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Abstract

A total dominating set of a graph G = (V,E) with no isolated vertex is a
set D ⊆ V (G) such that every vertex is adjacent to a vertex in D. A total
dominating set D of G is a locating-total dominating set if for every pair
of distinct vertices u and v in V −D, N(u) ∩D �= N(v) ∩D. Let γt

L(G)
be the minimum cardinality of a locating-total dominating set of G. We
show that for a nontrivial tree T of order n, with � leaves and s support
vertices, γL

t (T ) ≥ (n + �
2
− s + 1)/2, improving some previous bounds

presented by Chellali [Discussiones Math. Graph Theory 28 (3) (2008),
383–392] and Chen and Young Sohn [Discrete Appl. Math. 159 (13-14)
(2011), 769–773]. We also characterize the extremal trees achieving the
above bound.

1 Introduction

For notation and terminology not given here we refer to [5]. Let G = (V (G), E(G))
be a graph. The open neighborhood of a vertex v ∈ V (G) is NG(v) = N(v) = {u ∈
V (G)|uv ∈ E(G)}, and the closed neighborhood of v is NG[v] = N [v] = N(v) ∪ {v}.
The degree of v is the size of its open neighborhood. A vertex of degree one in
a tree is called a leaf and its neighbor is called a support vertex. We denote by
L(T ) (respectively, S(T )) the set of leaves (respectively, support vertices) of a tree
T . The number of leaves and support vertices of a tree T are � = �(T ) = |L(T )| and
s = s(T ) = |S(T )|, respectively. The subgraph induced in a graph G by a subset
of vertices S is denoted by G[S]. A subset S is an independent set if G[S] has no
edge. A subset D of vertices of G is a dominating set if every vertex in V (G) − D
is adjacent to a vertex in D. A subset D of vertices of G is a total dominating set
if every vertex in V (G) is adjacent to a vertex in D. The total domination number,
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γt(G) of G, is the minimum cardinality of a total dominating set of G. The literature
on the subject of total domination has been surveyed in a recent book [8].

A total dominating set D of a graph G is called a locating-total dominating set
(LTDS) if for every pair of distinct vertices u and v in V −D, N(u) ∩D �= N(v) ∩
D. The locating-total domination number γL

t (G) is the minimum cardinality of a
locating-total dominating set of G. Locating-total domination was introduced by
Haynes et al. [4] and further studies for example in [1, 2, 3, 6, 7].

Let F be the family of trees that can be obtained from r disjoint copies of P4 and
P3 by first adding r − 1 edges so that they are incident only with support vertices
and the resulting graph is connected, and then subdividing each new edge exactly
once.

Theorem 1.1 (Chellali [1]). If T is a tree of order n ≥ 2 with � leaves and s support
vertices, then γL

t ≥ 2(n+ �− s+ 1)/5, with equality if and only if T = P2 or T ∈ F .

Theorem 1.2 (Chellali [1]). If T is a tree of order n ≥ 2, then γL
t ≥ (n+ 2− s)/2.

Chen and Sohn [3] obtained a new family ζ2 of trees and gave the following
theorem.

Theorem 1.3 (Chen and Sohn [3]). If T is a tree of order n ≥ 3 with � leaves and
s support vertices, then γL

t ≥ (n + �+ 1)/2− s, with equality if and only if T ∈ ζ2.

In this paper, we show that for any tree T of order n ≥ 2, with � leaves and s
support vertices, γL

t ≥ 1
2
(n + �/2− s + 1), and characterize trees achieving equality

for this bound. We thus improve Theorem 1.1 for trees with n ≥ 3
2
�+s−1, Theorem

1.2 for all trees, and Theorem 1.3 for trees with � ≤ 2s. The following is useful.

Lemma 1.4. For n ≥ 2, γL
t (Pn) = γt(Pn) = 	n/2
 + �n/4� − 	n/4
.

