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Abstract

A necessary condition for existence of a (v, k, k−1) near resolvable BIBD
is v ≡ 1 (mod k). In this paper, we update earlier known existence results
when k ∈ {9, 12, 16}, and show this necessary condition is sufficient,
except possibly for 26, 37 and 149 values of v for k = 9, 12, 16 respectively.
Some new results for existence of (9, 8)-frames of type 9t are also obtained;
in particular, we show these exist for all t ≥ 139.

1 Introduction

A (K, λ) group divisible design, ((K, λ)-GDD) is a triple (X,G,B) where X is a set of
points, G is a partition of X into groups, and B is a collection of subsets of X (called
blocks), each with size from K, such that any two distinct points from X appear in
λ blocks if they lie in different groups from G and in no blocks if in the same group.
The parameter λ is sometimes omitted if it equals 1, and if K = {k}, the notation
(k, λ)-GDD instead of ({k}, λ)-GDD is more commonly used. Also, a (K, λ)-GDD is
said to have type gu1

1 gu2
2 . . . , gut

t if it has ui groups of size gi for 1 ≤ i ≤ t. A (v,K, λ)
PBD or pairwise balanced design, is a (K, λ)-GDD of type 1v, and for k a positive
integer, a (v, k, λ) BIBD is a (k, λ)-GDD of type 1v. A transversal design, TD(k, v)
is a (k, 1)-GDD of type vk.

A (K, λ)-GDD (X,G,B) is called resolvable if its block set B can be partitioned
into parallel classes, each containing every point of X exactly once. A (K, λ)-GDD
is called a frame if its block set B can be partitioned into holey parallel classes, each
containing every point from X\Gi once (for some group Gi) and no points from Gi.
A (v, k, λ) BIBD is called near resolvable, or a (v, k, λ) NRB, if it is a (k, λ)-frame of
type 1v. (In some papers, the notation (v, k, λ) NRBIBD is used instead of (v, k, λ)
NRB, but that notation will not be used in this paper.) Necessary conditions for
existence of a (v, k, λ) NRB are v ≡ 1 (mod k) and λ ≡ 0 (mod (k − 1)).
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In this paper, we are mainly interested in (v, k, k − 1) NRBs. The notation
NRB(k) is sometimes used to denote the set {v : a (v, k, k − 1) NRB exists}. It is
known that for any k the set NRB(k) is PBD-closed, that is, if a (v, T, 1) PBD exists
and a (t, k, k − 1) NRB exists for all t ∈ T , then a (v, k, k − 1) NRB also exists.

Existence of (v, k, k−1) NRBs has been studied by several researchers for certain
values of k. For k = 3, existence was established by Hanani [21]. For k = 4, solutions
exist when v ∈ {5, 9, 13, 17, 29} since these values are prime powers (see for instance,
[18, Lemma 2.6.1]). When v > 17, v ≡ 1 (mod 4) and v /∈ {29, 33}, solutions can
be obtained from PBD-closure of NRB(4), since a (v, {5, 9, 13}, 1) PBD exists for all
such v [20]. When v = 33, various cyclic solutions are known; see for instance [6,
page 128].

For k = 5, existence was solved for all but 26 cases in [23], and this list was
reduced to 8 cases in [22]. These 8 cases (v = 46, 51, 116, 141, 201, 266, 296, and
351) were obtained in [16, Corollaries 3.7, 3.10] and [18, Section 4.3]. We point out
that the constructions in [16, Lemmas 2.4, 2.5] for a (5, 4)-frame of type 57 and a
(26, 5, 4) NRB were not correct, but alternative constructions for these designs can
be found in [3] and [4] respectively. Also, an alternative proof for existence of (v, 5, 4)
NRBs with v /∈ {6, 26} can be found in [2, 3].

In [18, Tables 4.5.1.3 and 4.6.12] and [16, Table 3] it was noted that for k = 6, 7, 8,
(v, k, k − 1) NRBs exist for v ≡ 1 (mod k) with at most 2 possible exceptions for
k = 6, 14 possible exceptions for k = 7, and 17 possible exceptions for k = 8. For
k = 6, much of the preliminary work was done in [22]. For k = 6, the 2 possible
exceptions (v = 55, 145) were solved in [8], and for k = 7, all 14 possible exceptions
were later removed in [1, 4]. For k = 8, all but 2 of the 17 unknown cases (v = 385
and 553) were removed in [9].

For k = 10, it is known [19] that no (v, 10, 9) NRB can exist when v = 21.
Later in [7], existence of (v, 10, 9) NRBs was solved for all but at most 42 other
values of v. In [15], existence of (v, 12, 11) NRBs was solved with at most 83 possible
exceptions. Also, for k ∈ {12, 16}, Furino [16] and Furino et al. [18, Table 4.2.11]
noted that their generic search algorithm could produce (v, k, k − 1) NRBs for all
but 53 values of v when k = 12 and 158 values of v when k = 16. However no list
of possible exceptions was given here. Some similar (but usually larger) bounds are
also given in [16, 18] for some other values of k ≤ 30. For k = 17 however, the bound
given needs to be revised, since it assumed existence of a (290, 17, 16) NRB which is
currently unknown.

In this paper, we shall investigate existence of (9, 8)-frames of type 9t, and of
(v, k, k − 1) NRBs with k ∈ {9, 12, 16}. For k = 9, the best known existence result
for (v, 9, 8) NRBs is a rather weak one (in Section 4.1.7 of [18], it was stated that these
designs exist for v ≡ 1 (mod 9), v > 18145), and even this bound was inaccurate,
since it assumed existence of an (82, 9, 8) NRB, which is currently unknown. More
generally, the proof of existence of (q2+1, q, q−1) NRBs for q an odd prime power in
[18, Theorem 2.6.30] and [16, Lemma 2.8] was incorrect. Our existence proof makes
use of (9, 8)-frames of type 9t for 10 ≤ t ≤ 13 and also for several values of t that are
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odd prime powers. Using these frames, we are also able to obtain all (9, 8)-frames
of type 9t with t ≥ 139. For k = 12, we start with the list of 83 possible exceptions
in [15], and are able to reduce this list to 37 possible exceptions. For k = 16, we
first look at v ≤ 10033, the largest unknown case in [16] and [18]. We provide some
detail on existence of these smaller designs, and then also give a recursive proof for
the larger designs. We also provide a list of unknown cases, which wasn’t given in
[16] or [18]. However here, we are only able to slightly reduce the number of possible
exceptions in [16] and [18] (from 158 to 149).

The rest of this paper is organised as follows. Section 2 gives some general
construction methods for frames and (v, k, k−1) NRBs; these are mostly of a recursive
nature. Section 3 looks at a special type of design, namely a base factorisation,
and gives one useful construction which enables us to obtain some (12, 11)-frames
of types 12t, 24t and some (16, 15)-frames of type 16t. Several (v, k, k − 1) NRBs
with k ∈ {12, 16} are obtainable from these frames. Section 4 gives some direct
constructions for some small (k, k − 1)-frames and (v, k, k − 1) NRBs with k ∈
{9, 12, 16}. Section 5 looks at existence of (9, 8)-frames of type 9t, and constructs
these for t ≥ 139. Sections 6, 7 and 8 look at existence of (v, k, k − 1) NRBs with
k = 9, 12, 16 respectively and reduce the numbers of unknown cases to 26, 37 and
149 respectively.

