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Abstract

For a nonnegative integer k, a connected graph G of order at least 2k+2 is
k-extendable if G has a perfect matching and every set of k independent
edges extends to a perfect matching in G. The largest integer k such that
G is k-extendable is called the extendability of G. The complementary
prism GG of G is the graph constructed from G and its complement G
defined on a set of vertices disjoint from V (G) (i.e. V (G) ∩ V (G) = ∅)
by joining each pair of corresponding vertices by an edge. Janseana and
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Ananchuen [Thai J. Math. 13 (2015), 703–721] gave a lower bound to the
extendability of GG in terms of the extendabilities of G and G in the
case that neither G nor G is a bipartite graph. In this paper, we consider
the remaining case and give a sharp lower bound to the extendability of
GG when G is a bipartite graph.

1 Introduction

In this paper we only consider finite simple undirected graphs. For a nonnegative
integer k, a connected graph G of order at least 2k + 2 is said to be k-extendable if
G has a perfect matching and every matching of size k extends to a pefect matching
in G. This notion was first introduced by Plummer [7]. He proved a number of
basic properties of k-extendable graphs. In particular, he proved that if k > 0, every
k-extendable graph is (k − 1)-extendable. By this result, we can naturally define
the extendability of a graph G, which is the maximum integer k such that G is k-
extendable. Extendability is one of the main topics in the theory of matchings in
graphs.

The complementary prism is a specific complementary product introduced by
Haynes et al. [3]. For a simple graph G and its complement G, the complementary
prism GG of G is the graph formed from the disjoint union of G and G by adding the
edges of a perfect matching between the corresponding vertices of G and G. More
precisely, take a new vertex x̄ for each x ∈ V (G). Then the complementary prism
GG of G is defined by

V (GG) = V (G) ∪ V (G) and

E(GG) = E(G) ∪ E(G) ∪ {uū : u ∈ V (G)},

where E(G) = {ūv̄ : u �= v, uv /∈ E(G)}. For z ∈ V (G), let z̄ be the vertex in V (G)
with ¯̄z = z. Moreover, for S ⊂ V (GG), we define S by S = {ū : u ∈ S}. By the

definition, we have ¯̄u = u for u ∈ V (GG) and S = S for S ⊂ V (GG).

Haynes et al. [3] investigated several parameters of the complementary prism of
a graph including the diameter, the independence number, the domination number
and the total domination number. Janseana, Rueangthampisan and Ananchuen [6]
and Janseana and Ananchuen [4] investigated the extendability of the complemen-
tary prism of a regular graph. They proved that for an integer r with r ≥ 2, the
complementary prism of an r-regular graph is 2-extendable with some exceptions for
2 ≤ r ≤ 3. Janseana and Ananchuen [5] proved that for integers l1 and l2 with l1 ≥ 2
and l2 ≥ 2, if G is non-bipartite l1-extendable and G is non-bipartite l2-extendable,
then GG is (l + 1)-extendable, where l = min{l1, l2}. This result shows a relation-
ship between the extendability of the complementary prism GG of a graph G and
those of G and G. But it only applies to nonbipartite graphs. From this fact, we
are motivated to study the extendability of the complementary prism of a bipartite
graph. The result proved by Janseana and Ananchuen [5] involves the extendability
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of G. On the other hand, if G is bipartite, the behavior of the matchings in G is sim-
ple. More precisely, G consists of a pair of disjoint cliques possibly with some edges
between them. And this structure is retained even after we delete vertices. Because
of this simple structure, we do not think it appropriate to put an assumption on the
extendability of G. We only concern ourselves with the basic parameters of G.

Based on the above background, we investigate the extendability of the comple-
mentary prism of a bipartite graph. Our main result is the following. We denote by
Pn the path of order n.

Theorem 1.1. Let k and t be nonnegative integers, and let G be a k-extendable
bipartite graph of order at least 4(k + t) and minimum degree at least k + 2t − 1.
Then GG is (k + t)-extendable except for the case (k, t) = (0, 1) and G � P4.

According to this theorem, when we consider the class of k-extendable bipartite
graphs, as the minimum degree and the order of G increases, the lower bound of
the extendabilty of GG also increases. We cannot observe a similar behavior for
nonbipartite graphs in general. For given integers k, d and n, take an even integer p
which is greater than max{2k+2, d+1, n} and let G be the complete graph of order p.
Then G is a k-extendable graph of minimum degree greater than d and order greater
than n. But GG contains a pendant edge and hence it is not even 1-extendable. This
example shows that the type of phenomenon described in Theorem 1.1 is observed
only for bipartite graphs.

Theorem 1.1 describes one exception in the case (k, t) = (0, 1). It is easy to
see that P4 is a 0-extendable graph of order four and minimum degree one, but its
complementary prism is not 1-extendable.

