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More classes of super cycle-antimagic graphs
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Abstract

A simple graph G = (V,E) admits an H-covering if every edge in E
belongs to a subgraph of G isomorphic to a given graph H . Then the
graph G admitting an H-covering is (a, d)-H-antimagic if there exists a
bijection f : V ∪ E → {1, 2, . . . , |V | + |E|} such that, for all subgraphs
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H ′ of G isomorphic to H , the H ′-weights, wtf(H ′) =
∑

v∈V (H′) f(v) +∑
e∈E(H′) f(e), form an arithmetic progression a, a + d, a + 2d, . . . , a +

(t − 1)d where a is the first term, d is the common difference and t is
the number of subgraphs of G isomorphic to H . Such a labeling is called
super if f(V ) = {1, 2, . . . , |V |}.

This paper deals with some results on anti-balanced sets and we show
the existence of super (a, d)-cycle-antimagic labelings of fans and some
square graphs.

1 Introduction

Let G = (V,E) be a finite simple graph. A family of subgraphs H1, H2, . . . , Hn of
G is called an edge-covering of G if each edge of E belongs to at least one of the
subgraphs Hi, i = 1, 2, . . . , n. Then the graph G admitting an H-covering is (a, d)-
H-antimagic if there exists a bijection f : V ∪ E → {1, 2, . . . , |V | + |E|} such that,
for all subgraphs H ′ of G isomorphic to H , the H ′-weights,

wtf(H
′) =

∑
v∈V (H′)

f(v) +
∑

e∈E(H′)

f(e),

form an arithmetic progression a, a+d, . . . , a+(t−1)d where a > 0 is the first term,
d ≥ 0 is the common difference and t is the number of subgraphs of G isomorphic
to H . Such a labeling is called super if f(V ) = {1, 2, . . . , |V |}. For d = 0 it is called
H-magic and H-supermagic, respectively.

The concept of H-magic graphs was introduced by Gutiérrez and Lladó [7] as
an extension of the edge-magic and super edge-magic graphs. They proved that
some classes of connected graphs such as the stars K1,n and the complete bipartite
graphs Kn,m are K1,h-supermagic for some h. They also proved that the path Pn

and the cycle Cn are Ph-supermagic for some h. Lladó and Moragas [13] proved that
wheels, windmills, books and prisms are Ch-magic for some h. Maryati et al. [17] and
Salman et al. [20] proved that certain families of trees are path-supermagic. Jeyanthi
and Selvagopal [10] proved that one point union of n copies of a 2-connected graph,
linear garland of a 2-connected graph are H-supermagic. Interestingly, windmill is
a particular case of one point union whereas ladder and triangular ladder are the
particular cases of linear garland. Ngurah, Salman and Susilowati [19] proved that
chains, wheels, triangles, ladders and grids are cycle-supermagic. Maryati, Salman
and Baskoro [16] investigated the G-supermagicness of a disjoint union of c copies
of a graph G and showed that the disjoint union of any paths is cPh-supermagic
for some c and h. Muthuraja, Selvagopal and Jeyanthi [18] showed that the square
graphs of bistar, path and cycle are cycle-supermagic. They also proved that the
middle graph of Cn is also C3-supermagic. Jeyanthi and Muthuraja [12] proved that
the graph Pm,n for m,n ≥ 2 is C2m-supermagic and the splitting graph of Cn is
C4-supermagic for n �= 4.
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The (a, d)-H-antimagic labeling was introduced by Inayah, Salman and Siman-
juntak [8]. In [9] they investigated the super (a, d)-H-antimagic labelings for some
shackles of a connected graph H . In [21] it is proved that wheels Wn, n ≥ 3, are
super (a, d)-Ck-antimagic for every k = 3, 4, . . . , n− 1, n+ 1 and d = 0, 1, 2.

The (super) (a, d)-H-antimagic labeling is related to a super d-antimagic labeling
of type (1, 1, 0) of a plane graph that is the generalization of a face-magic labeling
introduced by Lih [14]. Further information on super d-antimagic labelings can be
found in [2, 5].

For H ∼= K2, (super) (a, d)-H-antimagic labelings are also called (super) (a, d)-
edge-antimagic total labelings and have been introduced in [22]. More results on
(a, d)-edge-antimagic total labelings, can be found in [4, 15]. The vertex version of
these labelings for generalized pyramid graphs is given in [1].

The existence of super (a, d)-H-antimagic labelings for disconnected graphs is
studied in [6] where it is proved that if a graph G admits a (super) (a, d)-H-antimagic
labeling, where d = |E(H)|−|V (H)|, then the disjoint union ofm copies of the graph
G, denoted by mG, admits a (super) (b, d)-H-antimagic labeling as well. In [3] it
is shown that the disjoint union of multiple copies of a (super) (a, 1)-tree-antimagic
graph is also a (super) (b, 1)-tree-antimagic. A natural question is whether the similar
result holds also for another differences and another H-antimagic graphs.

A fan Fn, n ≥ 2, is a graph obtained by joining all the vertices of the path Pn

on n vertices to a further vertex, called the centre. The vertices on the path we will
call the path vertices. The edges adjacent to the central vertex are called the spokes
and the remaining edges are called the path edges. The Fn contains n + 1 vertices
and 2n− 1 edges.

For a simple connected graph G, the square of the graph G, denoted by G2, is
defined as the graph with the same vertex set as G and two vertices are adjacent in
G2 if they are at a distance 1 or 2 apart in G.

In this paper we investigate the existence of super (a, d)-cycle-antimagic labelings
of fans and some square graphs.

2 Known results on (k, δ)-anti-balanced sets

We use the following notation. For two integers a, b, a < b, let [a, b] denote the
set of all integers from a to b. For any subset S of the set of integers Z we write,∑

S =
∑

x∈S x and for an integer k, let k+S = {k+x : x ∈ S}. Thus k+[a, b] is the
set {x ∈ Z : k+a ≤ x ≤ k+ b}. It can be easily verified that

∑
(k+S) = k|S|+∑S.

If P = {X1, X2, . . . , Xn} is a partition of a set X of integers with the same
cardinality then we say P is an n-equipartition of X. Also we denote the set of
subsets sums of the parts of P by

∑
P = {∑X1,

∑
X2, . . . ,

∑
Xn}.

A multiset is a generalization of the concept of a set that, unlike a set, allows
multiple instances of the multisets elements. If X and Y are two multisets then their
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union is also a multiset represented by X 
Y . If an element a appears m times in
X and n times in Y , then a appears m + n times in X 
Y . If X is a multiset of
integers and k is an integer then k ⊕X = {k + x : x ∈ X}.