2 Lower bound on the locating-total domination number of
a tree

Let ζ = {P3}∪{P4k|k ≥ 1}, Sk be a γL
t (P4k)-set for k ≥ 1, and S = S(P3)∪(

⋃
k≥1 S

k).
Let ξ be the family of trees that can be obtained from t disjoint copies of trees in ζ
by first adding t− 1 edges in such a way that they are incident only with vertices in
S and the resulting graph is connected, and then subdividing each new edge exactly
once.

Theorem 2.1. If T is a tree of order n ≥ 2, with � leaves and s support vertices,
then γL

t ≥ (n+ �/2− s+ 1)/2, with equality if and only if T ∈ ξ.

Proof. Let T be a tree of order n ≥ 2 with � leaves and s support vertices. Let D be
a γL

t (T )-set such that |L(T )∩D| is minimum. Set B = {v /∈ D : |N(v)∩D| = 1} and
C = {v /∈ D||N(v)∩D| ≥ 2}. Then V (T ) = D∪B∪C. Let Q1 = D−(L(T )∪S(T ))
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and Q2 = B−L(T ), and ω be the number of components of T [D]. Then D = (L(T )∩
D)∪S∪Q1. By minimality of |L(T )∩D|, we may assume that |L(T )∩D| = �−s and
|L(T )∩B| = s. Let |[D,B∪C]| be the number of edges with one end-point in D and
the other end-point in B ∪ C. Clearly, |[D,B ∪ C]| ≥ |B|+ 2|C| = 2n− 2|D| − |B|.
On the other hand, |[D,B ∪ C]| = n − 1 − |E(T [D])| − |E(T [Q2 ∪ C])|. Thus we
obtain n− 1− |E(T [D])| − |E(T [Q2 ∪ C])| ≥ 2n− 2|D| − |B|.
Claim 1. |E(T [Q2 ∪ C])| ≥ |Q2|

2
, and the equality holds if and only if T [Q2 ∪ C] ∼=

|C|K1 +
|Q2|
2
K2 and C is an independent set in T [Q2 ∪ C].

Proof of Claim 1. Since deg(v) ≥ 2 for any v ∈ Q2, we have N(v) ∩ (C ∪ Q2) �= ∅.
Thus,

|E(T [Q2 ∪ C])| = 1

2

∑

v∈Q2∪C
degT [Q2∪C](v) ≥

1

2

∑

v∈Q2

degT [Q2∪C](v) ≥
|Q2|
2

.

Assume that equality holds. Then

1

2

∑

v∈Q2∪C
degT [Q2∪C](v) =

1

2

∑

v∈Q2

degT [Q2∪C](v) =
|Q2|
2

,

and thus degT [Q2∪C](v) = 0 for each vertex v ∈ C and degT [Q2∪C](v) = 1 for each

vertex v ∈ Q2. Consequently, T [Q2 ∪ C] ∼= |Q2|
2
K2 + |C|K1 and C is an independent

set in T [Q2 ∪ C]. The converse is obvious.

Claim 2. |E(T [D])| ≥ |D|
2
, the equality holds if and only if T [D] ∼= |D|

2
K2.

Proof of Claim 2. Since D is a total dominating set of T , every component of T [D]

has at least two vertices. Thus, ω ≤ |D|
2

and so |E(T [D])| = |D|−ω ≥ |D|− |D|
2

= |D|
2
.

Moreover, the equality |E(T [D])| = |D|
2

holds if and only if T [D] ∼= |D|
2
K2.

By Claims 1 and 2, 2n−2|D|−|B| ≤ n−1− |D|
2
− |Q2|

2
. Thus, we have n+1−|B| ≤

3|D|
2

− |Q2|
2
. But |B| = |Q2|+ |B ∩ L(T )|. Thus we obtain that

n + 1− |Q2|
2

− |B ∩ L(T )| = n + 1− |Q2|
2

− s ≤ 3|D|
2

.