2 Construction Methods

In this section, we give a number of known general constructions for NRBs and frames
that will be useful for obtaining several results in this paper. When not given here,
proofs can be found in the references cited. In general, [18] is an excellent reference
for constructions of these types.

Lemma 2.1 [18, Lemma 2.6.1] If p is a prime power and p ≡ 1 (mod k), then there
exists a (p, k, k− 1) NRB obtainable by developing (p− 1)/k base blocks over GF(p).

Lemma 2.2 [18, Theorem 2.4.7] (Breaking up groups) Suppose there exists a (K, λ)-
frame of type g1, g2 . . . , gm, and for each i = 1, 2, . . . , m, a (K, λ)-frame of type ggi/ge1

exists. (Note that if e = 0, then gi ∈ {0, g} is permissible here.) Then a (K, λ)-frame
of type gte1 exists for t =

∑m
i=1(gi/g).

In the special case that λ = k − 1, e = 0 or 1 and g = 1, Lemma 2.2 gives:

Lemma 2.3 Suppose there exists a (k, k − 1)-frame of type g1, g2, . . . , gn. Then if
e = 0 or 1 and a (gi+e, k, k−1) NRB exists for each i ∈ {1, 2, . . . , n}, a (g+e, k, k−1)
NRB exists for g =

∑n
i=1 gi.

Wilson’s fundamental GDD construction can be modified to produce certain types
of frames. The next lemma gives a general form of this construction:
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Lemma 2.4 [18, Corollary 2.4.3] Let (X,G,B) be a (master) (K1, 1)-GDD and let
w be a weight function on X such that w(x) is a non-negative integer for all x ∈ X.
Suppose for all B ∈ B there exists a (K2, λ)-frame of type (w(x) : x ∈ B). Then
there exists a (K2, λ)-frame of type (

∑
x∈G w(x) : G ∈ G).

In the previous lemma, if the input (K1, 1)-GDD is a PBD, and all points are
given constant weight g, then we obtain the following result:

Lemma 2.5 [18, Corollary 2.4.4] If there exists a (v,K, 1) PBD and a (K, λ)-frame
of type gs exists for each s ∈ K, then a (K, λ)-frame of type gv exists.

If further, we take g = 1 and λ = k − 1 in the previous lemma, the input frames
are all (s, k, k−1) NRBs (i.e. (k, k−1)-frames of type 1s). In this case, the following
PBD-closed result for (v, k, k − 1) NRBs is obtained:

Lemma 2.6 If there exist a (v,K, 1) PBD and an (s, k, k−1) NRB for each s ∈ K,
then there exists a (v, k, k − 1) NRB.

There is also a useful construction which inflates a frame with a resolvable TD
to obtain a larger frame:

Lemma 2.7 [18, Corollary 2.4.6] If a (k, λ)-frame of type h1h2 . . . hm and a resolv-
able TD(k, g) both exist, then there exists a (k, λ)-frame of type gh1 gh2 . . . ghm. If
further, a (ghi + 1, k, λ) NRB exists for each i = 1, 2, . . . , m, then there exists a
(gh+ 1, k, λ) NRB for h =

∑m
i=1 hi.

Lemma 2.8 If k is a prime power, then there exists a (k, 1)-frame of type (k−1)k+1.

Proof: Deleting a point P (and the blocks containing it) from a resolvable (k2, k, 1)
BIBD (an affine plane) gives a (k, 1)-GDD of type (k−1)k+1. Its groups are Bi\{P}
for each block Bi (i = 1, 2, . . . , k+1) containing P . This GDD is also a frame, since
for each Bi, the blocks other than Bi in the parallel class (of the original BIBD)
containing Bi form the required partial parallel class missing the group Bi\{P}.

Lemma 2.9 For any positive integer k, a (k, k − 1)-frame of type 1k+1 exists. If k
is a prime power, a (k, k − 1)-frame of type kk+1 also exists.

Proof: A (k, k − 1)-frame of type 1k+1 is obtained by taking all k-element subsets of
a size k+ 1 set. For a (k, k− 1)-frame of type kk+1, apply Lemma 2.7 with g = k to
this frame.

Lemma 2.10 If k + 1 is a prime power, then there exists a (k, k − 1)-frame of type
kk+2.

Proof: Deleteing one point and its blocks from an affine plane of order k + 1 gives a
(k + 1, 1)-GDD of type kk+2. We can now apply Lemma 2.4 to this GDD, giving all
points weight 1, since a (k, k − 1)-frame of type 1k+1 exists by Lemma 2.1.
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Lemma 2.11 If k is a prime power, then there exists a cyclic (k2 + k+1, , k, k− 1)
NRB.

Proof: Since k is a prime power, there exists a symmetric (k2 + k+1, k+1, 1) BIBD
which is obtainable by developing a block B = {b1, b2, . . . , bk+1} over G = Zk2+k+1.
For each x ∈ G, let B−x denote the block obtained by subtracting x from all elements
of B. Now consider the k + 1 blocks Cl = (B − bl)\{0}, (l = 1, 2, . . . , k + 1). These
k+1 blocks generate a cyclic (k2+ k+1, k, k− 1) BIBD: any non-zero element of G
equals bi−bj for exactly one pair (i, j), and if x = bi−bj is any such nonzero element,
then x appears once as a difference between two values in each Cl (l = 1, 2, . . . , k+1)
except when l = i or j. In addition, since the original BIBD was symmetric with
index λ = 1, any two of its blocks intersect in exactly 1 point. Therefore no two
blocks Cl1 , Cl2 (l1, l2 ∈ {1, 2, . . . , k + 1}, l1 �= l2) can contain any common points.
Thus the k(k + 1) points in the blocks Cl (l = 1, 2, . . . , k + 1) are all distinct, and
these blocks form a partial parallel class missing the point 0. Also adding any x ∈ G
to these k+1 blocks gives a partial parallel class missing x. The (k2+k+1, k, k−1)
BIBD obtained by developing blocks Cl (l = 1, 2, . . . , k + 1) over G is thus an NRB,
as required.

Example 2.12 Using (0, 1, 4, 14, 16) as a base block for a cyclic (21, 5, 1) BIBD
in the previous lemma, we obtain the following base blocks for a cyclic (21, 4, 3)
NRB: C1 = (1, 4, 14, 16), C2 = (20, 3, 13, 15), C3 = (17, 18, 10, 12), C4 = (7, 8, 11, 2),
C5 = (5, 6, 9, 19).

Definition 2.13 A (v, k, λ) DM (difference matrix) over an abelian group G of order
v is a k× vλ array D with entries from G such that for each i, j, 1 ≤ i < j ≤ k, the
multiset {Di,l −Dj,l : 1 ≤ l ≤ vλ} contains each element of G λ times.