Let k ∈ N and let X be a multiset containing positive integers. Then X is said
to be (k, δ)-anti-balanced if there exist k subsets of X , say X1, X2, . . . , Xk such that

for every i ∈ [1, k], |Xi| = |X|
k
,

k⊎
i=1

Xi = X and for i ∈ [1, k − 1],
∑

Xi+1 −
∑

Xi = δ

is satisfied.

We use the following results to prove our main results.

Lemma 2.1. [7] Let h and k be two positive integers and let n = hk. For each integer
0 ≤ t ≤ ⌊

h
2

⌋
there is a k-equipartition P of [1, n] such that

∑
P is an arithmetic

progression of difference d = h− 2t.

Lemma 2.2. [11] If h is even, then there exists a k-equipartition P = {X1, X2, . . . ,

Xk} of X = [1, hk] such that
∑

Xr =
h(hk+1)

2
for 1 ≤ r ≤ k. Thus, the subset sums

are equal and is equal to h(hk+1)
2

.

Lemma 2.3. [11] Let h and k be two positive integers such that h is even and k ≥ 3
is odd. Then there exists a k-equipartition P = {X1, X2, . . . , Xk} of X = [1, hk] such

that
∑

Xr = (h−1)(hk+k+1)
2

+ r for 1 ≤ r ≤ k. Thus,
∑

P is a set of consecutive

integers given by
∑

P = (h−1)(hk+k+1)
2

+ [1, k].

The above lemma was proved using permutations on [1, k] in [11]. We can deduce
the result for h = 2 which is that {Y1, Y2, . . . , Yk} is a k-equipartition of [1, 2k], where

Yi =

{{
k−2i+1

2
, k + 2i

}
for 1 ≤ r ≤ k−1

2
,{

3k−2i+1
2

, 2i
}

for k+1
2

≤ r ≤ k

and
∑

Yi =
3k+1
2

+ i for 1 ≤ i ≤ k.

Lemma 2.4. [11] Let h and k be two even positive integers and h ≥ 4. If X =
[1, hk + 1]− {k

2
+ 1}, there exists a k-equipartition P = {X1, X2, . . . , Xk} of X such

that
∑

Xr =
h2k+3h−k−2

2
+ r for 1 ≤ r ≤ k. Thus

∑
P is a set of consecutive integers

h2k+3h−k−2
2

+ [1, k].

In the proof of this lemma, it is shown that {Z1, Z2, . . . , Zk} is a k-equipartition
of [1, 2k + 1]− {k

2
+ 1}, where

Zi =

{{
k
2
+ 1− i, k + 1 + 2i

}
for 1 ≤ r ≤ k

2
,{

3k
2
+ 2− i, 2i

}
for k

2
+ 1 ≤ r ≤ k

and
∑

Zi =
3k
2
+ 2 + i for 1 ≤ i ≤ k.
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Lemma 2.5. [9] Let k be an integer such that k ≥ 2. If

X =

{
[1, k + 1] 
 [2, k] for k odd,

[1, k
2
] 
 [k

2
+ 2, k + 1] 
 [2, k + 1] for k even,

then X is (k, 1)-anti-balanced.

Lemma 2.6. [9] Let k be an integer such that k ≥ 2. If X = [1, k] 
 [2, k + 1] then
X is (k, 2)-anti-balanced.

3 New results on (k, δ)-anti-balanced sets

We prove the following lemmas which are useful to prove our main results.

Lemma 3.1. Let n, r be positive integers, n ≥ 2, 2 ≤ r ≤ n − 1 and let m =

min{r, n − r + 1}. If X =
m⊎
j=2

[j, n − j + 1] 
 [1, n], then X is (n − r + 1, r)-anti-

balanced.

Proof. For 1 ≤ i ≤ n − r + 1, define Xi = {i, i+ 1, . . . , i+ r − 1}. It can be easily

verified that |Xi| = r and
n−r+1⊎
i=1

Xi = X . Also
∑

Xi =
(r−1)r

2
+ ri and hence X is

(n− r + 1, r)-anti-balanced.

Illustration 3.1. For n = 9 and r = 4, let X =
4⊎

j=2

[j, 9−j+1]
[1, 9] = [2, 8]
[3, 7]

[4, 6]
 [1, 9]. We have (6, 4)-anti-balanced subsets X1 = {1, 2, 3, 4}, X2 = {2, 3, 4, 5},
X3 = {3, 4, 5, 6}, X4 = {4, 5, 6, 7}, X5 = {5, 6, 7, 8} and X6 = {6, 7, 8, 9}. Then the
subset sums are 10, 14, 18, 22, 26, 30.

Lemma 3.2. Let n, r be positive integers, n ≥ 2, 2 ≤ r ≤ ⌈n+1
2

⌉
. If X = [r, n− r +

1] 
 [1, n], then X is (n− r + 1, 2)-anti-balanced, assuming that [l, k] = ∅ if l > k.

Proof. For 1 ≤ i ≤ n − r + 1, define Xi = {i, i+ r − 1}. It is easy to verify that

|Xi| = 2 and
n−r+1⊎
i=1

Xi = X. Also
∑

Xi = r − 1 + 2i and hence X is (n − r + 1, 2)-

anti-balanced.

Illustration 3.2. For n = 10, r = 6 and X = [6, 5] 
 [1, 10] = [1, 10], we have
(5, 2)-anti-balanced subsets X1 = {1, 6}, X2 = {2, 7}, X3 = {3, 8}, X4 = {4, 9} and
X5 = {5, 10}.
For n = 10, r = 5 and X = [5, 6] 
 [1, 10], we have (6, 2)-anti-balanced subsets
X1 = {1, 5}, X2 = {2, 6}, X3 = {3, 7}, X4 = {4, 8}, X5 = {5, 9} and X6 = {6, 10}.
Lemma 3.3. Let n ≥ 2, be a positive integer and let X = [1, n]. If r divides n, then
X is

(
n
r
, r2
)
-anti-balanced.
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Proof. For 1 ≤ i ≤ n
r
, define Xi = {(i− 1)r + 1, (i− 1)r + 2, . . . ir}. Obviously

|Xi| = r and
n
r∪

i=1
Xi = X. Also

∑
Xi =

r(r+1)
2

+(i− 1)r2 and hence X is
(
n
r
, r2
)
-anti-

balanced.

Illustration 3.3. Let n = 14, r = 2 and X = [1, 14]. We have (7, 4)-anti-balanced
subsets X1 = {1, 2}, X2 = {3, 4}, X3 = {5, 6}, X4 = {7, 8}, X5 = {9, 10}, X6 =
{11, 12} and X7 = {13, 14}.
Lemma 3.4. Let n, r, r < n, be two relatively prime integers. Then the multiset

X =
r⊎
1

[1, n] is (n, 1)-anti-balanced.