The main theorem is proved in Section 3 and in Section 4, we discuss the sharpness
of Theorem 1.1.

For basic graph theoretical terminology and definitions not explained in this pa-
per, we refer the reader to [2]. Let G be a graph. For e = uv ∈ E(G) and F ⊂ E(G),
we define V (e) and V (F ) by V (e) = {u, v} and V (F ) =

⋃
f∈F V (f). Note that

|V (F )| ≤ 2|F | and that the equality holds if and only if F is a matching in G. For
X, Y ⊂ V (G) with X ∩ Y = ∅, we write EG(X, Y ) for the set of edges joining X
and Y : EG(X, Y ) = {e ∈ E(G) : V (e) ∩ X �= ∅, V (e) ∩ Y �= ∅}. For x ∈ V (G),
we denote by degG x and NG(x) the degree and the neighborhood of G, respectively.
The minimum degree of G is denoted by δ(G).

2 Preliminaries

Before we prove Theorem 1.1, we introduce several lemmas. We use the following
result due to Plummer [8].

Theorem 2.1 ([8]). Let G be a balanced bipartite graph with partite sets X and Y
and suppose k is a positive integer such that k ≤ (|V (G)| − 2)/2. Then the following
statements (1) and (2) are equivalent:
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(1) G is k-extendable.

(2) For all x1, . . . , xk ∈ X and y1, . . . , yk ∈ Y , G′ = G − {x1, . . . , xk, y1, . . . , yk}
has a perfect matching.

The above theorem immediately yields the following corollary.

Corollary 2.2. Let k and m be nonnegative integers with m ≤ k, and let G be a
k-extendable bipartite graph with partite sets X and Y . Then for every X ′ ⊂ X and
Y ′ ⊂ Y with |X ′| = |Y ′| = m, G− (X ′ ∪ Y ′) is (k −m)-extendable.

As we have observed in the introduction, the complement of a bipartite graph
consists of two disjoint cliques possibly with some edges between them. From this
fact, we make the following easy observation.

Lemma 2.3. Let G be a bipartite graph of even order with partite sets X and Y .
Then G does not contain a perfect matching if and only if |X| ≡ |Y | ≡ 1 (mod 2)
and EG(X, Y ) = ∅.

Note that in the above lemma, we do not assume that G is balanced. The
conclusion holds even if |X| �= |Y |.

The following theorem was proved by Ananchuen and Caccetta [1]. Note that
although they assume m ≥ 3, it is easy to see that the result also holds in the cases
m = 1 and m = 2.

Theorem 2.4 ([1]). For a positive integer m, every balanced bipartite graph of order
exactly 2(m+ 1) and minimum degree at least m is (m− 1)-extendable.

We prove one more easy lemma.

Lemma 2.5. Let k be a nonnegative integer and let G be a k-extendable bipartite
graph with partite sets X and Y with |X| = |Y | ≥ k + 2. Then for each X ′ ⊂ X
and Y ′ ⊂ Y with |X ′| = |Y ′| = k + 1, G − (X ′ ∪ Y ′) contains a matching F with
|X − (X ′ ∪ V (F ))| = |Y − (Y ′ ∪ V (F ))| = 1.

Proof. Let x ∈ X ′ and y ∈ Y ′, and let X ′′ = X ′ − {x} and Y ′′ = Y ′ − {y}. Let
G′ = G−(X ′′∪Y ′′). Since G is k-extendable and |X ′′| = |Y ′′| = k, G′ is 0-extendable
by Corollary 2.2 and hence contains a perfect matching F ′. If xy ∈ F ′, then F ′−{xy}
is a perfect matching in G′ − {x, y} = G − (X ′ ∪ Y ′). Note |F ′| = |X| − k ≥ 2.
Take e ∈ F ′ − {xy}. Then F ′ − {xy, e} is a required matching. If xy /∈ F ′, let
{xy′, x′y} ⊂ F ′ and F = F ′ − {xy′, x′y}. Then X − (

X ′ ∪ V (F )
)
= {x′} and

Y − (
Y ′ ∪ V (F )

)
= {y′}, and hence F is a required matching. �
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3 Proof of the Main Theorem

In this section, we prove Theorem 1.1. Before we do this, we need to set up some
notation used throughout this section, and give some lemmas.