In this paper we will require only a few difference matrices, and a few TDs
obtainable from them. These DMs and TDs are all obtainable by the following
theorem:

Lemma 2.14 a. [5] If v = p1p2 . . . pn is a factorisation of v into prime powers
with p1 ≤ p2 ≤ . . . ≤ pn, then there exist a TD(p1 + 1, v) and a (v, p1, 1) DM
over GF(p1)×GF (p2) . . .×GF (pn).

b. [14] If G is an abelian group of order v, k is a prime power and there exists
a (v, k, 1) BIBD obtainable by developing one or more blocks over G, then a
TD(k + 1, v) and a (v, k, 1) DM over G exist.

The following theorem indicates how some difference matrices with λ = 1 can be
useful in constructing (v, k, k − 1) NRBs.
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Theorem 2.15 [22], [18, Theorem 2.5.5] Suppose there exist a (kn + 1, km + 1,
1) DM over an abelian group, G of order kn + 1, and a (kn + 1, k, k − 1) NRB
obtainable by developing one or more blocks over G. Suppose also, 0 ≤ w ≤ n, and
a (km, k, k − 1) resolvable BIBD, a (km+ 1, k, k − 1) NRB plus a (kw + 1, k, k − 1)
NRB all exist. Then a (km(kn + 1) + kw + 1, k, k − 1) NRB exists.

3 Base Factorisations

In [13], Baker introduced a new type of design known as a base factorisation or
BFλ(k, v), and in [17], Furino et al. used them to construct certain types of frames.
More specifically, a BFλ(k, v) is a design consisting of a set V of v points and a
collection B of blocks, each of size k/2 or k, satisfying the following extra properties:

a. B is partionable into a set P of parallel classes;

b. Each point in V appears in exactly λ blocks of size k/2 in B;
c. For each pair (A,B) of distinct points in V, if λc(A,B) denotes the number of

blocks of size c containing both A and B, then λk(A,B) + 2λk/2(A,B) = λ.

A base factorisation is called uniform if all blocks in each of its parallel classes
in P have the same size. All base factorisations in this paper are uniform, and are
obtained by Lemma 3.1 or Lemma 3.4.

Lemma 3.1 Let k be even. If a resolvable (k, k/2, k/2 − 1) BIBD exists, then so
does a uniform BFk−1(k, k).

Proof: Combine the blocks of the resolvable BIBD with one block of size k containing
all the points.

Corollary 3.2 A uniform BF11(12, 12) and a uniform BF15(16, 16) both exist.

Proof: This follows from the previous lemma, since a resolvable (12, 6, 5) BIBD
over Z11 ∪ {∞} can be obtained by developing the blocks {∞, 0, 1; 2, 4, 7} and
{3, 8, 10; 5, 6, 9} (mod 11) and a resolvable (16, 8, 7) BIBD over Z15 ∪ {∞} can be
obtained by developing the blocks {∞, 0, 1, 4; 2, 5, 8, 10}, and {3, 7, 9, 14; 6, 11, 12, 13}
(mod 15).

Remark 3.3 The two resolvable (v, k, k − 1) BIBDs given in the proof of Corol-
lary 3.2 possess one extra property: their size k blocks can be partitioned into sub-
blocks of size k/2 in such a way that the sub-blocks form a resolvable (v, k/2, k/2−1)
BIBD. (In those two examples, the sub-blocks of size k/2 are separated by semi-
colons.) In the language of papers such as [7, 12, 15], any resolvable (v, k, k − 1)
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BIBD with this property is known as a generalised whist design or (k/2, k) GWhD(v).
Whenever a resolvable (k, k/2, k/2−1) BIBD is also a (k/4, k/2) GWhD(k) for some
k ≡ 0 (mod 4), it can be used to construct a uniform BFk−1(k, 2k) as illustrated in
the next lemma.

Lemma 3.4 Let k ≡ 0 (mod 4). If there exists a (k/4, k/2) GWhD(k), then a
uniform BFk−1(k, 2k) also exists.

Proof: Let V1 be the point set for the (k/4, k/2) GWhD(k). The required
BFk−1(k, 2k) will have point set V = Z2 × V1. For each block C with sub-blocks
C1, C2 in the (k/4, k/2) GWhD(k) we construct the following block of size k:
({0} × C) ∪ ({1} × C). We also construct the following two blocks of size k/2:
({x} × C1) ∪ {x+ 1} × C2), x = 0, 1.

Finally there is a parallel class containing the following two blocks of size k:
({x} × V1) x = 0, 1. This parallel class should be included twice.

Note that if B1, B2 are the two blocks in any parallel class of the (k/4, k/2)
GWhD, then there are four blocks of size k/2 in the BFk−1(k, 2k) that are associated
with B1 or B2. These blocks will form a parallel class in our BFk−1(k, 2k). So will
the two blocks of size k associated with B1 or B2. The final two (repeated) blocks
of size k form a (repeated) parallel class.

Note that the (k/4, k/2) GWhD(k) has replication number r = k − 1. Also, for
each block B in the (k/4, k/2) GWhD, and for each point y ∈ B, there is exactly
one block of size k/2 in the base factorisation associated with B containing (0, y)
and one such block containing (1, y). Therefore, since the (k/4, k/2) GWhD(k) had
replication number k − 1, each point appears in λ = k − 1 blocks of size k/2 in the
base factorisation.

Finally we need to confirm that for any two distinct points A,B in the base
factorisation, λk(A,B) + 2λk/2(A,B) = k − 1. First, if for some z1, z2 (z1 �= z2) we
have A = (x, z1) and B = (x, z2) (x ∈ {0, 1}), then A and B appear together in
(k/2 − 1) + 2 = k/2 + 1 blocks of size k and k/4 − 1 blocks of size k/2. If z1 = z2,
two points A = (0, z1) and B = (1, z2) appear together in k − 1 blocks of size k
and in zero blocks of size k/2; if z1 �= z2, they appear together in k/2 − 1 blocks
of size k and (k/2 − 1) − (k/4 − 1) = k/4 blocks of size k/2. Thus in all cases,
λk(A,B) + 2λk/2(A,B) = k − 1 as required.

Example 3.5 There exists a BF11(12, 24).

Proof: We apply Lemma 3.4 to the (3, 6) GWhD(12) given in the proof of Corol-
lary 3.2. Take the point set as Z2 × (Z11 ∪ {∞}). The first two blocks below form
a parallel class of blocks of size 12 which should be developed (mod (−, 11)). De-
veloping the last two blocks (mod (2,−)) produces a parallel class of blocks of size
6; developing these (mod (−, 11)) then produces 11 parallel classes. Finally there is
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a parallel class of size 12 blocks which should be included twice; it consists of the 2
blocks {x} × (Z11 ∪ {∞}), x = 0, 1.

{(0,∞), (0, 0), (0, 1), (0, 2), (0, 4), (0, 7), (1,∞), (1, 0), (1, 1), (1, 2), (1, 4), (1, 7)}
{(0, 3), (0, 8), (0, 10), (0, 5), (0, 6), (0, 9), (1, 3), (1, 8), (1, 10), (1, 5), (1, 6), (1, 9)}
{(0,∞), (0, 0), (0, 1), (1, 2), (1, 4), (1, 7)}
{(0, 3), (0, 8), (0, 10), (1, 5), (1, 6), (1, 9)}

The main significance of base factorisations for the results in this paper comes
from the following theorem:

Theorem 3.6 Suppose k is even and there exists a uniform base factorisation,
BFk−1(k, v). Then if q is an odd prime power such that q > k, there exists a (k, k−1)-
frame of type vq. If further a (v + 1, k, k − 1) NRB exists, a (vq + 1, k, k − 1) NRB
also exists.