Proof. Since gcd(n, r) = 1, the linear congruence rx ≡ 1 (mod n) has solutions. Let
k be the solution such that k <n. Actually k is called an inverse of r modulo n and
r is called an inverse of k modulo n. Also we have gcd(n, k) = 1.

Consider the set A = {jk (mod n), n : 1 ≤ j ≤ n− 1}. Then A ⊆ [1, n]. We
prove that A = [1, n]. If 1 ≤ i, j ≤ n − 1 then ik (mod n) = jk (mod n) and thus
n|(i − j)k. Since gcd(n, k) = 1, we have n divides i − j. Now i − j < n implies
that i − j = 0. Hence all the elements in A are distinct and |A| = n thus we have
A = [1, n].

Let X =
r⊎
1

[1, n]. We define the anti-balanced subsets of X as follows:

Xi =

⎧⎪⎨
⎪⎩
{jk (mod n) : i ≤ j ≤ i+ r − 1} for 1 ≤ i ≤ n− r + 1,

{jk (mod n) : i ≤ j ≤ n} ∪ {jk (mod n) : 1 ≤ j ≤ i+ r − n− 1}
for n− r + 2 ≤ i ≤ n.

It can be easily verified that, |Xi| = r,
r⊎
1

Xi = X and |Xi ∩Xi+1| = r − 1. Next

we prove that
∑

Xi+1 −
∑

Xi = 1.

Case (i): 1 ≤ i ≤ n− r.∑
Xi+1 −

∑
Xi =

(
(i+ r)k (mod n)

)− (ik (mod n)
)
= rk (mod n) = 1.

Case (ii): i = n− r + 1.∑
Xn−r+2 −

∑
Xn−r+1 =

(
k (mod n)

)− ((n− r + 1)k (mod n)
)

= (r − n)k (mod n)

= rk (mod n) = 1.

Case (iii): n− r + 2 ≤ i ≤ n.∑
Xi+1 −

∑
Xi =

(
(r − n + i)k (mod n)

)− (ik (mod n)
)

=(r − n)k (mod n) = rk (mod n) = 1.

Thus we have
∑

Xi+1 −
∑

Xi = 1 for 1 ≤ i ≤ n − 1. Hence X is (n, 1)-anti-
balanced.
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Illustration 3.4. Let n = 9, r = 4. Then X =
4⊎
1

[1, 9]. Since 4 · 7 ≡ 1 (mod 9),

the inverse of 4 modulo 9 is 7 and we have k = 7. By Lemma 3.4 we have
A = {7 (mod 9), 14 (mod 9), 21 (mod 9), 28 (mod 9), 35 (mod 9), 42 (mod 9),
49 (mod 9), 56 (mod 9), 9}. That is, A = {7, 5, 3, 1, 8, 6, 4, 2, 9}. By definition,
X1 = {7, 5, 3, 1}, X2 = {5, 3, 1, 8}, X3 = {3, 1, 8, 6}, X4 = {1, 8, 6, 4}, X5 =
{8, 6, 4, 2}, X6 = {6, 4, 2, 9}, X7 = {4, 2, 9, 7}, X8 = {2, 9, 7, 5} and X9 = {9, 7, 5, 3}.
Then, the subset sums form an arithmetic sequence 16, 17, 18, 19, 20, 21, 22, 23, 24.
Hence X is (9, 1)-anti-balanced.

Lemma 3.5. Let n, r be positive integers, n ≥ 2, 2 ≤ r ≤ n − 1. The elements
of [1, n] can be arranged as a sequence (ai)

n
i=1 such that

∑
Xi+1 −

∑
Xi = 1 for

1 ≤ i ≤ n− r + 1, where Xi = {ai, ai+1, ai+2, . . . , ai+r−1}.

Proof. Let n be an integer such that n ≥ 2 and r be an integer such that 2 ≤ r ≤ n−1.
Let t =

⌈
n
r

⌉
and s = n (mod r). Then we have n = (t − 1)r + s. We rearrange the

numbers [1, n] as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 t+ 1 . . . (s − 1)t+ 1 st+ 1 (s+ 1)t . . . (r − 1)t− r + s+ 2
2 t+ 2 . . . (s − 1)t+ 2 st+ 2 (s+ 1)t+ 1 . . . (r − 1)t− r + s+ 3
3 t+ 3 . . . (s − 1)t+ 3 st+ 3 (s+ 1)t+ 2 . . . (r − 1)t− r + s+ 4
...

... . . .
...

...
...

...
...

t− 1 2t− 1 . . . st− 1 (s+ 1)t−1 (s+ 2)t− 2 . . . n
t 2t . . . st

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The arrangement of the numbers is given by the function

f(i, j) =

{
(j − 1)t+ i for 1 ≤ i ≤ t, 1 ≤ j ≤ s,

(j − 1)(t− 1) + s+ i for 1 ≤ i ≤ t− 1, s+ 1 ≤ j ≤ r.

We arrange the elements of [1, n] as a finite sequence a1, a2, . . . , an as follows:

For 1 ≤ m ≤ n, let m = ir + j, where 0 ≤ i ≤ t − 1 and 1 ≤ j ≤ r. Define
am = f(i + 1, j). Note that if am = f(i + 1, j) then am+r = f(i + 2, j) as m + r =
(i+ 1)r + j. Hence, am+r − am = 1.

Now, for 1 ≤ i ≤ n− r + 1, let Xi = {ai, ai+1, ai+2, . . . , ai+r−1}. Then
∑

Xi+1 −∑
Xi = ai+r − ai = 1.

It can be easily verified that
∑

Xi =
tr(r−1)−(r−s)2+3r−s−2

2
+ii for 1≤ i≤n−r+1.

Illustration 3.5. Let n = 17, r = 5; X =
5⊎

j=1

[j, 17− j + 1]; t =
⌈
17
5

⌉
= 4 and s = n

(mod r) = 2. Let us arrange the numbers [1, 17] as follows:⎡
⎢⎢⎣
1 5 9 12 15
2 6 10 13 16
3 7 11 14 17
4 8

⎤
⎥⎥⎦
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Then by definition, X1 = {1, 5, 9, 12, 15},X2 = {5, 9, 12, 15, 2},X3 = {9, 12, 15, 2, 6},
X4 = {12, 15, 2, 6, 10},X5 = {15, 2, 6, 10, 13},X6 = {2, 6, 10, 13, 16},X7 = {6, 10, 13,
16, 3}, X8 = {10, 13, 16, 3, 7}, X9 = {13, 16, 3, 7, 11}, X10 = {16, 3, 7, 11, 14}, X11 =
{3, 7, 11, 14, 17}, X12 = {7, 11, 14, 17, 4} and X13 = {11, 14, 17, 4, 8}. Hence X is

(13, 1)-anti-balanced as
∑

Xi =
tr(r − 1)− (r − s)2 + 3r − s− 2

2
+ i = 41 + i for

1 ≤ i ≤ 13.