For nonnegative integers k and t, let G be a k-extendable bipartite graph of order
at least 4(k+ t) and let M be a matching of size k+ t in GG which does not extend
to a perfect matching in GG. Further, let X and Y be the partite sets of G. Observe
that |X| = |Y | ≥ 2(k + t) since G is 0-extendable. Now let

MG = {e ∈ M : V (e) ⊂ V (G)},
MG = {e ∈ M : V (e) ⊂ V (G)},

MGG = {e ∈ M : V (e) ∩ V (G) �= ∅, V (e) ∩ V (G) �= ∅},
MX

GG
= {e ∈ MGG : V (e) ∩X �= ∅},

MY
GG

= {e ∈ MGG : V (e) ∩ Y �= ∅},
MX

G
= {e ∈ MG : V (e) ⊂ X},

MY
G
= {e ∈ MG : V (e) ⊂ Y } and

MX Y
G

= {e ∈ MG : V (e) ∩X �= ∅, V (e) ∩ Y �= ∅}.

Further, let X0 = X − (V (MG) ∪ V (MX
GG

) ∪ V (MG)) and Y0 = Y − (V (MG) ∪
V (MY

GG
) ∪ V (MG)). Figure 3.1 illustrates our notation.
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Figure 3.1: The illustration of our notation
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For simplicity, let k1 = |MX
GG

|, k2 = |MY
GG

|, k3 = |MG|, k4 = |MX
G
|, k5 =

|MY
G
| and k6 = |MX Y

G
|. Note that k1 + k2 = |MGG|, k4 + k5 + k6 = |MG| and

k1 + k2 + k3 + k4 + k5 + k6 = |M | = k+ t. Further, |X0| ≥ |X| − (k1 + k3 + 2k4 + k6)
and |Y0| ≥ |Y | − (k2 + k3 + 2k5 + k6).

By symmetry, we may assume without loss of generality that k1 ≥ k2. It then
follows that |Y0| ≥ k1−k2 otherwise |Y | ≤ |Y0|+k2+k3+2k5+k6 ≤ k1+k3+2k5+
k6 − 1 ≤ 2|M | − 1 = 2(k + t)− 1.

We now introduce a specific subgraph of G. Take Y1 ⊂ Y0 with |Y1| = k1 − k2,
and let H = G−(

V (MGG)∪Y1

)
. Observe that H is a balanced bipartite graph with

partite sets
A = X − V (MX

GG
) and B = Y − (

V (MY
GG

) ∪ Y1

)
,

where |A| = |B| = |X| − k1. Further, if k1 ≤ k, then H is (k − k1)-extendable by
Corollary 2.2.

Observation 3.1. MG∪MG does not extend to a perfect matching in HH otherwise
a perfect matching F in HH, containing MG∪MG, together with MGG and {uū : u ∈
Y1} is a perfect matching containing M in GG, which contradicts the assumption
that M does not extend to a perfect matching in GG.

We are now ready to establish some lemmas.

Lemma 3.1. For nonnegative integers k and t, let G be a k-extendable bipartite graph
of order at least 4(k+ t) and minimum degree at least k + 2t− 1 and M a matching
of size k + t in GG which does not extend to a perfect matching in GG. Further,
let H = G − (

V (MGG) ∪ Y1

)
, where Y1 ⊂ Y0 such that |Y1| = k1 − k2, with partite

sets A and B. If F is a matching in HH with MG ∪MG ⊂ F and V (H) ⊂ V (F ),
then |A − V (F )| ≡ |B − V (F )| ≡ 1 (mod 2) and EH(A − V (F ), B − V (F )) = ∅.
Moreover, for each e ∈ F ∩ E(G)−MG, V (e) ∩ V (MG) �= ∅.

Proof. By Observation 3.1, HH − V (F ) does not contain a perfect matching. Since

HH − V (F ) is the complement of a bipartite graph with partite sets A− V (F ) and

B − V (F ), the first part follows from Lemma 2.3.

For the second part, if there exists an edge e = xy ∈ F ∩ E(G) − MG with
V (e) ∩ V (MG) = ∅, let F ′ =

(
F − {xy}) ∪ {xx̄, yȳ}. Then F ′ is a matching in

HH with MG ∪MG ⊂ F ′ and V (F ′) = V (F ) ∪ {x̄, ȳ}. Furthermore, |A− V (F ′)| =
|A− V (F )| − 1 ≡ 0 (mod 2), which contradicts the first part of our lemma. �

Lemma 3.2. Let G, M and H be defined as in Lemma 3.1. Further, take a matching
F0 in H with MG ⊂ F0 so that

(a) |V (MG) ∩ V (F0)| is as large as possible, and

(b) |F0| is as large as possible, subject to (a).

Then
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(1) V (MG) ⊂ V (F0).

(2) |F0| ≤ |MG|+ 2|MG|.

Proof. (1) Assume V (MG) �⊂ V (F0), and let x ∈ V (MG)− V (F0). By symmetry, we
may assume x ∈ A. If NH(x) �⊂ V (F0), then we can take a vertex y ∈ NH(x)−V (F0),
and let F1 = F0 ∪ {xy}. Then F1 is a matching in H with MG ⊂ F0 ⊂ F1 and(
V (MG)∩V (F0)

)∪{x} ⊂ V (F1). This contradicts the condition (a). Hence we have
NH(x) ⊂ V (F0).