Proof: For the first part see [17, Lemma 3.8] or [18, Theorem 2.6.27]. For the second
part, apply Lemma 2.3 with e = 1.

Remark 3.7 A (4, 8) GWhD(16) exists (see Corollary 3.2 and Remark 3.3). It can
be used to obtain a BF15(16, 32) and (16, 15)-frames of type 32q for q an odd prime
power ≥ 17. However, this does not help us obtain any new (v, 16, 15) NRBs, since
it is known that a (33, 16, 15) NRB cannot exist [19].

4 Some Direct Constructions

In this section, we construct a number of (k, k − 1)-frames of type uh for various
values of u and h. These constructions are usually of the following type. The points
are taken to be elements of an abelian group G of size uh; the groups of size u are
then taken as cosets of some size u subgroup U of G. An initial set of base blocks
(which form a partial parallel class missing the group U) is then given. Other partial
parallel classes are then obtained by developing the blocks in the initial one over G.

Lemma 4.1 A (v, 9, 8) NRB exists for v ∈ {10, 28, 46, 55}.
Proof: For v = 10, the required design is obtained by taking a size 10 set and its ten
9-element subsets as blocks. See [4, Example 3.4] for v = 28, and [24] for v = 46, 55.

Lemma 4.2 There exist (9, 8)-frames of types 331 and 228, a (16, 5)-frame of type
317, and a (16, 15)-frame of type 349.

Proof: For a (9, 8)-frame of type 331, the point set is is Z93, and groups are {y, y +
31, y+62} for 0 ≤ y ≤ 30. Multiply the last 3 blocks below by 1, 25, 67 and the first
block by 1 only. The resulting 10 blocks form an initial partial parallel class missing
the group {0, 31, 62}; other partial parallel classes are obtained by developing blocks
in this initial one (mod 93).
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{3, 75, 15, 9, 39, 45, 11, 89, 86} {6, 26, 34, 41, 49, 55, 56, 59, 82}
{12, 17, 19, 35, 44, 51, 63, 70, 71} {1, 18, 24, 37, 52, 72, 74, 84, 85}

For a (9, 8)-frame of type 228, the point set is GF(4) ×Z14, and groups are
{(y, z), (y, z + 7)} for y ∈ GF (4) and z = 0, 1, 2, . . . , 13. Let x be a primitive
element in GF(4) satisfying x2 = x+1, and multiply the two blocks below by (1, 1),
(x, 9) and (x+1, 11). The resulting 6 blocks form a partial parallel class missing the
group {(0, 0), (0, 7)}. Other partial parallel classes are obtained by developing this
initial one over GF(4) × Z14.

{(0, 1), (0, 2), (1, 0), (1, 4), (1, 6), (1, 3), (x, 2), (x, 10), (x+ 1, 1)}
{(0, 13), (0, 12), (1, 5), (1, 11), (1, 13), (1, 2), (x, 7), (x, 9), (x+ 1, 12)}

For a (16, 5)-frame of type 317 (also given in [7]), the point set is Z3 × Z17, and
groups are Z3 × {x} for x ∈ Z17. Blocks are obtained by developing the following
base block (mod (3, 17)): {(0, 1), (0, 2), (0, 4), (0, 8), (0, 16), (0, 15), (0, 13), (0, 9),
(1, 3), (1, 12), (1, 14), (1, 5), (2, 6), (2, 7), (2, 11), (2, 10)}. The first partial parallel
class (which misses the group Z3×{0}) is obtained by adding (0, 0), (1, 0) and (2, 0)
to the given base block and other partial parallel classses are obtained by developing
this first one over Z17.

Similarly, for a (16, 15)-frame of type 349, the point set is Z3 × GF (49), and
groups are Z3 × {x} for x ∈ GF (49). Let z be a primitive element of GF(49)
satisfying z2 = 3z+2. A partial parallel class missing the group Z3×{0} is obtained
by multiplying any one of the three blocks B1, B2 B3 below by (1, 1), (1, z4) and
(1, z8), and then adding (0, 0), (1, 0) and (2, 0) to the resulting three blocks. Other
partial parallel classses are obtained by developing each of these three partial parallel
classes over GF (49).

B1 = {(0, z), (0, z13), (0, z25), (0, z37), (0, z2), (0, z14), (0, z26), (0, z38),
(1, z7), (1, z19), (1, z31), (1, z43), (2, z8), (2, z20), (2, z32), (2, z44)}

B2 = {(0, z), (0, z13), (0, z25), (0, z37), (0, z11), (0, z23), (0, z35), (0, z47),
(1, z2), (1, z14), (1, z26), (1, z38), (2, z4), (2, z16), (2, z28), (2, z40)}

B3 = {(0, z2), (0, z14), (0, z26), (0, z38), (0, z3), (0, z15), (0, z27), (0, z39),
(1, z8), (1, z20), (1, z32), (1, z44), (2, z9), (2, z21), (2, z33), (2, z45)}

Lemma 4.3 For q ∈ {10, 11, 12, 13, 17, 25, 49}, a (9, 8)-frame of type 9q exists.

Proof: For q = 10, apply Lemma 2.9 with k = 9. For q = 12, the point set is
GF(4) ×Z27, and groups are translates of {0}×{0, 3, 6, . . . , 24}. Let x be a primitive
element in GF(4) satisfying x2 = x+ 1, and multiply the first three blocks below by
(1, 1), (x, 10) and (x+1, 19). Together with the last two blocks, this gives us 11 base
blocks which form a partial parallel class missing the group {0} × {0, 3, 6, . . . , 24}.
Other partial parallel classes are obtained by developing these 11 base blocks over
GF(4) × Z27.
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{(0, 1), (0, 2), (1, 0), (1, 1), (1, 5), (x, 4), (x, 8), (x + 1, 15), (x+ 1, 25)}
{(0, 7), (0, 23), (1, 6), (1, 4), (1, 26), (x, 11), (x, 12), (x + 1, 5), (x + 1, 24)}
{(0, 13), (0, 26), (1, 9), (1, 19), (1, 8), (x, 19), (x, 21), (x+ 1, 4), (x+ 1, 20)}
{(1, 2), (1, 3), (1, 25), (x, 20), (x, 3), (x, 7), (x+ 1, 11), (x+ 1, 3), (x+ 1, 16)}
{(1, 14), (1, 16), (1, 18), (x, 5), (x, 25), (x, 18), (x+ 1, 23), (x+ 1, 7), (x+ 1, 18)}