4 Some super (a, d)-cycle-antimagic graphs

Now we prove that fans admit super (a, d)-Ck-antimagic labelings for a wide variety
of k and d.

Theorem 4.1. The fan Fn, n ≥ 3, admits a super (a, d)-Ck-antimagic labeling for
k = 3, 4, . . . ,

⌊
n
2

⌋
+ 2 and d ∈ {1, 2, k − 5, k − 4, . . . , k + 2, 2k − 5, 2k − 1}.

Proof. Let V (Fn) = {v, v1, v2, . . . , vn} be the vertex set and let E(Fn) = {vvi : 1 ≤
i ≤ n} ∪ {vivi+1 : 1 ≤ i ≤ n− 1} be the edge set of the fan Fn.

Let k be an integer such that 3 ≤ k ≤ ⌊n
2

⌋
+ 2. For 1 ≤ i ≤ n− k + 2, let C i

k be
the k-cycle vvivi+1 . . . vi+k−2. Let Vi and Ei be respectively the vertex and edge set
of C i

k. Thus Vi = {v, vi, vi+1, . . . , vi+k−2} and Ei = E ′
i ∪ E ′′

i where E ′
i = {vi+jvi+j+1 :

0 ≤ j ≤ k − 3} and E ′′
i = {vvi, vvi+k−2}. Evidently {C i

k : 1 ≤ i ≤ n − k + 2} is a
Ck-covering of Fn.

Note that the weight of the cycle C i
k under a total labeling f is wtf(C

i
k) =

f(Vi) + f(E ′
i) + f(E ′′

i ) =
∑

v∈Vi
f(v) +

∑
e∈E′

i
f(e) +

∑
e∈E′′

i
f(e).

We use the following results.

(R1) By Lemma 3.1, the multiset X =
m⊎
j=2

[j, n− j + 1] 
 [1, n] is (n− k + 2, k − 1)-

anti-balanced with anti-balanced subsets X1, X2, . . . , Xn−k+2 such that
∑

Xi =

Δ1 + (k − 1)i, where m = min{k − 1, n− k + 2} and Δ1 =
(k−2)(k−1)

2
.

(R2) By Lemma 3.1, the multiset X ′ = (n + 1) ⊕
(

m⊎
j=2

[j, n− j] 
 [1, n− 1]

)
is

(n − k + 2, k − 2)-anti-balanced with anti-balanced subsets P1, P2, . . . , Pn−k+2

such that
∑

Pi = Δ2 + (k − 2)i, where Δ2 = (k − 2)(n+ 1) + (k−3)(k−2)
2

.

(R3) By Lemma 3.5, Y = [1, n] can be arranged as a sequence (ai)
n
i=1 such that∑

Ri+1−
∑

Ri = 1 for 1 ≤ i ≤ n−k+2, where Ri = {ai, ai+1, ai+2, . . . , ai+k−2}
such that

∑
Ri = Δ3 + i, where Δ3 = t(k−1)(k−2)−(k−s−1)2+3(k−1)−s−2

2
and t =⌈

n
k−1

⌉
, s = n (mod (k − 1)).

(R4) By Lemma 3.5, Y ′ = (n + 1) + [1, n − 1] can be arranged as a sequence
(bi)

n−1
i=1 such that

∑
Si+1 −

∑
Si = 1 for 1 ≤ i ≤ n − k + 2, where Si =
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{bi, bi+1, bi+2, . . . , bi+k−3} such that
∑

Si = Δ4+ i, where Δ4 = (k−2)(n+1)+
t′(k−2)(k−3)−(k−s′−2)2+3(k−1)−s′−5

2
and t′ =

⌈
n−1
k−2

⌉
, s′ = (n− 1) (mod (k − 2)).

(R5) By Lemma 3.2, the multiset Z = 2n⊕([k − 1, n− k + 2] 
 [1, n]) is (n−k+2, 2)-
anti-balanced with anti-balanced subsets Q1, Q2, . . . , Qn−k+2 with

∑
Qi = Δ5+

2i, where Δ5 = 4n+ k − 2.

In order to prove the theorem, we use the results (R1) - (R5).

Case (i): Fn is super (a, 1)-Ck-antimagic

Define a total labeling f1 on Fn as follows: For 1 ≤ i ≤ n− k + 2, label the vertices
in Vi −{v} with Xn−k+3−i, v with n+1, the edges in E ′

i with Pi and the edges in E ′′
i

with Qi.

wtf1(C
i
k) = f1(Vi) + f1(E

′
i) + f1(E

′′
i )

=
∑

Xn−k+3−i + n + 1 +
∑

Pi +
∑

Qi

= Δ1 + (k − 1)(n− k + 3− i) + n+ 1 +Δ2 + (k − 2)i+Δ5 + 2i

= Δ1 +Δ2 +Δ5 + (k − 1)(n− k + 3− i) + n + 1 + (k − 2)i+ 2i

= Δ1 +Δ2 +Δ5 + (k − 1)(n− k + 3) + n + 1 + i.

Then f1 is a super (a, 1)-Ck-antimagic labeling, where a = Δ1 + Δ2 + Δ5 + (k −
1)(n− k + 3) + n + 2.

Case (ii): Fn is super (a, 2)-Ck-antimagic

Define a total labeling f2 on Fn as follows: For 1 ≤ i ≤ n− k + 2, label the vertices
in Vi −{v} with Ri, v with n+1, the edges in E ′

i with Sn−k+3−i and the edges in E ′′
i

with Qi.

wtf2(C
i
k) = f2(Vi) + f2(E

′
i) + f2(E

′′
i )

=
∑

Ri + n+ 1 +
∑

Sn−k+3−i +
∑

Qi

= Δ3 + i+ n+ 1 +Δ4 + n− k + 3− i+Δ5 + 2i

= Δ3 +Δ4 +Δ5 + 2n− k + 4 + 2i.

Therefore, f2 is a super (a, 2)-Ck-antimagic labeling, where a = Δ3+Δ4+Δ5+2n−
k + 6.