It is obvious that each vertex of D is adjacent to at most one vertex of Q2. If
u ∈ D ∩ (L(T ) ∪ S(T )) then by the minimality of D, we have Q2 ∩ N(u) = ∅. We
deduce that |Q2| ≤ |D|−|(L(T )∩D)∪S(T )| = |D|−�. We now have n+1+ �

2
−s ≤

(3
2
+ 1

2
)|D|, and thus, γL

t (T ) ≥ 1
2
(n+ �

2
− s+ 1), as desired.

We next prove the equality part. Assume that γL
t = 1

2
(n + �

2
− s + 1). Then

|E(T [Q2∪C])| ∼= |Q2|
2
K2+|C|K1, C is an independent set in T [Q2∪C], |N(v)∩D| = 2

for every vertex v ∈ C, |Q2| = |D| − �, and T [D] ∼= |D|
2
K2. Since |Q1| = |D| − �,

we obtain |Q1| = |Q2|. If |Q1| = |Q2| = 0, then D ⊆ L(T ) ∪ S(T ). For every

component C ′ of T [D ∪ B], since |Q2| = 0 and T [D] = |D|
2
K2, we have γL

t (C
′) = 2.
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Therefore C ′ = P3 or P4. On other hand since every vertex in C ′ is adjacent to
exactly two vertices in D, we get T ∈ ξ. Now we consider the case |Q1| = |Q2| �= 0.
Let T1, T2, . . . , Tω1 be the components of T [D∪B]. Clearly, D∩V (Ti) is a LTDS for
Ti for i = 1, 2, . . . , ω1. Now

1

2
(n+

�

2
− s+ 1) = |D| =

ω1∑

i=1

|D ∩ V (Ti)|

≥
ω1∑

i=1

γL
t (Ti)

≥
ω1∑

i=1

1

2
(|V (Ti)|+ �(Ti)

2
− s(Ti) + 1)

=
1

2
(n− (ω1 − 1) +

�

2
− s+ ω1)

Thus γL
t (Ti) =

1
2
(|V (Ti)|+ �(Ti)

2
−s(Ti)+1) for each i = 1, 2, . . . , ω1. If V (Ti)∩Q2 = ∅

for some component Ti, then as before we obtain that Ti ∈ {P3, P4}. Assume that
V (Ti) ∩ Q2 �= ∅ for some component Ti. We show that Ti is a path of order 4k for
some integer k. Let v ∈ V (Ti). Suppose that degTi

(v) ≥ 3. Let {x, y, z} ⊆ N(v).

If v ∈ D, then we can assume that {y, z} ⊆ B, since T [D] ∼= |D|
2
K2. But then

N(y) ∩ D = N(z) ∩ D = {v}, a contradiction. Thus, v �∈ D, and so v ∈ B. Since

T [Q2 ∪C] ∼= |Q2|
2
K2 + |C|K1, we can assume that {y, z} ⊆ D. Then |N(v)∩D| ≥ 2,

contradicting that v ∈ B. We conclude that degTi
(v) ≤ 2. Consequently, Ti is a path.

Since V (Ti)∩Q2 �= ∅, we have |V (Ti)| ≥ 5, and thus, � = s = 2. Then γL
t (Ti) =

|V (Ti)|
2

.
Now the Lemma 1.4 implies that Ti is a path of order 4k for some integer k. Thus,
for i = 1, 2, . . . , ω1, we have Ti ∈ ζ . Note that every vertex in C is adjacent to exactly
two vertices in D, thus T ∈ ξ. The converse is straightforward.

We note that Theorem 2.1 improves Theorem 1.1 for trees with n ≥ 3
2
� + s− 1,

improves Theorem 1.2 for all trees, and improves Theorem 1.3 for trees with � ≤ 2s.
We also note that if � ≥ 3, then by Theorem 2.1, γL

t (T ) ≥ (n + �/2 − s + 1)/2 >
(n + 2 − s)/2, and thus a simple calculation leads the following characterization of
trees achieving equality of the bound of Theorem 1.2.

Corollary 2.2. If T is a tree of order n ≥ 2, then γL
t (T ) =

1
2
(n+ 2− s) if and only

if T = P4k for some integer k ≥ 1.
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