For q = 11, 13, 17, 25, 49, the required designs have point set GF (9)×GF (q), and
groups are GF (9)× {y} for y ∈ GF (q). Let x and z be primitive elements in GF(9)
and GF(q) respectively, with x satisfying x2 = x + 1. In each case, two initial base
blocks are given. Multiplying these blocks by (1, z2t) for 0 ≤ t ≤ (q − 3)/2 gives
q− 1 base blocks which form a partial parallel class missing the group GF (9)×{0}.
Other partial parallel classes are obtained by developing these q − 1 blocks over
GF (9) × GF (q). For q = 25 and 49, z is taken to be a primitive element of GF(q)
satisfying z2 = z + 3 and z2 = 3z + 2 respectively.

n Base blocks
11 {(0, 1), (1, 3), (1, 7), (2, 8), (2, 9), (x2, 2), (x2, 4), (x6, 5), (x6, 10)}

{(0, 10), (x, 4), (x, 8), (2x, 2), (2x, 3), (x3, 7), (x3, 9), (x7, 1), (x7, 6)}
13 {(0, 1), (1, 4), (1, 8), (2, 7), (2, 10), (x2, 6), (x2, 12), (x6, 3), (x6, 11)}

{(0, 7), (x, 2), (x, 4), (2x, 5), (2x, 10), (x3, 3), (x3, 6), (x7, 8), (x7, 12)}
17 {(0, 1), (1, 3), (1, 13), (2, 9), (2, 10), (x2, 7), (x2, 16), (x6, 2), (x6, 5)}

{(0, 7), (x, 4), (x, 6), (2x, 2), (2x, 12), (x3, 10), (x3, 15), (x7, 1), (x7, 14)}
25 {(0, 1), (1, z7), (1, z20), (2, z22), (2, z23), (x2, z2), (x2, z11), (x6, z17), (x6, z18)}

{(0, z), (x, z8), (x, z21), (2x, z23), (2x, 1), (x3, z3), (x3, z12), (x7, z18), (x7, z19)}
49 {(0, 1), (1, z2), (1, z3), (2, z7), (2, z8), (x2, z10), (x2, z11), (x6, z13), (x6, z14)}

{(0, z), (x, z3), (x, z4), (2x, z8), (2x, z9), (x3, z11), (x3, z12), (x7, z14), (x7, z15)}

We point out that for q = 11, 13, 17, 25, 49, respectively, the second block is
obtained by multiplying the first one by (x, 10), (x, 7), (x, 7), (x, z) or (x, z). This
feature simplified the search procedure.

5 (9, 8)-frames of type 9t

In this section, we will show that (9, 8)-frames of type 9t exist for all t ≥ 139. Our
main construction tool will be Lemma 2.4, but first we deal with the known direct
constructions when t is an odd prime or prime power.

Lemma 5.1 There exists a (9, 8)-frame of type 9q if one of the following three con-
ditions is satisfied: (1) q is an odd prime with 11 ≤ q ≤ 433, (2) q ≥ 11 and q ≡ 3
(mod 4) is a prime power or (3) q ∈ {25, 49}.
Proof: For q = 11, 13, 17, 25, 49, see Lemma 4.3. The remaining cases were obtained
by Furino et al. [18] in their Theorems 2.6.19, 2.6.21 and Table 2.6.23. (We mention
that in [4], it was noted that the proof in [18, Theorem 2.6.19] for existence of
(k, k − 1)-frames of type kq with k, q odd prime powers, q ≡ 3 (mod 4) and q > k
only works when q > 2k. An improved proof, which works when k, q are odd prime
powers, q ≡ 3 (mod 4) and q > k (except when q = k + 2 and k ≡ 5, 9 or 13 (mod
16)) is given in [4].)
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Lemma 5.2 Suppose a TD(13, m) exists, 0 ≤ ui ≤ m for i = 1, 2, 3, and a (9, 8)-
frame of type 9x exists for x = m, u1, u2, u3. Then a (9, 8)-frame of type 9t exists for
t = 10m+ u1 + u2 + u3.

Proof: By truncating three groups of a TD(13, m) to sizes u1, u2, u3, we obtain a
{10, 11, 12, 13}-GDD of type m10u1

1u
1
2u

1
3. The required frame can now be obtained

by Lemma 2.4, giving weight 9 to all points, since (9, 8)-frames of type 9y exist for
y ∈ {10, 11, 12, 13} by Lemma 4.3.

Lemma 5.3 A (9, 8)-frame of type 9t exists for 139 ≤ t ≤ 1613.

Proof: When t /∈ {139, 146, 147, 148, 149, 158, 159, 186, 206, 246}, and t does not lie
in the range [170, 179], apply Lemma 5.2, using the values of m indicated in Table 1.
Values of ui (i = 1, 2, 3) are not included, but in each case ui ∈ S = {0, 1, 10, 11,
12, 13, 17, 19, 23, 25, 27, 28, 29, 31, 37, 41, 43, 47, 49, 53, 55, 59, 61, 64, 67, 71,
73, 79, 83} and ui ≤ m. For x ∈ {m, u1, u2, u3}, a (9, 8)-frame of type 9x exists by
Lemma 4.3 when x ∈ {10, 11, 12, 13} and by Lemma 5.1 when x is an odd prime
≥ 11 or x ∈ {25, 49}. For x ∈ {28, 46, 55, 64} it can be obtained by Lemma 2.7,
inflating an (x, 9, 8) NRB (i.e. a (9, 8)-frame of type 1x) with a resolvable TD(9, 9).

For t ∈ {146, 186, 206, 246}, truncate four groups of a TD(14, m) (for m =
13, 17, 19, 23) to sizes 13, 1, 1, 1 in such a way that the 3 points in truncated groups
of size 1 do not all lie in one block. This gives a {10, 11, 12, 13}-GDD of type
m1013131. Now apply Lemma 2.4 to this GDD, giving weight 9 to all points. For
t ∈ {139, 149, 179}, the result follows from Lemma 5.1.

Table 1: Constructions for most (9, 8)-frames of type 9t for t ∈ [139, 1613] using
Lemma 5.3.

m Range for t m Range for t
13 [140, 169] \ ([146, 149] ∪ [158, 159]) 49 [507, 606]
17 [180, 199] \ {186} 59 [607, 726]
19 [200, 239] \ {206} 71 [727, 846]
23 [240, 286] \ {246} 83 [847, 1026]
27 [287, 326] 101 [1027, 1146]
31 [327, 386] 113 [1147, 1326]
37 [387, 446] 131 [1327, 1406]
43 [447, 506] 139 [1407, 1613]

For 170 ≤ t ≤ 178, there exists a projective plane, PG(2, q) for q = 17 with an
oval (i.e. a set of q + 1 = 18 points, no three of which lie in any block). Deleting
one point, P , and its blocks gives a TD(18, 17). In 8 groups, delete all points except
t−170 points from an oval containing P . Blocks in the resulting GDD will have size
10, 11 or 12, depending on whether they contain 0, 1 or 2 oval points. This GDD
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is a {10, 11, 12}-GDD of type 17101t−170, to which we can again apply Lemma 2.4,
giving all points weight 9.