Case (iii): Fn is super (a, k − 5)-Ck-antimagic

Define a total labeling f3 on Fn as follows: For 1 ≤ i ≤ n− k + 2, label the vertices
in Vi−{v} with Rn−k+3−i, v with n+1, the edges in E ′

i with Pi and the edges in E ′′
i

with Qn−k+3−i.

wtf3(C
i
k) = f3(Vi) + f3(E

′
i) + f3(E

′′
i )

=
∑

Rn−k+3−i + n + 1 +
∑

Pi +
∑

Qn−k+3−i

= Δ3 + n− k + 3− i+ n+ 1 +Δ2 + (k − 2)i+Δ5 + 2(n− k + 3− i)

= Δ3 +Δ2 +Δ5 + n− k + 3− i+ n+ 1 + (k − 2)i+ 2(n− k + 3− i)

= Δ2 +Δ3 +Δ5 + 4n− 3k + 10 + (k − 5)i.
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Then f3 is a super (a, k− 5)-Ck-antimagic labeling, where a = Δ2 +Δ3 +Δ5 +4n−
2k + 5.

Case (iv): Fn is super (a, k − 4)-Ck-antimagic

Define a total labeling f4 on Fn as follows: For 1 ≤ i ≤ n− k + 2, label the vertices
in Vi −{v} with Xi, v with n+1, the edges in E ′

i with Sn−k+3−i and the edges in E ′′
i

with Qn−k+3−i.

wtf4(C
i
k) = f4(Vi) + f4(E

′
i) + f4(E

′′
i )

=
∑

Xi + n+ 1 +
∑

Sn−k+3−i +
∑

Qn−k+3−i

= Δ1 + (k − 1)i+ n+ 1 +Δ4 + n− k + 3− i+Δ5 + 2(n− k + 3− i)

= Δ1 +Δ4 +Δ5 + 4n− 3k + 10 + (k − 4)i.

Then f4 is a super (a, k− 4)-Ck-antimagic labeling, where a = Δ1 +Δ4 +Δ5 +4n−
2k + 6.

Case (v): Fn is super (a, k − 3)-Ck-antimagic

Define a total labeling f5 on Fn as follows: For 1 ≤ i ≤ n− k + 2, label the vertices
in Vi − {v} with Ri, v with n+ 1, the edges in E ′

i with Pi and the edges in E ′′
i with

Qn−k+3−i.

wtf5(C
i
k) = f5(Vi) + f5(E

′
i) + f5(E

′′
i )

=
∑

Ri + n + 1 +
∑

Pi +
∑

Qn−k+3−i

= Δ3 + i+ n+ 1 +Δ2 + (k − 2)i+Δ5 + 2(n− k + 3− i)

= Δ2 +Δ3 +Δ5 + 3n− 2k + 7 + (k − 3)i.

Then f5 is a super (a, k−3)-Ck-antimagic labeling, where a = Δ2+Δ3+Δ5+3n−k+4.

Case (vi): Fn is super (a, k − 2)-Ck-antimagic

Define a total labeling f6 on Fn as follows: For 1 ≤ i ≤ n− k + 2, label the vertices
in Vi − {v} with Xi, v with n+ 1, the edges in E ′

i with Si and the edges in E ′′
i with

Qn−k+3−i.

wtf6(C
i
k) = f6(Vi) + f6(E

′
i) + f6(E

′′
i )

=
∑

Xi + n + 1 +
∑

Si +
∑

Qn−k+3−i

= Δ1 + (k − 1)i+ n + 1 +Δ4 + i+Δ5 + 2(n− k + 3− i)

= Δ1 +Δ4 +Δ5 + 3n− 2k + 7 + (k − 2)i.

Then f6 is a super (a, k−2)-Ck-antimagic labeling, where a = Δ1+Δ4+Δ5+3n−k+5.

Case (vii): Fn is super (a, k − 1)-Ck-antimagic

Define a total labeling f7 on Fn as follows: For 1 ≤ i ≤ n− k + 2, label the vertices
in Vi−{v} with Rn−k+3−i, v with n+1, the edges in E ′

i with Pi and the edges in E ′′
i
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with Qi. Then

wtf7(C
i
k) = f7(Vi) + f7(E

′
i) + f7(E

′′
i )

=
∑

Rn−k+3−i + n+ 1 +
∑

Pi +
∑

Qi

= Δ3 + n− k + 3− i+ n + 1 +Δ2 + (k − 2)i+Δ5 + 2i

= Δ3 +Δ2 +Δ5 + 2n− k + 4 + (k − 1)i.

Then f7 is a super (a, k−1)-Ck-antimagic labeling, where a = Δ2+Δ3+Δ5+2n+3.

Case (viii): Fn is super (a, k)-Ck-antimagic

Define a total labeling f8 on Fn as follows: For 1 ≤ i ≤ n− k + 2, label the vertices
in Vi −{v} with Xi, v with n+1, the edges in E ′

i with Sn−k+3−i and the edges in E ′′
i

with Qi.

wtf8(C
i
k) = f8(Vi) + f8(E

′
i) + f8(E

′′
i )

=
∑

Xi + n+ 1 +
∑

Sn−k+3−i +
∑

Qi

= Δ1 + (k − 1)i+ n+ 1 +Δ4 + n− k + 3− i+Δ5 + 2i

= Δ1 +Δ4 +Δ5 + 2n− k + 4 + ki.

Then f8 is a super (a, k)-Ck-antimagic labeling, where a = Δ1 +Δ4 +Δ5 + 2n+ 4.

Case (ix): Fn is super (a, k + 1)-Ck-antimagic

Define a total labeling f9 on Fn as follows: For 1 ≤ i ≤ n− k + 2, label the vertices
in Vi − {v} with Ri, v with n+ 1, the edges in E ′

i with Pi and the edges in E ′′
i with

Qi.

wtf9(C
i
k) = f9(Vi) + f9(E

′
i) + f9(E

′′
i )

=
∑

Ri + n+ 1 +
∑

Pi +
∑

Qi

= Δ3 + i+ n+ 1 +Δ2 + (k − 2)i+Δ5 + 2i

= Δ3 +Δ2 +Δ5 + n + 1 + (k + 1)i.

Then f9 is a super (a, k+1-Ck-antimagic labeling, where a = Δ2+Δ3+Δ5+n+k+2.

Case (x): Fn is super (a, k + 2)-Ck-antimagic

Define a total labeling f10 on Fn as follows: For 1 ≤ i ≤ n− k+ 2, label the vertices
in Vi − {v} with Xi, v with n+ 1, the edges in E ′

i with Si and the edges in E ′′
i with

Qi.

wtf10(C
i
k) = f10(Vi) + f10(E

′
i) + f10(E

′′
i )

=
∑

Xi + n+ 1 +
∑

Si +
∑

Qi

= Δ1 + (k − 1)i+ n+ 1 +Δ4 + i+Δ5 + 2i

= Δ1 +Δ4 +Δ5 + n+ 1 + (k + 2)i.

Then f10 is a super (a, k+2)-Ck-antimagic labeling, where a = Δ1+Δ4+Δ5+n+k+3.



