A note on the locating-total domination number in trees

Nader Jafari Rad Hadi Rahbani
Department of Mathematics
Shahrood University of Technology
Shahrood
Iran
n.jafarirad@gmail.com

Abstract

A total dominating set of a graph $G=(V, E)$ with no isolated vertex is a set $D \subseteq V(G)$ such that every vertex is adjacent to a vertex in D. A total dominating set D of G is a locating-total dominating set if for every pair of distinct vertices u and v in $V-D, N(u) \cap D \neq N(v) \cap D$. Let $\gamma_{L}^{t}(G)$ be the minimum cardinality of a locating-total dominating set of G. We show that for a nontrivial tree T of order n, with ℓ leaves and s support vertices, $\gamma_{t}^{L}(T) \geq\left(n+\frac{\ell}{2}-s+1\right) / 2$, improving some previous bounds presented by Chellali [Discussiones Math. Graph Theory 28 (3) (2008), 383-392] and Chen and Young Sohn [Discrete Appl. Math. 159 (13-14) (2011), 769-773]. We also characterize the extremal trees achieving the above bound.

1 Introduction

For notation and terminology not given here we refer to [5]. Let $G=(V(G), E(G))$ be a graph. The open neighborhood of a vertex $v \in V(G)$ is $N_{G}(v)=N(v)=\{u \in$ $V(G) \mid u v \in E(G)\}$, and the closed neighborhood of v is $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The degree of v is the size of its open neighborhood. A vertex of degree one in a tree is called a leaf and its neighbor is called a support vertex. We denote by $L(T)$ (respectively, $S(T)$) the set of leaves (respectively, support vertices) of a tree T. The number of leaves and support vertices of a tree T are $\ell=\ell(T)=|L(T)|$ and $s=s(T)=|S(T)|$, respectively. The subgraph induced in a graph G by a subset of vertices S is denoted by $G[S]$. A subset S is an independent set if $G[S]$ has no edge. A subset D of vertices of G is a dominating set if every vertex in $V(G)-D$ is adjacent to a vertex in D. A subset D of vertices of G is a total dominating set if every vertex in $V(G)$ is adjacent to a vertex in D. The total domination number,
$\gamma_{t}(G)$ of G, is the minimum cardinality of a total dominating set of G. The literature on the subject of total domination has been surveyed in a recent book [8].

A total dominating set D of a graph G is called a locating-total dominating set (LTDS) if for every pair of distinct vertices u and v in $V-D, N(u) \cap D \neq N(v) \cap$ D. The locating-total domination number $\gamma_{t}^{L}(G)$ is the minimum cardinality of a locating-total dominating set of G. Locating-total domination was introduced by Haynes et al. [4] and further studies for example in [1, 2, 3, 6, 7].

Let \mathcal{F} be the family of trees that can be obtained from r disjoint copies of P_{4} and P_{3} by first adding $r-1$ edges so that they are incident only with support vertices and the resulting graph is connected, and then subdividing each new edge exactly once.

Theorem 1.1 (Chellali [1]). If T is a tree of order $n \geq 2$ with ℓ leaves and s support vertices, then $\gamma_{t}^{L} \geq 2(n+\ell-s+1) / 5$, with equality if and only if $T=P_{2}$ or $T \in \mathcal{F}$.

Theorem 1.2 (Chellali [1]). If T is a tree of order $n \geq 2$, then $\gamma_{t}^{L} \geq(n+2-s) / 2$.
Chen and Sohn [3] obtained a new family ζ_{2} of trees and gave the following theorem.

Theorem 1.3 (Chen and Sohn [3]). If T is a tree of order $n \geq 3$ with ℓ leaves and s support vertices, then $\gamma_{t}^{L} \geq(n+\ell+1) / 2-s$, with equality if and only if $T \in \zeta_{2}$.

In this paper, we show that for any tree T of order $n \geq 2$, with ℓ leaves and s support vertices, $\gamma_{t}^{L} \geq \frac{1}{2}(n+\ell / 2-s+1)$, and characterize trees achieving equality for this bound. We thus improve Theorem 1.1 for trees with $n \geq \frac{3}{2} \ell+s-1$, Theorem 1.2 for all trees, and Theorem 1.3 for trees with $\ell \leq 2 s$. The following is useful.