For t ∈ {147, 148}, start with a PG(2, 13) on 183 points, delete all 27 points from
2 blocks B1, B2 intersecting in a given point, Q, and delete 9 or 8 other points that lie
in some oval containing Q. Similarly, for t ∈ {158, 159}, start with a PG(2, 13), and
delete all 14 points in one block plus 11 or 10 other points from an oval. For all these
values of t, this gives a (t, {10, 11, 12, 13}, 1) PBD, to which we apply Lemma 2.5
with g = 9.

Lemma 5.4 A (9, 8)-frame of type 9t exists for all t ≥ 1613.

Proof: Our proof uses induction on t together with Lemma 5.2. Any integer t ≥ 1613
can be written as 10m+ (u = u1 + u2 + u3) where m is any one of nine consecutive
odd integers ≥ 139, 17 ≤ (u = u1 + u2 + u3) ≤ 223, and u1, u2, u3 all belong to the
set S given in Lemma 5.3. Since 139 ≤ m < t, a (9, 8)-frame of type 9m exists by
assumption, and since u1, u2, u3 belong to S, a (9, 8)-frame of type 9x exists for each
x ∈ {u1, u2, u3}. At most three of the nine consecutive odd values for m are divisible
by 3, two by 5, two by 7 and one by 11, thus at least one of these values of m will
not be divisible by any of 3, 5, 7, 11. Hence a TD(13, m) exists for this m, and the
result follows from Lemma 5.2.

Combining Lemmas 5.3 and 5.4, we therefore have:

Lemma 5.5 A (9, 8)-frame of type 9t exists for all t ≥ 139.

6 (v, 9, 8) Near Resolvable BIBDs

In this section we construct (9t+ 1, 9, 8) NRBs for all but 26 positive integers t.

We start with the four known direct constructions from Lemma 4.1, repeated in
the next lemma for convenience.

Lemma 6.1 There exists a (9t+ 1, 9, 8) NRB for t ∈ {1, 3, 5, 6}.

Lemma 6.2 There exists a (9t+ 1, 9, 8) NRB for t ∈ {2, 4, 7, 8, 12, 14, 18, 22, 30,
32, 34, 42, 44, 48, 54, 58, 60, 82, 84, 90, 92, 98, 102, 104}.

Proof: For these values, we can apply Lemma 2.1 since 9t+ 1 is a prime power.

Lemma 6.3 There exists a (9t+1, 9, 8) NRB if t is in one of the following intervals:
[19, 21], [37, 41], [64, 71], [73, 81], [109, 111].

Proof: For these values of t, apply Lemma 2.15 with km = 9 and kn+1 ∈ {19, 37, 64,
73, 109}. In each case 9n + 1 is a prime power, hence the required conditions on n
in Lemma 2.15 are satisfied by Lemmas 2.1 and 2.14.
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Lemma 6.4 There exists a (9t+1, 9, 8) NRB for t ∈ {11, 13, 17, 23, 25, 27, 29, 31,
39, 43, 47, 49, 53, 59, 61, 83, 89, 97, 101, 103, 107}.

Proof: For these values of t, t is an odd prime power, and a (9, 8)-frame of type 9t

exists by Lemma 5.1. Now apply Lemma 2.3 with e = 1 to this frame, forming a
(10, 9, 8) NRB on each group plus one extra point.

Lemma 6.5 There exists a (9t+1, 9, 8) NRB for t ∈ {10, 28, 46, 55, 56, 57, 91, 93,
100}.

Proof: For these values of t, 9t is of the form ghu where a (9, 8)-frame of type hu

and a resolvable TD(9, g) both exist. See Table 2. Apply Lemma 2.7 to obtain a
(9, 8)-frame of type (gh)u, then fill in the groups of this frame with one extra point,
using Lemma 2.3 and a (gh+ 1, 9, 8) NRB.

The required (9, 8)-frame of type hu exists by Lemma 4.2 for t ∈ {56, 93}, by
Lemma 4.1 for t ∈ {10, 28, 46, 55} and by Lemma 2.1 for t = 57. For t ∈ {91, 100}
it is obtainable by applying Lemma 2.3 with e = 1 to (9, 8)-frames of types 910 and
911, which exist by Lemma 4.3.

Table 2: Values of h, u and g for each t in Lemma 6.5.

t (h, u) g t (h, u) g t (h, u) g
10 (1,10) 9 55 (1,55) 9 91 (1,91) 9
28 (1,28) 9 56 (2,28) 9 93 (3,31) 9
46 (1,46) 9 57 (1,19) 27 100 (1,100) 9

So far we have shown that (9t + 1, 9, 8) NRBs exist for all but 26 values of
t ≤ 111. These 26 unknown values are given later in Table 3. We now deal with the
case t > 111.

Lemma 6.6 A (9t+ 1, 9, 8) NRB exists for all t > 111.

Proof: If 111 < t ≤ 138, form a (K, 1)-GDDwithK = {10, 11, 12, 13} on t points with
group sizes from T = {0, 1, 2, . . . , 8} ∪ {10, 11, 12, 13}. This GDD can be obtained
by truncating two groups of a TD(12, 11) when 111 < t ≤ 129, or one group of a
TD(11, 13) when 130 ≤ t ≤ 138.

Since (9, 8)-frames of type 9x exist for all x ∈ K, we can apply Lemma 2.4 to
this GDD, giving weight 9 to all points. This gives a (9, 8)-frame with group sizes in
U = {9, 18, 27, . . . , 72} ∪ {90, 99, 108, 117}. Finally apply Lemma 2.3 with e = 1 to
this frame.

For t ≥ 139, a (9, 8)-frame of type 9t exists by Lemma 5.5, and the result follows
by applying Lemma 2.3 with e = 1 to this frame.



R.J.R. ABEL /AUSTRALAS. J. COMBIN. 67 (1) (2017), 25–45 38

Combining all results of this section, we now have the following existence result
for (v, 9, 8) NRBs:

Lemma 6.7 A (9t+1, 9, 8) NRB exists for all positive integers t, except possibly the
26 values in Table 3.

Table 3: Values of t for which no (9t+ 1, 9, 8) NRB is known.

9 15 16 24 26 33 35 36 45
50 51 52 62 63 72 85 86 87
88 94 95 96 99 105 106 108

7 (v, 12, 11) Near Resolvable BIBDs

In [15], Costa et al. found (12t + 1, 12, 11) NRBs for all but 83 values of t. These
values of t are listed below in Table 4; we take this table as our starting point.

Table 4: Values of t for which no (12t+ 1, 12, 11) NRB was known in [15]:

7 11 12 17 18 21 22 25 32 41
42 43 46 47 49 54 57 58 60 67
68 72 81 82 87 88 90 92 95 106
107 116 120 128 130 132 136 137 142 143
144 153 164 192 204 205 215 228 240 258
267 270 272 273 274 284 325 330 331 334
384 499 513 522 524 526 527 529 532 534
536 537 538 552 584 599 654 655 659 672
731 991 1175

Lemma 7.1 There exist (12t + 1, 12, 11) NRBs for t ∈ {17, 25, 41, 43, 47, 49, 67,
81, 107, 137, 599}.

Proof: For these values, t is an odd prime power ≥ 13. Therefore, since a uniform
BF11(12, 12) exists by Corollary 3.2, a (12, 11)-frame of type 12t and a (12t+1, 12, 11)
NRB exist by Theorem 3.6.