P. JAYANTHI ET AL. /AUSTRALAS. J. COMBIN. 67 (1) (2017), 46–64 57

Case (xi): Fn is super (a, 2k − 5)-Ck-antimagic

Define a total labeling f11 on Fn as follows: For 1 ≤ i ≤ n− k+ 2, label the vertices
in Vi − {v} with Xi, v with n+ 1, the edges in E ′

i with Pi and the edges in E ′′
i with

Qn−k+3−i.

wtf11(C
i
k) = f11(Vi) + f11(E

′
i) + f11(E

′′
i )

=
∑

Xi + n + 1 +
∑

Pi +
∑

Qn−k+3−i

= Δ1 + (k − 1)i+ n + 1 +Δ2 + (k − 2)i+Δ5 + 2(n− k + 3− i)

= Δ1 +Δ2 +Δ5 + 3n− 2k + 7 + (2k − 5)i.

Then f11 is a super (a, 2k−5)-Ck-antimagic labeling, where a = Δ1+Δ2+Δ5+3n+2.

Case (xii): Fn is super (a, 2k − 1)-Ck-antimagic

Define a total labeling f12 on Fn as follows: For 1 ≤ i ≤ n − k + 2, label the
vertices in Vi − {v} with Xi, v with n + 1, the edges in E ′

i with Pi and the edges in
E ′′

i with Qi.

wtf12(C
i
k) = f12(Vi) + f12(E

′
i) + f12(E

′′
i )

=
∑

Xi + n + 1 +
∑

Pi +
∑

Qi

= Δ1 + (k − 1)i+ n + 1 +Δ2 + (k − 2)i+Δ5 + 2i

= Δ1 +Δ2 +Δ5 + n + 1 + (2k − 1)i.

Then f12 is a super (a, 2k−1)-Ck-antimagic labeling, where a = Δ1+Δ2+Δ5+n+2k.

Hence the fan Fn, n ≥ 3 admits a super (a, d)-Ck-antimagic labeling for k =
3, 4, . . . ,

⌊
n
2

⌋
+ 2 and d ∈ {1, 2, k − 5, k − 4, . . . , k + 2, 2k − 5, 2k − 1}.

The bistar graph Bn,m is the graph obtained from K2 by joining n pendent edges
to one end and m pendent edges to the other end of K2. In the next theorem we will
prove that the square of bistar graph Bn,m, denoted by B2

n,m admits cycle antimagic
labeling. Note that the graph B2

n,m can be alternatively obtained from the complete
bipartite graph K2,r, where r = n + m, by adding an edge between the vertices of
degree r.

Theorem 4.2. The graph B2
m,n admits a super (a, d)-C3-antimagic labeling for

m, n ≥ 1 and d ∈ {0, 1, 2, 3, 5}.

Proof. We denote the vertices and edges of B2
m,n in the following way V (B2

m,n) =
{u, v, wi : 1 ≤ i ≤ m+ n} and E(B2

m,n) = {uv, uwi, vwi : 1 ≤ i ≤ m+ n}. Let C i
3 be

the 3-cycle uwivu for 1 ≤ i ≤ m + n. Then {C i
3 : 1 ≤ i ≤ m+ n} is a C3-covering

for B2
m,n. The vertex set and edge set of C i

3 are Vi = V (C i
3) = {u, v, wi} and

Ei = E(C i
3) = {uv, uwi, vwi}, respectively.

Note that the weight of the cycle C i
k under a total labeling f is wtf(C

i
3) =

f(Vi)+f(Ei), where f(Vi) = f(u)+f(v)+f(wi) and f(Ei) = f(uv)+f(uwi)+f(vwi).

We use the following results.
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(R1) By Lemma 2.2, there exists an (m + n)-equipartition
{
X ′

1, X
′
2, . . . , X

′
m+n

}
of

[1, 2(m+ n)] such that
∑

X ′
i = 2(m+ n) + 1 for 1 ≤ i ≤ m+ n. Hence we can

find an equipartition {X1, X2, . . . , Xm+n} of (m + n + 3) + [1, 2(m + n)] such
that

∑
Xi = δ1 for 1 ≤ i ≤ m+ n, where δ1 = 2(m+ n+ 3) + 2(m+ n) + 1 =

4(m+ n) + 7.

(R2) If m+n is odd and h = 2, by Lemma 2.3 there exists an (m+n)-equipartition

{Y ′
1 , Y

′
2 , . . . , Y

′
m+n} of [1, 2(m + n)] such that

∑
Y ′
i = 3(m+n)+1

2
+ i for 1 ≤

i ≤ m + n. Hence we can find an equipartition {Y1, Y2, . . . , Ym+n} of (m +
n + 3) + [1, 2(m + n)] such that

∑
Yi = δ2 + i for 1 ≤ i ≤ m + n, where

δ2 = 2(m+ n + 3) + 3(m+n)+1
2

.

(R3) If m+ n is even and h = 2, by Lemma 2.4, for h = 2 there exists an (m+ n)-
equipartition {Z ′

1, Z
′
2, . . . , Z

′
m+n} of [1, 2(m + n) + 1] − {m+n

2
+ 1} such that∑

Z ′
i =

3(m+n)
2

+ 2 + i for 1 ≤ i ≤ m+ n. Hence we can find an equipartition
{Z1, Z2, . . . , Zm+n} of (m + n + 2) + [1, 2(m + n) + 1] − {m+n

2
+ 1} such that∑

Zi = δ3 + i for 1 ≤ i ≤ m+ n, where δ3 = 2(m+ n+ 2) + 3(m+n)
2

+ 2 + i.

(R4) By Lemma 2.1, there exists an (m + n)-equipartition
{
P ′
1, P

′
2, . . . , P

′
m+n

}
of

[1, 2(m + n)] such that
∑

P ′
i = m + n + 2i for 1 ≤ i ≤ m + n. Hence we can

find an equipartition {P1, P2, . . . , Pm+n} of (m+n+3)+[1, 2(m+n)] such that∑
Pi = δ4 + 2i for 1 ≤ i ≤ m + n, where δ4 = 2(m + n + 3) +m + n + 2i =

3(m+ n) + 6 + 2i.

(R5) By Lemma 3.3, there exists an (m + n)-equipartition
{
Q′

1, Q
′
2, . . . , Q

′
m+n

}
of

[1, 2(m + n)] such that
∑

Q′
i = 4i − 1 for 1 ≤ i ≤ m + n. Hence we can find

an equipartition {Q1, Q2, . . . , Qm+n} of (m + n + 3) + [1, 2(m + n)] such that∑
Qi = δ5+4i for 1 ≤ i ≤ m+n, where δ5 = 2(m+n+3)−1+4i = 2(m+n)+5.