Lemma 1.4. For $n \geq 2, \gamma_{t}^{L}\left(P_{n}\right)=\gamma_{t}\left(P_{n}\right)=\lfloor n / 2\rfloor+\lceil n / 4\rceil-\lfloor n / 4\rfloor$.

2 Lower bound on the locating-total domination number of a tree

Let $\zeta=\left\{P_{3}\right\} \cup\left\{P_{4 k} \mid k \geq 1\right\}, S^{k}$ be a $\gamma_{t}^{L}\left(P_{4 k}\right)$-set for $k \geq 1$, and $S=S\left(P_{3}\right) \cup\left(\bigcup_{k \geq 1} S^{k}\right)$. Let ξ be the family of trees that can be obtained from t disjoint copies of trees in ζ by first adding $t-1$ edges in such a way that they are incident only with vertices in S and the resulting graph is connected, and then subdividing each new edge exactly once.

Theorem 2.1. If T is a tree of order $n \geq 2$, with ℓ leaves and s support vertices, then $\gamma_{t}^{L} \geq(n+\ell / 2-s+1) / 2$, with equality if and only if $T \in \xi$.

Proof. Let T be a tree of order $n \geq 2$ with ℓ leaves and s support vertices. Let D be a $\gamma_{t}^{L}(T)$-set such that $|L(T) \cap D|$ is minimum. Set $B=\{v \notin D:|N(v) \cap D|=1\}$ and $C=\{v \notin D \| N(v) \cap D \mid \geq 2\}$. Then $V(T)=D \cup B \cup C$. Let $Q_{1}=D-(L(T) \cup S(T))$
and $Q_{2}=B-L(T)$, and ω be the number of components of $T[D]$. Then $D=(L(T) \cap$ $D) \cup S \cup Q_{1}$. By minimality of $|L(T) \cap D|$, we may assume that $|L(T) \cap D|=\ell-s$ and $|L(T) \cap B|=s$. Let $|[D, B \cup C]|$ be the number of edges with one end-point in D and the other end-point in $B \cup C$. Clearly, $|[D, B \cup C]| \geq|B|+2|C|=2 n-2|D|-|B|$. On the other hand, $|[D, B \cup C]|=n-1-|E(T[D])|-\left|E\left(T\left[Q_{2} \cup C\right]\right)\right|$. Thus we obtain $n-1-|E(T[D])|-\left|E\left(T\left[Q_{2} \cup C\right]\right)\right| \geq 2 n-2|D|-|B|$.

Claim 1. $\left|E\left(T\left[Q_{2} \cup C\right]\right)\right| \geq \frac{\left|Q_{2}\right|}{2}$, and the equality holds if and only if $T\left[Q_{2} \cup C\right] \cong$ $|C| K_{1}+\frac{\left|Q_{2}\right|}{2} K_{2}$ and C is an independent set in $T\left[Q_{2} \cup C\right]$.
Proof of Claim 1. Since $\operatorname{deg}(v) \geq 2$ for any $v \in Q_{2}$, we have $N(v) \cap\left(C \cup Q_{2}\right) \neq \emptyset$. Thus,

$$
\left|E\left(T\left[Q_{2} \cup C\right]\right)\right|=\frac{1}{2} \sum_{v \in Q_{2} \cup C} \operatorname{deg}_{T\left[Q_{2} \cup C\right]}(v) \geq \frac{1}{2} \sum_{v \in Q_{2}} \operatorname{deg}_{T\left[Q_{2} \cup C\right]}(v) \geq \frac{\left|Q_{2}\right|}{2} .
$$

Assume that equality holds. Then

$$
\frac{1}{2} \sum_{v \in Q_{2} \cup C} \operatorname{deg}_{T\left[Q_{2} \cup C\right]}(v)=\frac{1}{2} \sum_{v \in Q_{2}} \operatorname{deg}_{T\left[Q_{2} \cup C\right]}(v)=\frac{\left|Q_{2}\right|}{2},
$$

and thus $\operatorname{deg}_{T\left[Q_{2} \cup C\right]}(v)=0$ for each vertex $v \in C$ and $\operatorname{deg}_{T\left[Q_{2} \cup C\right]}(v)=1$ for each vertex $v \in Q_{2}$. Consequently, $T\left[Q_{2} \cup C\right] \cong \frac{\left|Q_{2}\right|}{2} K_{2}+|C| K_{1}$ and C is an independent set in $T\left[Q_{2} \cup C\right]$. The converse is obvious.