Lemma 7.2 There exist (12t + 1, 12, 11) NRBs for t ∈ {46, 54, 58, 82, 106, 142,
274, 526}.
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Proof: For these values, t/2 is an odd prime power ≥ 13. By Example 3.5, there
exists a uniform BF11(12, 24); therefore, by Theorem 3.6, there exist a (12, 11)-frame
of type 24t/2 and a (12t+ 1, 12, 11) NRB.

Lemma 7.3 There exist (12t + 1, 12, 11) NRBs for t ∈ {272, 325, 330, 331, 334,
536}.

Proof: For t = 272, start with a TD(17, 16), and for t = 536, truncate one group of
a TD(14, 41) to size 3, giving a {13, 14}-GDD of type 411331. Inflating these GDDs
using Lemma 2.4 and (12, 11)-frames of types 1217, 1213 and 1214 (which exist by
Theorem 3.6 or Lemma 2.10) gives (12, 11)-frames of types 19217 and 49213361. Fill
in the groups of these frames with one extra point, using Lemma 2.3. Similarly, when
t ∈ {325, 330, 331, 334} a {13, 14}-GDD of type 2513u1 (with u = t − 325) can be
obtained by truncating one group of a TD(14, 25) to size u. Again apply Lemma 2.4,
giving all points in this GDD weight 12, and fill in all groups of these frames with
one extra point, using Lemma 2.3.

Lemma 7.4 There exist (12t+ 1, 12, 11) NRBs for t ∈ {273, 513, 527, 1175}.

Proof: For t = 273, we have a (273, 17, 1) BIBD (a projective plane of order 16). For
t = 513, 527, 1175, we have a (513, {19, 27}, 1) PBD, a (527, {17, 31}, 1) PBD, and a
(1175, {25, 47}, 1) PBD by forming a block on each group of TD(19, 27), TD(17, 31),
and TD(25, 47) respectively. Since (12, 11)-frames of types 12x exist for each x ∈ {17,
19, 25, 27, 31, 47} (by Theorem 3.6), we can apply Lemma 2.5 with g = 12 to these
frames to obtain (12, 11)-frames of type 12t, (t ∈ {273, 513, 527, 1175}). The groups
of these frames can be filled by Lemma 2.3, using one extra point.

Lemma 7.5 There exist (12t + 1, 12, 11) NRBs for t ∈ {130, 258, 384, 499, 532,
534, 537, 538, 552, 584, 654, 655, 659, 672, 731, 991}.

Proof: For these values, apply Lemma 2.15, writing 12t+1 = 12m(12n+1)+(12w+1),
using the values of 12m, 12n + 1 and w in Table 5. In each case, the required
conditions on n in Lemma 2.15 are s atisfied by Lemmas 2.1 and 2.14.

Using the results of this section, we can now give the following updated result for
existence of (12t+ 1, 12, 11) NRBs:

Lemma 7.6 A (12t+1, 12, 11) NRB exists for any positive integer t, except possibly
for the 37 values in Table 6.
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Table 5: Values of 12m, 12n+ 1 and w for each t in Lemma 7.5.

12m 12n+ 1 w t
12 121 9 130
12 241 17 258
12 361 23 384
24 241 17 499
12 529 0, 3, 5, 8, 9, 23 529, 532, 534, 537, 538, 552
12 541 43 584
12 625 29, 30, 34, 47 654, 655, 659, 672
24 361 9 731
12 961 30 991

Table 6: Values of t for which a (12t+ 1, 12, 11) NRB is unknown.

7 11 12 18 21 22 32 42 57 60
68 72 87 88 90 92 95 116 120 128
132 136 143 144 153 164 192 204 205 215
228 240 267 270 284 522 524

8 (v, 16, 15) Near Resolvable BIBDs

In [16, Table III] and [18, Section 4.1.7], Furino et. al. noted that their generic search
algorithm could produce (16t+1, 16, 15) NRBs for all but 158 values of t, the largest
of which was 627. However no explicit list of unknown values was provided. In this
section, we start by looking at (16t + 1, 16, 15) NRBs with t ≤ 628, and provide
information showing that these exist except possibly for 149 values of t. We then
provide a recursive existence result for t ≥ 629. There is one known non-existence
result, which was mentioned earlier in Remark 3.7.

Lemma 8.1 There does not exist a (16t+ 1, 16, 15) NRB for t = 2.

Lemma 8.2 There exists a (16t+ 1, 16, 15) NRB for each t ∈ {1, 3, 5, 6, 7, 12, 15,
16, 21, 22, 28, 33, 36, 39, 40, 42, 48, 55, 58, 60, 63, 72, 75, 76, 78, 85, 88, 93, 105,
106, 111, 117, 126, 130, 132, 133, 135, 138, 142, 150, 162, 166, 168, 172, 175, 177,
190, 195, 201, 207, 208, 210, 216, 226, 231, 235, 237, 250, 261, 265, 267, 268, 282,
291, 300, 312, 315, 322, 366, 382, 390, 588, 603}.

Proof: For these values, we can apply Lemma 2.1, since 16t+ 1 is a prime power.

Lemma 8.3 There exists a (16t + 1, 16, 15) NRB for each t ∈ {19, 23, 25, 27, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 101, 107, 109, 121, 125, 127, 131,
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137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 197, 211, 223, 227, 229,
233, 239, 243, 251, 271, 277, 281, 283, 293, 311, 313, 317, 367, 373, 379, 383, 389,
601, 607, 613, 617, 619}.

Proof: For these values of t, t is an odd prime power > 16. Therefore, since a
BF15(16, 16) exists by Corollary 3.2, a (16, 15)-frame of type 16t and a (16t+1, 16, 15)
NRB exist by Theorem 3.6.

Lemma 8.4 There exists a (16t+ 1, 16, 15) NRB for each t in Table 7.

Proof: These designs are obtainable by Lemma 2.15 with the values of 16m, 16n+ 1
and w given in Table 7. When 16n+1 �= 273, the additive group G used is GF(16n+
1), and when when 16n+ 1 = 273, we take G = Z273. The required conditions on n
in Lemma 2.15 are all satisfied by Lemma 2.1 and Lemma 2.14 when 16n+1 �= 273,
or by Lemma 2.11 and Lemma 2.14 when 16n+ 1 = 273.

Table 7: Values of 16m, 16n+ 1 and w for each t in Lemma 8.4.