In order to prove the theorem, we use the results (R1) - (R5).

Case (i): B2
m,n is super (a, 0)-C3-antimagic

We distinguish two subcases.

Subcase (a): m+ n is odd.

Define a total labeling f0 on B2
m,n as follows: For 1 ≤ i ≤ m + n, label the vertices

f0(u) = 1, f0(v)=2 and f0(wi) = m+ n+3− i and label the edge uv with m+n+3
and the edges in Ei − {uv} with Yi. Then

wtf0(C
i
3) = f0(Vi) + f0(Ei)

= 1 + 2 +m+ n + 3− i+m+ n+ 3 +
∑

Yi

= 2(m+ n) + 9− i+ δ2 + i

= δ2 + 2(m+ n) + 9.

Hence B2
m,n admits a super (a, 0)-C3-antimagic labeling with a = δ2 + 2(m+ n) + 9.

Subcase (b): m+ n is even.
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Define a total labeling f0 on B2
m,n as follows: For 1 ≤ i ≤ m + n, label the vertices

f0(u) = 1, f0(v)=2 and f0(wi) = m+ n+ 3− i and label the edge uv with m+ n +
2 + m+n

2
+ 1 and the edges in Ei − {uv} with Zi.Then

wtf0(C
i
3) = f0(Vi) + f0(Ei)

= 1 + 2 +m+ n+ 3− i+m+ n + 2 + m+n
2

+ 1 +
∑

Zi

= 2(m+ n) + 9− i+ m+n
2

+ δ3 + i

= δ3 + 2(m+ n) + m+n
2

+ 9.

Hence B2
m,n admits a super (a, 0)-C3-antimagic labeling with a = δ3 + 2(m + n) +

m+n
2

+ 9.

Case (ii): B2
m,n is super (a, 1)-C3-antimagic

Define a total labeling f1 on B2
m,n as follows: For 1 ≤ i ≤ m + n, label the vertices

f1(u) = 1, f1(v)=2 and f1(wi) = 2+ i and label the edge uv with m+ n+ 3 and the
edges in Ei − {uv} with Xi.

wtf1(C
i
3) = f1(Vi) + f1(Ei)

= 1 + 2 + 2 + i+m+ n + 3 +
∑

Xi

= m+ n + 8 + i+ δ1 = δ1 +m+ n+ 8 + i.

Hence B2
m,n admits a super (a, 1)-C3-antimagic labeling with a = δ1 +m+ n+ 9.

Case (iii): B2
m,n is super (a, 2)-C3-antimagic

Again we distinguish two subcases according to the parity of n+m.

Subcase (a): m+ n is odd.

Define a total labeling f2 on B2
m,n as follows: For 1 ≤ i ≤ m + n, label the vertices

f2(u) = 1, f2(v)=2 and f2(wi) = 2+ i and label the edge uv with m+ n+ 3 and the
edges in Ei − {uv} with Yi.

wtf2(C
i
3) = f2(Vi) + f2(Ei)

= 1 + 2 + 2 + i+m+ n + 3 +
∑

Yi

= m+ n+ 8 + i+ δ2 + i

= δ2 +m+ n+ 8 + 2i.

Hence B2
m,n admits a super (a, 2)-C3-antimagic labeling with a = δ2 +m+ n+ 10.

Subcase (b): m+ n is even.

Define a total labeling f2 on B2
m,n as follows: For 1 ≤ i ≤ m + n, label the vertices

f2(u) = 2, f2(v)=2 and f2(wi) = 2+ i and label the edge uv with m+n+2+ m+n
2

+1
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and the edges in Ei − {uv} with Zi.

wtf2(C
i
3) = f2(Vi) + f2(Ei)

= 1 + 2 + 2 + i+m+ n+ 2 +
m+ n

2
+ 1 +

∑
Zi

= m+ n+ 8 +
m+ n

2
+ i+ δ3 + i

= m+ n+
m+ n

2
+ 8 + δ3 + 2i.

Thus B2
m,n admits a super (a, 2)-C3-antimagic labeling with a = δ3+m+n+m+n

2
+10.

Case (iv): B2
m,n is super (a, 3)-C3-antimagic

Define a total labeling f3 on B2
m,n as follows: For 1 ≤ i ≤ m + n, label the vertices

f3(u) = 1, f3(v)=2 and f3(wi) = 2+ i and label the edge uv with m+ n+ 3 and the
edges in Ei − {uv} with Pi.

wtf3(C
i
3) = f3(Vi) + f3(Ei)

= 1 + 2 + 2 + i+m+ n+ 3 +
∑

Pi

= m+ n+ 8 + i+ δ4 + 2i = δ4 +m+ n+ 8 + 3i.

Hence B2
m,n admits a super (a, 3)-C3-antimagic labeling with a = δ4 +m+ n+ 11.

Case (v): B2
m,n is super (a, 5)-C3-antimagic

Define a total labeling f4 on B2
m,n as follows: For 1 ≤ i ≤ m + n, label the vertices

f4(u) = 1, f4(v)=2 and f4(wi) = 2+ i and label the edge uv with m+ n+ 3 and the
edges in Ei − {uv} with Qi.

wtf4(C
i
3) = f4(Vi) + f4(Ei)

= 1 + 2 + 2 + i+m+ n+ 3 +
∑

Qi

= m+ n+ 8 + i+ δ5 + 4i = δ5 +m+ n+ 8 + 5i.

Hence B2
m,n admits a super (a, 5)-C3-antimagic labeling with a = δ5 + m + n + 13,

which means that the graph B2
m,n admits a super (a, d)-C3-antimagic labeling for

m, n ≥ 1 and d ∈ {0, 1, 2, 3, 5}.

In the following theorem we prove that the square of a path is super (a, d)-C3-
antimagic for 1 ≤ d ≤ 6.

Theorem 4.3. The graph P 2
n admits a super (a, d)-C3-antimagic labeling for n ≥ 3

and d ∈ {1, 2, 3, 4, 5, 6}.

Proof. We denote the vertices and edges of P 2
n such that V (P 2

n) = {v1, v2, . . . , vn}
and E(P 2

n) = {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {vivi+2 : 1 ≤ i ≤ n − 2}. Let C i
3 be the

3-cycle vivi+1vi+2 for 1 ≤ i ≤ n − 2. Then {C i
3 : 1 ≤ i ≤ n− 2} is a C3-covering

for P 2
n . The vertex set and edge set of C i

3 are Vi = V (C i
3) = {vi, vi+1, vi+2} and

Ei = E(C i
3) = E ′

i ∪ {vivi+2}, where E ′
i = {vivi+1, vi+1vi+2}.
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Note that the weight of the cycle C i
k under a total labeling f is wtf(C

i
3) =

f(Vi) + f(E ′
i) + f(vivi+2), where f(Vi) = f(vi) + f(vi+1) + f(vi+2) and f(E ′

i) =
f(vivi+1) + f(vi+1vi+2).