Let B1 = NH(x) − V (MG) and A1 = {u ∈ A : uv ∈ F0, v ∈ B1}. If A1 �⊂
V (MG), let a ∈ A1 − V (MG). Also let b be the vertex in B1 with ab ∈ F0, and
let F2 = (F0 − {ab}) ∪ {xb}. Then F2 is a matching in H with MG ⊂ F2 and(
V (MG) ∩ V (F0)

) ∪ {x} ⊂ V (F2). This again contradicts the condition (a). Hence

we have A1 ⊂ V (MG).

Since A1 ∪ {x} ⊂ V (MG), |A1| + 1 ≤ |V (MG)| = 2|MG|. On the other hand,
|B1| ≥ degH x − |MG| ≥ δ(H) − |MG| ≥ δ(G) − k1 − |MG|. Since |A1| = |B1|, we
have 2|MG| ≥ δ(G) − k1 − |MG| + 1 ≥ k + 2t − 1 − k1 − |MG| + 1. This implies
|MG| + k1 + 2|MG| ≥ k + 2t. Since |MG| + k1 + |MG| ≤ |MG| + |MG| + k1 + k2 =
|M | = k + t, we have |MG| ≥ t and |MG| + k1 + k2 ≤ k. This implies k1 ≤ k and
hence H is (k − k1)-extendable. Since |MG| ≤ k − (k1 + k2) ≤ k − k1, MG extends
to a perfect matching in H , and hence F0 is a perfect matching in H , which yields
V (MG) ⊂ V (F0). This contradicts the assumption, and (1) follows.

(2) Let F1 = F0∪{uū : u ∈ V (H)−V (F0)}∪MG. By (1), F1 is a matching in HH
with MG ∪MG ⊂ F1 and V (H) ⊂ V (F1). Let A1 = A−V (F1) and B1 = B−V (F1).

By Lemma 3.1, |A1| ≡ |B1| ≡ 1 (mod 2) and EH(A1, B1) = ∅, and V (e)∩V (MG) �= ∅
for each e ∈ F0 −MG. Since |V (MG)| = 2|MG|, this implies |F0| − |MG| ≤ 2|MG|,
and our lemma follows. �

Observation 3.2. If H admits a perfect matching containing MG, then the condi-
tions (a) and (b) in Lemma 3.2 force F0 to be a perfect matching.

Lemma 3.3. Let G, M and H be defined as in Lemma 3.1. Further, assume that
(k, t, |V (G)|) �= (0, 1, 4). Then:

(1) MG does not extend to a perfect matching in H.

(2) |MG| ≤ k − k1 − 2k2 + 1 and |MG| ≥ t+ k2 − 1.

(3) k2 = 0 and |MG| = t− 1.

(4) t ≥ 1 and |MG| = k − k1 + 1.

Proof. Let F0 be a matching inH containingMG satisfying the conditions (a) and (b)
defined as in Lemma 3.2.

(1) Assume, to the contrary, that MG extends to a perfect matching in H . By
Observation 3.2, F0 is a perfect matching in H , and |F0| = |A| = |X| − k1 ≥
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2(k+ t)−k1. On the other hand, by Lemma 3.2(2), |F0| ≤ |MG|+2|MG| = 2(|MG|+
|MG|)−|MG| = 2(k+t−k1−k2)−|MG|, we have 2(k+t−k1−k2)−|MG| ≥ 2(k+t)−k1,
which implies |MG|+ k1+2k2 ≤ 0. Therefore, k1 = k2 = 0 and MG = ∅. This means
H = G and M = MG. We also have |F0| = |A| = 2(k + t).

Let G′ = G − V (M), A′ = A − V (M) and B′ = B − V (M). Since G = H and
M = MG, we can apply Lemma 3.1 to G and F0 ∪M , and obtain |A′| ≡ |B′| ≡ 1
(mod 2) and EG(A

′, B′) = ∅. Since ∣∣A′∣∣ and
∣∣B′∣∣ are odd, A′ �= ∅ and B′ �= ∅. Take

x̄ ∈ A′ and ȳ ∈ B′. Since EG

(
A′, B′) = ∅, x̄ȳ /∈ E(G) and xy ∈ E(G).

Assume the edge xy extends to a perfect matching F in G. Let F ′ = (F−{xy})∪
{xx̄, yȳ}∪M . Then F ′ is a matching in GG with M ⊂ F ′ and V (F ′) = V (F )∪{x̄, ȳ}.
However, this contradicts Lemma 3.1 since

∣∣A− V (F ′)
∣∣ =

∣∣A′ − {x̄}∣∣ ≡ 0 (mod 2).
Therefore, the edge xy does not extend to a perfect matching in G. This implies
that G is not 1-extendable, and hence k = 0.