16m 16n+ 1 w t
16 17 0, 1 17, 18
16 49 0, 1, 3 49, 50, 52
16 81 0, 1, 3, 5 81, 82, 84, 86
16 97 0, 1, 3, 5, 6 97, 98, 100, 102, 103
16 113 0, 1, 3, 5, 6, 7 113, 114, 116, 118, 119, 120
16 193 0, 1, 3, 5, 6, 7, 12 193, 194, 196, 198, 199, 200, 205
16 241 0, 1, 3, 5, 6, 7, 12, 15 241, 242, 244, 246, 247, 248, 253, 256
16 257 0, 1, 3, 5, 6, 7, 12, 15 257, 258, 260, 262, 263, 264, 269, 272
16 273 0, 1, 3, 5, 6, 7, 12, 15 273, 274, 276, 278, 279, 280, 285, 288
16 289 0, 1, 3, 5, 6, 7, 12, 15, 289, 290, 292, 294, 295, 296, 301, 304,

16, 17, 18 305, 306, 307
16 353 12, 15, 16, 17, 18, 19, 21, 22 365, 368, 369, 370, 371, 372, 374, 375
16 577 12, 15, 18, 25, 27, 29 589, 592, 595, 602, 604, 606
16 593 0, 1, 3, 5, 6, 7, 12, 15, 593, 594, 596, 598, 599, 600, 605, 608,

16, 17, 18, 19, 21, 22, 23, 25, 609, 610, 611, 612, 614, 615, 616, 618,
27, 28, 29, 31 620, 621, 622, 624

16 625 0, 1, 3 625, 626, 628

Lemma 8.5 Suppose 0 ≤ ui ≤ m for i = 1, 2, a TD(19, m) exists, and there exist
(16z + 1, 16, 15) NRBs for z = m, u1, u2. Then a (16t + 1, 16, 15) NRB exists for
t = 17m+ (u = u1 + u2).
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Proof: By truncating two groups of a TD(19, m) to sizes u1, u2, we obtain a {17,18,19}-
GDD of typem17u1

1u
1
2. There exist (16, 15)-frames of type 16x for x = 17, 18, 19; these

can be obtained by Theorem 3.6 when x ∈ {17, 19} and by Lemma 2.10 when x = 18.
Hence we can apply Lemma 2.4, giving all points weight 16 to obtain a (16, 15)-frame
of type (16m)17(16u1)

1(16u2)
1. Now apply Lemma 2.3 with e = 1.

Lemma 8.6 There exists a (16t+1, 16, 15) NRB for all t in the intervals [323, 361]
and [391, 587].

Proof: This follows from Lemma 8.5 with m ∈ {19, 23, 25, 27, 29, 31}. Table 8 gives
suitable values of m for each t.

Table 8: Values of m for each t in Lemma 8.6.

m Range for t m Range for t m Range for t
19 [323, 361] 23 [391, 437] 25 [438, 473]
27 [474, 507] 29 [508, 541] 31 [542, 587]

Lemma 8.7 A (16t + 1, 16, 15) NRB exists for each t ∈ {51, 147, 204, 255, 297,
591}.

Proof: For t = 297 and 591, observe that 16·297+1 = 49·97, and 16·591+1 = 49·193.
Therefore for these values of t, we can apply Lemma 2.6, since it is possible to obtain
a (16t + 1, {49, 97, 193}, 1) PBD by forming a block on each group of a TD(49, 97)
or TD(49, 193).

For t = 255, start with a (16, 15)-frame of type 1517 which exists by Lemma 2.8,
and for t = 51, 147, 204, start with (16, 15)-frames of types 317, 349, 317 respectively;
these exist by Lemma 4.2. Applying Lemma 2.7 with g = 16, 16, 16 and 64 gives
(16, 15)-frames of types 24017, 4817, 4849 and 19217. Now apply Lemma 2.3 with
e = 1 to these frames.

So far in this section we have proved the following result:

Lemma 8.8 A (16t + 1, 16, 15) NRB does not exist for t = 2, but exists if t is a
positive integer ≤ 628 other than the 149 values in Table 9.

In the remainder of this section, we shall show the restriction t ≤ 628 in the
previous lemma is not necessary. The main tool for dealing with the larger values of
t is Lemma 8.5.

Lemma 8.9 A (16t+ 1, 16, 15) NRB exists for all t ≥ 629.
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Table 9: Values of t for which a (16t+ 1, 16, 15) NRB is unknown.

2 4 8 9 10 11 13 14 20 24 26 30 32 34 35
38 44 45 46 54 56 57 62 64 65 66 68 69 70 74
77 80 87 90 91 92 94 95 96 99 104 108 110 112 115
122 123 124 128 129 134 136 140 141 143 144 145 146 148 152
153 154 155 156 158 159 160 161 164 165 170 171 174 176 178
180 182 183 184 185 186 187 188 189 192 202 203 206 209 212
213 214 215 217 218 219 220 221 222 224 225 228 230 232 234
236 238 240 245 249 252 254 259 266 270 275 284 286 287 298
299 302 303 308 309 310 314 316 318 319 320 321 362 363 364
376 377 378 380 381 384 385 386 387 388 590 597 623 627

When 17 · 37 = 629 ≤ t ≤ 17 · 631 + 612 = 11329, these NRBs are obtainable by
Lemma 8.5 with m an odd prime power in the range [37, 631], or more specifically,
m ∈ {37, 41, 43, 47, 49, 53, 59, 61, 67, 73, 79, 83, 89, 97, 107, 113, 121, 131, 139,
149, 157, 163, 173, 181, 191, 199, 211, 227, 241, 257, 277, 293, 313, 331, 353, 373,
397, 421, 449, 467, 491, 509, 523, 547, 571, 593, 619, 631}. More specifically, the
following ranges for t are covered for each m: [17m, 17m + 68] when 37 ≤ m ≤ 49,
[17m, 17m + 102] when 53 ≤ m ≤ 83, [17m, 17m + 170] when 89 ≤ m ≤ 191,
[17m, 17m+374] when 199 ≤ m ≤ 353, and [17m, 17m+612] when 373 ≤ m ≤ 631.

If t ≥ 17 ·631+612 = 11329, we can use induction on t together with Lemma 8.5.
Here, t can be written as 17(n+30)+x = 17(n+2y)+(510−34y+x) where n > 629
is an odd integer, 0 ≤ x ≤ 33 and 0 ≤ y ≤ 14. The integer u = 510− 34y + x lies in
the range [0, 543] and can always be written as u1 + u2 where u1, u2 are integers in
the range [0, 373], and u1, u2 aren’t in Table 9 (i.e. (16ui + 1, 16, 15) NRBs exist for
i = 1, 2). In addition, of the 15 consecutive odd integers n+2y (y = 0, 1, . . . , 14) there
are at most 5 divisible by 3, 2 more by 5, 2 more by 7, 2 more by 11, 2 more by 13 and
1 more by 17. Therefore at least one of these 15 integers n+2y is not divisible by any
prime ≤ 17, and if n+2y∗ is one such value, a TD(19, n+2y∗) exists by Lemma 2.14.
A (16(n + 2y∗) + 1, 16, 15) NRB exists by assumption, as 629 ≤ n + 2y∗ < t. In all
cases, a (16g+1, 16, 15) NRB exists for g ∈ {n+2y∗, u1, u2}, hence a (16t+1, 16, 15)
NRB can be obtained by Lemma 8.5 with m = n + 2y∗ and u = 510− 34y∗ + x.

Summarising the results of this section, we now have the following existence result
for (16t+ 1, 16, 15) NRBs:

Lemma 8.10 A (16t + 1, 16, 15) NRB does not exist for t = 2, but exists if t is a
positive integer other than the 149 values given earlier in Table 9.
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