Claim 2. $|E(T[D])| \geq \frac{|D|}{2}$, the equality holds if and only if $T[D] \cong \frac{|D|}{2} K_{2}$.
Proof of Claim 2. Since D is a total dominating set of T, every component of $T[D]$ has at least two vertices. Thus, $\omega \leq \frac{|D|}{2}$ and so $|E(T[D])|=|D|-\omega \geq|D|-\frac{|D|}{2}=\frac{|D|}{2}$. Moreover, the equality $|E(T[D])|=\frac{|D|}{2}$ holds if and only if $T[D] \cong \frac{|D|}{2} K_{2}$.

By Claims 1 and 2, $2 n-2|D|-|B| \leq n-1-\frac{|D|}{2}-\frac{\left|Q_{2}\right|}{2}$. Thus, we have $n+1-|B| \leq$ $\frac{3|D|}{2}-\frac{\left|Q_{2}\right|}{2}$. But $|B|=\left|Q_{2}\right|+|B \cap L(T)|$. Thus we obtain that

$$
n+1-\frac{\left|Q_{2}\right|}{2}-|B \cap L(T)|=n+1-\frac{\left|Q_{2}\right|}{2}-s \leq \frac{3|D|}{2} .
$$

It is obvious that each vertex of D is adjacent to at most one vertex of Q_{2}. If $u \in D \cap(L(T) \cup S(T))$ then by the minimality of D, we have $Q_{2} \cap N(u)=\emptyset$. We deduce that $\left|Q_{2}\right| \leq|D|-|(L(T) \cap D) \cup S(T)|=|D|-\ell$. We now have $n+1+\frac{\ell}{2}-s \leq$ $\left(\frac{3}{2}+\frac{1}{2}\right)|D|$, and thus, $\gamma_{t}^{L}(T) \geq \frac{1}{2}\left(n+\frac{\ell}{2}-s+1\right)$, as desired.

We next prove the equality part. Assume that $\gamma_{t}^{L}=\frac{1}{2}\left(n+\frac{\ell}{2}-s+1\right)$. Then $\left|E\left(T\left[Q_{2} \cup C\right]\right)\right| \cong \frac{\left|Q_{2}\right|}{2} K_{2}+|C| K_{1}, C$ is an independent set in $T\left[Q_{2} \cup C\right],|N(v) \cap D|=2$ for every vertex $v \in C,\left|Q_{2}\right|=|D|-\ell$, and $T[D] \cong \frac{|D|}{2} K_{2}$. Since $\left|Q_{1}\right|=|D|-\ell$, we obtain $\left|Q_{1}\right|=\left|Q_{2}\right|$. If $\left|Q_{1}\right|=\left|Q_{2}\right|=0$, then $D \subseteq L(T) \cup S(T)$. For every component C^{\prime} of $T[D \cup B]$, since $\left|Q_{2}\right|=0$ and $T[D]=\frac{\overline{|D|}}{2} K_{2}$, we have $\gamma_{t}^{L}\left(C^{\prime}\right)=2$.

Therefore $C^{\prime}=P_{3}$ or P_{4}. On other hand since every vertex in C^{\prime} is adjacent to exactly two vertices in D, we get $T \in \xi$. Now we consider the case $\left|Q_{1}\right|=\left|Q_{2}\right| \neq 0$. Let $T_{1}, T_{2}, \ldots, T_{\omega_{1}}$ be the components of $T[D \cup B]$. Clearly, $D \cap V\left(T_{i}\right)$ is a LTDS for T_{i} for $i=1,2, \ldots, \omega_{1}$. Now

$$
\begin{aligned}
\frac{1}{2}\left(n+\frac{\ell}{2}-s+1\right)=|D| & =\sum_{i=1}^{\omega_{1}}\left|D \cap V\left(T_{i}\right)\right| \\
& \geq \sum_{i=1}^{\omega_{1}} \gamma_{t}^{L}\left(T_{i}\right) \\
& \geq \sum_{i=1}^{\omega_{1}} \frac{1}{2}\left(\left|V\left(T_{i}\right)\right|+\frac{\ell\left(T_{i}\right)}{2}-s\left(T_{i}\right)+1\right) \\
& =\frac{1}{2}\left(n-\left(\omega_{1}-1\right)+\frac{\ell}{2}-s+\omega_{1}\right)
\end{aligned}
$$