At this stage, we know that G is a balanced bipartite graph of order exactly 4t
and minimum degree at least 2t−1. Then by Theorem 2.4, G is (2t−2)-extendable.
Since G is not 1-extendable, this implies 2t − 2 ≤ 0, or t ≤ 1. On the other hand,
we have |V (G)| = 4t > 0. Therefore, we have t = 1 and |V (G)| = 4. We now have
(k, t, |V (G)|) = (0, 1, 4), which contradicts the assumption and (1) follows..

(2) By (1), F0 is not a perfect matching in G. This implies A �⊂ V (F0). Let
a ∈ A − V (F0). If NH(a) �⊂ V (F0), then we can take b ∈ NH(a) − V (F0) and
let F1 = F0 ∪ {ab}. Then V (MG) ⊂ V (F0) ⊂ V (F1) and |F1| = |F0| + 1, which
contradicts the condition (b). Hence we have NH(a) ⊂ V (F0). Then |F0| ≥ degH a ≥
degG a − k1 ≥ k + 2t − 1 − k1. On the other hand, by Lemma 3.2(2), |F0| ≤
|MG| + 2|MG| = |MG| + |MG| + |MG| = k + t − k1 − k2 + |MG|. Therefore, we
have |MG| + k + t − k1 − k2 ≥ k + 2t − 1 − k1, which yields |MG| ≥ t + k2 − 1 and
|MG| ≤ k + t− k1 − k2 − (t + k2 − 1) = k − k1 − 2k2 + 1. So (2) follows.

(3) Suppose k1 ≤ k. Then, by Corollary 2.2, H is (k − k1)-extendable. On the
other hand, by (1), MG does not extend to a perfect matching in H . This implies
|MG| ≥ k−k1+1. Then by (2), we have k−k1+1 ≤ |MG| ≤ k−k1−2k2+1, which
implies k2 = 0 and |MG| = k − k1 + 1. Then |MG| = k + t− k1 − k2 − |MG| = t− 1.

Next, suppose k1 ≥ k+1. Then again by (2), 0 ≤ |MG| ≤ k−k1−2k2+1 ≤ −2k2,
which implies k2 = |MG| = 0 and k1 = k+1. Then |MG| = k+t−k1−k2−|MG| = t−1
and (3) follows.

(4) follows by (3) and the fact that |MG| = (k+t)−k1−k2−|MG|. This proves (4)
and completes the proof of our lemma. �

Lemma 3.4. Let G, M and H be defined as in Lemma 3.1 and let F0 be defined as
in Lemma 3.2. Then |V (F0)| = |V (H)| − 2.

Proof. Since MG does not extend to a perfect matching in H by Lemma 3.3(1), it
suffices to prove the existence of a matching F with (1) MG ⊂ F , (2) |V (F )| =
|V (H)| − 2 and (3) V (MG) ⊂ V (F ).
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Assume, to the contrary, that H does not admit a matching satisfying (1)–(3).
We first prove that H admits a matching satisfying (1) and (2). Suppose k1 ≤ k.
Then H is (k − k1)-extendable. By Lemma 3.3(4), we can take ab ∈ MG with
a ∈ A and b ∈ B. Then |MG − {ab}| = k − k1, and MG − {ab} extends to a
perfect matching F1 in H . If ab ∈ F1, then F1 is a perfect matching in H with
MG ⊂ F1. This contradicts Lemma 3.3(1). Hence ab /∈ F1. Let {ab1, a1b} ⊂ F1, and
let F2 =

(
F1−{ab1, a1b}

)∪{ab}. Then F2 is a matching in H satisfying (1) and (2).

Next suppose k1 ≥ k + 1. Since |MG| = k − k1 + 1 ≥ 0, we have k1 = k + 1
and MG = ∅. Since t ≥ 1, we have |X| ≥ 2(k + t) ≥ k + 2. Thus, we can apply
Lemma 2.5 with X ′ = V (MX

GG
) ∩ X and Y ′ = Y1 and obtain a matching F3 in H

with |A − V (F3)| = |B − V (F3)| = 1. (Note MY
GG

= ∅ by Lemma 3.3(3).) Since
MG = ∅, F3 satisfies both (1) and (2).

Choose a matching F in H that satisfies (1) and (2) so that |V (MG) ∩ V (F )| is
as large as possible. Let V (H) − V (F ) = {x, y} with x ∈ A and y ∈ B. By the
assumption, F fails to satisfy (3). By symmetry, we may assume x ∈ V (MG). If
xy ∈ E(H), then F ∪ {xy} is a perfect matching in H containing MG, contradicting
Lemma 3.3(1). Hence we may assume xy /∈ E(H).