First we introduce the following rules.

(R1) By Lemma 3.5, [1, n] can be arranged as a sequence (ai)
n
i=1 such that

∑
Xi+1−∑

Xi = 1 for 1 ≤ i ≤ n− 2, where Xi = {ai, ai+1, ai+2} with
∑

Xi = δ1 + i for

1 ≤ i ≤ n− 2 where δ1 =
6t−(3−s)2−s+7

2
, t =

⌈
n
3

⌉
and s = n (mod 3).

(R2) By Lemma 3.1, the multiset X =
m⊎
j=2

[j, n − j + 1] 
 [1, n] is (n − 2, 3)-anti-

balanced with anti-balanced subsets Y1, Y2, . . . , Yn−2 with
∑

Yi = 3+3i, where
m = min{3, n− 2}.

(R3) Let X =

{
[1, n− 1] 
 [2, n− 2] if n− 1 is even,

[1, n−2
2
] 
 [n−2

2
+ 2, n− 1] 
 [2, n− 1] if n− 1 is odd,

By Lemma 2.5, the multiset X = [1, n−1] is (n−2, 1)-anti-balanced with anti-
balanced subsets Y1, Y2, . . . , Yn−2 defined by Yi =

{⌈
i+1
2

⌉
,
⌊
n−2
2

⌋
+
⌈
i
2

⌉
+ 1
}
.

Correspondingly, the multiset n⊕X is also (n− 2, 1)-anti-balanced with anti-
balanced subsets P1, P2, . . . , Pn−2 defined by Pi =

{
n+

⌈
i+1
2

⌉
, n+

⌊
n−2
2

⌋
+⌈

i
2

⌉
+ 1
}
and

∑
Pi = δ2 + i, where δ2 = 2n+

⌊
n−2
2

⌋
+ 2.

(R4) By Lemma 2.6, the multiset Y = [1, n−2]
 [2, n−1] is (n−2, 2)-anti-balanced
with anti-balanced subsets Y1, Y2, . . . , Yn−2 defined by Yi = {i, i+ 1}. Corre-
spondingly, the multiset n⊕Y is also (n−2, 2)-anti-balanced with anti-balanced
subsets Q1, Q2, . . . , Qn−2 defined by Qi = {n+ i, n+ i+ 1} and

∑
Qi = 2n +

1 + 2i.

Now we prove that P 2
n is super (a, d)-C3-antimagic for 1 ≤ d ≤ 6.

Case (i): d = 1

Define a total labeling f1 on P 2
n as follows: For 1 ≤ i ≤ n − 2, label the vertices in

Vi with Xi, the edges in E ′
i with Pn−1−i and the edge vivi+2 with 2n− 1 + i. Then

wtf1(C
i
3) = f1(Vi) + f1(Ei)

=
∑

Xi +
∑

Pn−1−i + 2n− 1 + i

= δ1 + i+ δ2 + n− 1− i+ 2n− 1 + i

= δ1 + δ2 + 3n− 2 + i.

Hence P 2
n admits a super (a, 1)-C3-antimagic labeling with a = δ1 + δ2 + 3n− 1.

Case (ii): d = 2

Define a total labeling f2 on P 2
n as follows: For 1 ≤ i ≤ n − 2, label the vertices in
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Vi with Xi, the edges in E ′
i with Qi and the edge vivi+2 with 3n− 2− i. Then

wtf2(C
i
3) = f2(Vi) + f2(Ei)

=
∑

Xi +
∑

Qi + 3n− 2− i

= δ1 + i+ 2n + 1 + 2i+ 3n− 2− i

= δ1 + 5n− 1 + 2i.

Hence P 2
n admits a super (a, 2)-C3-antimagic labeling with a = δ1 + 5n+ 1.

Case (iii): d = 3

Define a total labeling f3 on P 2
n as follows: For 1 ≤ i ≤ n − 2, label the vertices in

Vi with Yi, the edges in E ′
i with Pi and the edge vivi+2 with 3n− 2− i.

wtf3(C
i
3) = f3(Vi) + f3(Ei)

=
∑

Yi +
∑

Pi + 3n− 2− i

= 3 + 3i+ δ2 + i+ 3n− 2− i

= δ2 + 3n+ 1 + 3i.

Hence P 2
n admits a super (a, 3)-C3-antimagic labeling with a = δ2 + 3n+ 4.

Case (iv): d = 4

Define a total labeling f4 on P 2
n as follows: For 1 ≤ i ≤ n − 2, label the vertices in

Vi with Yi, the edges in E ′
i with Qi and the edge vivi+2 with 3n− 2− i.

wtf4(C
i
3) = f4(Vi) + f4(Ei)

=
∑

Yi +
∑

Qi + 3n− 2− i

= 3 + 3i+ 2n+ 1 + 2i+ 3n− 2− i

= 5n+ 2 + 4i.

Hence P 2
n admits a super (a, 4)-C3-antimagic labeling with a = 5n+ 6.

Case (v): d = 5

Define a total labeling f5 on P 2
n as follows: For 1 ≤ i ≤ n − 2, label the vertices in

Vi with Yi, the edges in E ′
i with Pi and the edge vivi+2 with 2n− 1 + i.

wtf5(C
i
3) = f5(Vi) + f5(Ei)

=
∑

Yi +
∑

Pi + 2n− 1 + i

= 3 + 3i+ δ2 + i+ 2n− 1 + i

= δ2 + 2n + 2 + 5i.

Hence P 2
n admits a super (a, 5)-C3-antimagic labeling with a = δ2 + 2n+ 7.
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Case (vi): d = 6

Define a total labeling f6 on P 2
n as follows: For 1 ≤ i ≤ n − 2, label the vertices in

Vi with Yi, the edges in E ′
i with Qi and the edge vivi+2 with 2n− 1 + i. Then

wtf6(C
i
3) = f6(Vi) + f6(Ei)

=
∑

Yi +
∑

Qi + 2n− 1 + i

= 3 + 3i+ 2n+ 1 + 2i+ 2n− 1 + i

= 4n+ 3 + 6i.

Hence P 2
n admits a super (a, 6)-C3-antimagic labeling with a = 4n+ 9.

This concludes the proof.

Note that Muthuraja, Selvagopal and Jeyanthi [18] showed that the square graph
of a path is cycle-supermagic. Thus combining these results we find that P 2

n is super
(a, d)-C3-antimagic for 0 ≤ d ≤ 6.
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