1 representing D2[vivj]. We will refer
to this dual path in D1[Kn] as D∗2[vivj]. Our objective will be to find a sequence of
triangle-flips in D1[Kn] to make a drawing Dj

1[Kn] such that there is an orientation-
preserving homeomorphism of the sphere to itself that maps Dj

1[Ki−1] plus the edges
viv1, . . . , vivj onto D2[Ki−1] plus the edges viv1, . . . , vivj.

The construction shows that D1[vivj]∪D∗2[vivj] is a closed curve Ci
j with finitely

many common segments (each segment might be just vi, vj, or a single dual vertex).
In particular, Ci

j divides the sphere into finitely many regions.

Claim 1 All the vertices of Ki−1 − {vj} are in the same region of Ci
j.

Proof. Let x and y be vertices of Ki−1 − {vj}. If xy does not cross D1[vivj], then
it also does not cross D2[vivj]; thus it also does not cross D∗2[vivj]. It follows that xy
is disjoint from Ci

j, showing that x and y are in the same region of Ci
j.

Thus, we may assume that xy crosses D1[vivj]. Then it also crosses D2[vivj] and,
therefore, D∗2[vivj]. Letting J be the K4 induced by vi, vj, x, y, both D1[J ] and D2[J ]
have vivj crossing xy. There is a unique face F of D1[J ] bounded by a 4-cycle in J .
There is an xy-arc γ in F that goes very near alongside the path P = (x, vj, y) and
is disjoint from D1[vivj].

As the rotations are the same, D1[vivj] and D∗2[vivj] both start in the same angle
of vj in Ki−1. Thus, γ is also disjoint from D∗2[vivj], so x and y are in the same region
of Ci

j.

A j-digon is a simple closed curve in Ci
j consisting of a subarc of D1[vivj] and

a subarc of D∗2[vivj]. If D1[vivj] 6= D∗2[vivj], then some point z of D∗2[vivj] is not in
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D1[vivj]. Traverse in both directions in D∗2[vivj] from z until first reaching D1[vivj];
adding the segment of D1[vivj] between these two points produces a j-digon. By
Claim 1, each j-digon C bounds a closed disc that is disjoint from {v1, v2, . . . , vi−1};
this is the clean side of C.

To complete the induction, we show that there is a sequence Γi,j of triangle-flips
such that, in the drawing Di,j

1 [Kn] obtained by doing the sequence Γi,j to D1[Kn],
Di,j

1 [Ki−1] = D2[Ki−1] and also all the edges viv1, . . . , vivj are the same in both
Di,j

1 [Ki] and D2[Ki]. Since D1[vivj] and D∗2[vivj] use different dual sequences (relative
to Ki−1), there is a j-digon.

Lemma 2.2 shows that the edges D1[vivj] and D∗2[vivj] cross the same edges of
Ki−1, but not in the same order. Among all the j-digons, let C be one having a
minimal clean side S. Thus, no other j-digon has its clean side contained in S. If
xy is an edge of Ki−1 − {vj} that intersects S, then Claim 1 implies xy ∩ S consists
of a single arc having one end in D1[vivj] and the other end in D∗2[vivj].

Lemma 2.1 shows that there is a sequence Π of triangle-flips in Ki−1 ∪ C, each
involving D1[vivj], that removes all crossings from S; at that point C ∩ D1[vivj]
and C ∩D∗2[vivj] use the same dual path (relative to Ki−1). We prove that there is
a sequence Π′ of triangle-flips that apply to D1[Kn] and performs the same effect,
but in D1[Kn], of making C ∩D1[vivj] use the same dual path (relative to Ki−1) as
C ∩ D∗2[vivj]. The sequence Π′ includes Π as a subsequence; the remaining moves
in Π′ all involve some edge not in Ki−1 and not among the edges viv1, . . . , vivj. In
particular, these additional moves do not affect the drawing of either Ki−1 or the
edges viv1, . . . , vivj. This is clearly enough to complete the induction.

Suppose Π = π1, π2, . . . , πr and, for some s ∈ {1, . . . , r}, we have found such
a sequence Π′s−1 of moves that contains π1, π2, . . . , πs−1 as a subsequence; we may
suppose Π′s−1 terminates with πs−1. In particular, Π′0 is the empty sequence. Let
Ds−1

1 [Kn] be the drawing ofKn obtained by performing the sequence Π′s−1 onD1[Kn].

The move πs consists of operating on a triangle-flip triangle Rs inside S involving
the three edges e, f, g. For each move in Π, and in particular for πs, one of the
edges is D1[vivj]; we choose e to be this edge. Thus, f and g are in Ki−1. The
move πs involves moving the crossing of f with g across e so that it is now outside S.
Therefore, f and g cross inside S and so f and g cross C∩Ds−1

1 [vivj] and C∩D∗2[vivj]
in different orders. Thus, Rs is a triangle-flip triangle for the drawings Ds−1

1 [Kn] and
D2[Kn].

Lemma 2.3 shows that no vertex of Kn is inside Rs. None of the edges in Ki−1

and {viv1, . . . , vivj} goes into Rs. Every other edge intersects each side of Rs at most
once and intersects Rs an even number of times. Every other edge that crosses Rs

makes a pre-triangle-flip triangle inside Rs. We claim that there is a sequence Ω of
triangle-flips that empties Rs and involves moving only these other edges.

An easy induction shows that if α and β cross inside Rs, then there is a sequence
of triangle-flips available to push their crossing over any of the edges e, f, g that they
both cross.
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Thus, there is a sequence Ω of triangle-flips that involves moving only these other
edges and that empties Rs, at which point we may perform the move πs. Thus,
Π′s = Π′s−1Ωπs is the required sequence of moves on D1[Kn].

It follows that there is a sequence Θ of triangle-flips on D1[Kn] that produces
a drawing D′1 of Kn such that D′1[vivj] and D∗2[vivj] have the same dual sequence
with respect to Ki−1. Therefore, D′1[vivj] and D2[vivj] have the same dual sequence
with respect to Ki−1. Lemma 2.2 implies that there is an orientation-preserving
homeomorphism of the sphere to itself that maps D′1[Ki−1 + {viv1, . . . , vivj}] to
D2[Ki−1 + {viv1, . . . , vivj}], as required.

Thus, by induction on j there is a sequence of triangle-flips on D1[Kn] to make a
new drawing D′1[Kn] such that there is an orientation-preserving homeomorphism of
the sphere to itself that maps D′1[Ki] to D2[Ki]. Finally, induction on i shows that
there is a sequence of triangle-flips on D1[Kn] to produce a drawing D∗1[Kn] and an
orientation-preserving homeomorphism of the sphere to itself that maps D∗1[Kn] to
D2[Kn], which is precisely Theorem 1.1.
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