Let B1 = NH(x) − V (MG) and A1 = {u ∈ A : uv ∈ F, v ∈ B1}. Since y /∈ B1,
|A1| = |B1| ≥ degH x−|MG| ≥ degG x− k1−|MG| ≥ k+2t− 1− k1− (k− k1+1) =
2t − 2. On the other hand, by Lemma 3.3(3), |V (MG)| = |V (MG)| = 2|MG| =

2(t − 1). Therefore, A1 ∪ {x} �⊂ V (MG). Since x ∈ V (MG), there exists a vertex

x′ ∈ A1 − V (MG).

Let x′y′ ∈ F and F ′ =
(
F − {x′y′}) ∪ {xy′}. Then F ′ is a matching in H with

MG ⊂ F ′ and V (F ′) = V (H) − {x′, y}. Moreover, V (MG) ∩ V (F ′) =
(
V (MG) ∩

V (F )
) ∪ {x}. This contradicts the maximality of

∣∣V (MG) ∩ V (F )
∣∣. Therefore, our

lemma follows. �

We are now ready to establish our main theorem. Since P4 is the only bipartite
graph of order four and extendability zero, Theorem 1.1 can be restated in the
following way.

Theorem 3.5. Let k and t be nonnegative integers, and let G be a k-extendable
bipartite graph of order at least 4(k + t) and minimum degree at least k + 2t− 1. If
(k, t, |V (G)|) �= (0, 1, 4), then GG is (k + t)-extendable.

Proof. Assume GG is not (k + t)-extendable. Then there exists a matching M of
size k + t in GG which does not extend to a perfect matching in GG. Let X and Y
be the partite sets of G. Since G is 0-extendable, |X| = |Y | ≥ 2(k + t).

Now let H = G − (V (MGG) ∪ Y1) be the graph defined in Lemma 3.1 with the
partite sets A = X − V (MX

GG
) and B = Y − (

V (MY
GG

)∪ Y1)
)
. Further, let F0 be the

matching defined in Lemma 3.2.

By Lemma 3.4, we can set A−V (F0) = {a} and B−V (F0) = {b}. Let F = F0∪
{aā, bb̄}∪MG. Then F is a matching in HH with MG∪MG ⊂ F and V (H) ⊂ V (F ).
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Let A1 = A− V (F ) and B1 = B − V (F ). By Lemma 3.1,
∣∣A1

∣∣ ≡ ∣∣B1

∣∣ ≡ 1 (mod 2)

and EH

(
A1, B1

)
= ∅. Moreover, V (e) ∩ V (MG) �= ∅ for each e ∈ F0 −MG.

By Lemmas 3.2(2) and 3.3(3), |F0| ≤ |MG| + 2|MG| = |MG| + |MG| + |MG| =
(k + t − k1 − k2) + t − 1 = k + 2t − k1 − 1. On the other hand, by Lemma 3.4,
|F0| = |A| − 1 = |X| − k1 − 1 ≥ 2(k + t) − k1 − 1. Therefore, 2k + 2t − k1 − 1 ≤
k + 2t − k1 − 1, which implies k = 0. Moreover, we have |X| = 2(k + t) = 2t,
|A| = 2t− k1, |MG| = k − k1 + 1 = 1− k1 and δ(G) ≥ 2t− 1. In particular, k1 ≤ 1.

If k1 = 1, then MG = ∅, |X| = 2t and |A| = 2t− 1. Moreover, δ(G) ≥ 2t− 1 and
δ(H) ≥ 2t− 2. By applying Theorem 2.4 to G, we see that H is (2t− 3)-extendable.
On the other hand, by Lemma 3.3(1), H does not contain a perfect matching. These
imply 2t − 3 < 0. Since t ≥ 1 by Lemma 3.3(4), we have t = 1 and MG = ∅. We
now have MG = MG = MY

GG
= ∅ and hence M = MX

GG
. Then {uū : u ∈ V (G)} is a

perfect matching containing M . This is a contradiction. Therefore, we have k1 = 0.

At this stage we have k1 = k2 = k = 0, H = G, |MG| = 1 and δ(G) ≥ 2t− 1. By
Theorem 2.4, G is (2t − 2)-extendable. On the other hand, by Lemma 3.3(1), MG

does not extend to a perfect matching in G. Thus we have 2t− 2 ≤ 0, which implies
t = 1 and |V (G)| = 4. Now we have (k, t, |V (G)|) = (0, 1, 4). This is a contradiction,
and the theorem follows. �

4 Sharpness

In this section, we discuss the sharpness of Theorem 1.1. First we consider the
condition on minimum degree.