Thus $\gamma_{t}^{L}\left(T_{i}\right)=\frac{1}{2}\left(\left|V\left(T_{i}\right)\right|+\frac{\ell\left(T_{i}\right)}{2}-s\left(T_{i}\right)+1\right)$ for each $i=1,2, \ldots, \omega_{1}$. If $V\left(T_{i}\right) \cap Q_{2}=\emptyset$ for some component T_{i}, then as before we obtain that $T_{i} \in\left\{P_{3}, P_{4}\right\}$. Assume that $V\left(T_{i}\right) \cap Q_{2} \neq \emptyset$ for some component T_{i}. We show that T_{i} is a path of order $4 k$ for some integer k. Let $v \in V\left(T_{i}\right)$. Suppose that $\operatorname{deg}_{T_{i}}(v) \geq 3$. Let $\{x, y, z\} \subseteq N(v)$. If $v \in D$, then we can assume that $\{y, z\} \subseteq B$, since $T[D] \cong \frac{|D|}{2} K_{2}$. But then $N(y) \cap D=N(z) \cap D=\{v\}$, a contradiction. Thus, $v \notin D$, and so $v \in B$. Since $T\left[Q_{2} \cup C\right] \cong \frac{\left|Q_{2}\right|}{2} K_{2}+|C| K_{1}$, we can assume that $\{y, z\} \subseteq D$. Then $|N(v) \cap D| \geq 2$, contradicting that $v \in B$. We conclude that $\operatorname{deg}_{T_{i}}(v) \leq 2$. Consequently, T_{i} is a path. Since $V\left(T_{i}\right) \cap Q_{2} \neq \emptyset$, we have $\left|V\left(T_{i}\right)\right| \geq 5$, and thus, $\ell=s=2$. Then $\gamma_{t}^{L}\left(T_{i}\right)=\frac{\left|V\left(T_{i}\right)\right|}{2}$. Now the Lemma 1.4 implies that T_{i} is a path of order $4 k$ for some integer k. Thus, for $i=1,2, \ldots, \omega_{1}$, we have $T_{i} \in \zeta$. Note that every vertex in C is adjacent to exactly two vertices in D, thus $T \in \xi$. The converse is straightforward.

We note that Theorem 2.1 improves Theorem 1.1 for trees with $n \geq \frac{3}{2} \ell+s-1$, improves Theorem 1.2 for all trees, and improves Theorem 1.3 for trees with $\ell \leq 2 s$. We also note that if $\ell \geq 3$, then by Theorem 2.1, $\gamma_{t}^{L}(T) \geq(n+\ell / 2-s+1) / 2>$ $(n+2-s) / 2$, and thus a simple calculation leads the following characterization of trees achieving equality of the bound of Theorem 1.2.

Corollary 2.2. If T is a tree of order $n \geq 2$, then $\gamma_{t}^{L}(T)=\frac{1}{2}(n+2-s)$ if and only if $T=P_{4 k}$ for some integer $k \geq 1$.

Acknowledgements

The authors would like to thank the referees for their careful review of the paper.

References

[1] M. Chellali, On locating and differentiating-total domination in trees, Discuss. Math. Graph Theory 28 (3) (2008), 383-392.
[2] M. Chellali, Locating-total domination critical graphs, Australas. J. Combin. 45 (2009), 227-234.
[3] X. Chen and M. Young Sohn, Bounds on the locating-total domination number of a tree, Discrete Appl. Math. 159 (13-14) (2011), 769-773.
[4] T. W. Haynes, M. A. Henning, and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006), 1293-1300.
[5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[6] M. A. Henning and N. Jafari Rad, Locating-total domination in graphs, Discrete Appl. Math. 160 (13-14) (2012), 1986-1993.
[7] M. A. Henning and C. Löwenstein, Locating-total domination in claw-free cubic graphs, Discrete Math. 312 (2012), 3107-3116.
[8] M. A. Henning and A. Yeo, Total domination in graphs, (Springer Monographs in Mathematics) 2013.