Plummer [7] proved the following theorem.

Theorem 4.1 ([7]). A connected k-extendable graph is (k + 1)-connected.

This theorem implies that the minimum degree of a connected k-extendable graph
is at least k + 1. Therefore, as long as connected graphs are concerned, the assump-
tion on minimum degree in Theorem 1.1 follows from the k-extendability if t ≤ 1.
Therefore, when we discuss the sharpness, we may assume t ≥ 2. In this range, we
will prove that the condition is best-possible.

For nonnegative integers a0, a1, a2, a3, a4 and a5, let A0, A1, A2, A3, A4 and A5

be pairwise disjoint independent sets of vertices with |Ai| = ai (0 ≤ i ≤ 5). Then
define G(a0, a1, a2, a3, a4, a5) by

V
(
G(a0, a1, a2, a3, a4, a5)

)
=

5⋃

i=0

Ai and

E
(
G(a0, a1, a2, a3, a4, a5)

)
= {uv : u ∈ Ai, v ∈ Ai+1, 0 ≤ i ≤ 5},

where the suffices are taken modulo 6. Note that G(a0, a1, a2, a3, a4, a5) is a bipartite
graph with partite sets A0 ∪ A2 ∪ A4 and A1 ∪ A3 ∪ A5. Note also that we allow ai
to be zero. For example, G(0, 1, 1, 1, 1, 0) = G(1, 1, 1, 1, 0, 0) � P4.
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Lemma 4.2. For nonnegative integers a0, a1, a2, a3, a4 with a0 + a2+ a4 = a1+ a3,
a1 ≥ a0 and a3 ≥ a4, G = G(a0, a1, a2, a3, a4, 0) admits a perfect matching.

Proof. Since a1 ≥ a0, there exists a matching F ′ between A0 and A1 covering all
vertices of A0. Similarly, since a3 ≥ a4, there exists a matching F ′′ between A3 and
A4 covering all vertices of A4. By our hypothesis a2 = (a1 − a0) + (a3 − a4), the
remaining graph G−V (F ′∪F ′′) contains a perfect matching F . Hence, F ∪F ′ ∪F ′′

is a perfect matching of G as required. �

Lemma 4.3. If nonnegative integers a0, a1, a2, a3, a4 and a5 satisfy a0 + a2 + a4 =
a1 + a3 + a5 and ai−1 + ai+1 ≥ ai for each i, 0 ≤ i ≤ 5, then G(a0, a1, a2, a3, a4, a5)
admits a perfect matching.

Proof. We proceed by induction on a0+a2+a4. If a0+a2+a4 ≤ 3, then it is easy to
show that G(a0, a1, a2, a3, a4, a5) has a perfect matching by applying the hypothesis
that ai−1 + ai+1 ≥ ai for each i, 0 ≤ i ≤ 5.

Suppose a0 + a2 + a4 ≥ 4. If ai−1 + ai+1 = ai holds for each i, 0 ≤ i ≤ 5,
we can take the sum of these six equalities and obtain 2

∑5
i=0 ai =

∑5
i=0 ai, which

yields
∑5

i=0 ai = 0. This is a contradiction since a0 + a2 + a4 ≥ 4. Therefore,
ai−1 + ai+1 > ai for some i, 0 ≤ i ≤ 5. By symmetry, we may assume a0 + a2 > a1.
Then since a0 + a2 + a4 = a1 + a3 + a5, we have a3 + a5 > a4.

We first consider when a5 = 0. Since a3 + a5 > a4 and a1 + a5 ≥ a0 it follows
that a3 > a4 and a1 ≥ a0. By Lemma 4.2, G(a0, a1, a2, a3, a4, 0) has a perfect
matching. We now consider the case a0 = 0. Let G′ = G(0, a1, a2, a3, a4, a5) =
G(a1, a2, a3, a4, a5, 0). Since a0 + a2 > a1 and a0 + a4 ≥ a5, it follows that a2 > a1
and a4 ≥ a5. Again by Lemma 4.2, G′ has a perfect matching.

We now assume that a0 ≥ 1 and a5 ≥ 1. Take u ∈ A5 and v ∈ A0, and let
G′′ = G(a0, a1, a2, a3, a4, a5) − {u, v}. Then G′′ = G(a0 − 1, a1, a2, a3, a4, a5 − 1).
Since a3 + a5 > a4, a3 + (a5 − 1) ≥ a4. Also, since a0 + a2 > a1, (a0 − 1) + a2 ≥ a1.
Furthermore, since a1 + a5 ≥ a0 and a0 + a4 ≥ a5, a1 + (a5 − 1) ≥ a0 − 1 and
a4 + (a0 − 1) ≥ a5 − 1. Hence, G′′ contains a perfect matching F by the induction
hypothesis. Now F ∪ {uv} is a perfect matching in G(a0, a1, a2, a3, a4, a5). �

Theorem 4.4. Let k, t, a and b be integers with k ≥ 0, t ≥ 2, a ≥ k + 2t and
b ≥ 2k + 1. Let G = G(k + 1, 2t− 2, 2t− 3, a, a+ b− k, b). Then:

(1) G is a k-extendable bipartite graph,

(2) δ(G) = k + 2t− 2, and

(3) GG is not (k + t)-extendable.

Proof. Let A0, A1, A2, A3, A4 and A5 be the independent sets of order k+1, 2t− 2,
2t− 3, a, a+ b− k and b, respectively. Note that since a+ b− k ≥ 2k + 2t+ 1 > 0,
G is well-defined. Note also that G is a balanced bipartite graph.
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(1) Let M be a matching of size k in G. We will show that M extends to a perfect
matching in G. Let H = G − V (M). It suffices to prove that H admits a perfect
matching. Note that since G is a balanced bipartite graph, H is also a balanced
bipartite graph.

Let ki = |{uv ∈ M : u ∈ Ai, v ∈ Ai+1}| (0 ≤ i ≤ 5), where suffices are taken
modulo 6. Note that H = G(p0, p1, p2, p3, p4, p5), where p0 = k+1−k5−k0, p1 = 2t−
2−k0−k1, p2 = 2t−3−k1−k2, p3 = a−k2−k3, p4 = a+b−k−k3−k4, p5 = b−k4−k5.
Note also that, pi ≥ 0 for each i, 0 ≤ i ≤ 5 and p0 + p2 + p4 = p1 + p3 + p5 since H
is a balanced bipartite graph. By using the fact that k = k0 + k1 + k2 + k3 + k4 + k5
and our hypothesis that a ≥ k + 2t and b ≥ 2k + 1, it is not difficult to show that
pi−1 + pi+1 ≥ pi for each i, 0 ≤ i ≤ 5. By Lemma 4.3, H has a perfect matching.
Hence, (1) follows.

(2) By using the hypothesis that a ≥ k + 2t and b ≥ 2k + 1, it is easy to see
that |Ai−1| + |Ai+1| ≥ k + 2t − 2 for each i, 0 ≤ i ≤ 5. By the definition of G,
δ(G) = min{|Ai−1|+ |Ai+1| : 0 ≤ i ≤ 5} = k + 2t− 2 as required.

(3) Since b ≥ k+ 1, we can take a set F1 of k+ 1 independent edges joining A0 and
A5. Since A1 induces a complete graph of order 2(t−1) in GG, we can take a perfect
matching F2 of size t−1 in A1. Let F = F1∪F2. Then F is a matching of size k+t in
GG. Let G′ = GG−V (F ). Then NG′(A1) = A2. Since |A2| = 2t−3 < 2t−2 = |A1|,
G′ does not admit a perfect matching. Therefore, F does not extend to a perfect
matching in GG. �

By Theorem 4.4, there exist infinitely many k-extendable bipartite graphs G of
minimum degree k + 2t− 2 such that GG is not (k + t)-extendable.

Next, we consider the condition on the order. If (k, t) ∈ {(0, 0), (1, 0)}, then 2k+
2 ≥ 4(k+ t). Since the order of a k-extendable graph is at least 2k+2, if (k, t) takes
either value, the assumption |V (G)| ≥ 4(k + t) in Theorem 1.1 immediately follows
from the k-extendability of G. Therefore, we may assume (k, t) /∈ {(0, 0), (1, 0)}.
Proposition 4.5. Let k and t be integers with (k, t) /∈ {(0, 0), (1, 0)} and let G be
the balanced complete bipartite graph K2k+2t−1,2k+2t−1. Then (1) G is k-extendable,
(2) δ(G) ≥ k + 2t− 1, but (3) GG is not (k + t)-extendable.

Proof. Since (k, t) /∈ {(0, 0), (1, 0)}, 2t + 2k − 1 > k. Hence G is k-extendable.
Moreover, δ(G) = 2k + 2t− 1 ≥ k + 2t− 1. Therefore, (1) and (2) follows.

Let X and Y be the partite sets of G and take x0 ∈ X. Then |X − {x0}| =
2k + 2t − 2 and the subgraph of GG induced by X − {x0} is a complete graph of
order 2k + 2t − 2, which admits a perfect matching F0 of size k + t − 1. Choose
y0 ∈ Y and let F = F0 ∪ {x0y0}. Then F is a perfect matching of size k + t in GG.
However, x0 is an isolated vertex in GG − V (F ). Hence F does not extend to a
perfect matching in GG.

�

Proposition 4.5 shows that we cannot relax the assumption on the order in The-
orem 1.1.
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