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Abstract

In this paper, we consider Skolem (vertex) labellings and present (hooked)
Skolem labellings for generalised Dutch windmills whenever such label-
lings exist. Specifically, we show that generalised Dutch windmills with
more than two cycles cannot be Skolem labelled and that those composed
of two cycles of lengths m and n, n ≥ m, cannot be Skolem labelled if
and only if n−m ≡ 3, 5 (mod 8) and m is odd. Showing that a Skolem
labelling does not exist is, in general, a complex problem and we present
a novel technique for doing so.

1 Introduction

A graph labelling is an assignment of labels, like integers or colours, to the vertices or
edges of a graph under certain conditions. Graph labelling is a well studied subject
in graph theory with many applications, including testing the reliability of networks;
a multitude of papers have been written since its introduction more than fifty years
ago. We study a vertex labelling problem called Skolem labelling that may be used
in testing distance reliability in networks. In 1957, Skolem-type sequences were
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introduced to be sequences (s1, . . . , sm) of the integers in D = {1, 2, . . . , n} such that
two occurrences of integer i are i positions apart [12]. A Skolem sequence of order n
is a Skolem-type sequence of length 2n such that each integer appears exactly twice,
and can be interpreted as a partition of the set {1, 2, . . . , 2n} into a collection of
disjoint ordered pairs {(ai, bi)}ni=1 such that ai < bi and bi − ai = i [12]. Positions in
a Skolem-type sequence not occupied by integers contain null elements or hooks. A
Skolem sequence of order n exists if and only if n ≡ 0, 1 (mod 4) and a hooked Skolem
sequence of order n, a sequence with a hook at the penultimate position, exists if
and only if n ≡ 2, 3 (mod 4) [8, 12]. Skolem-type sequences have many applications
in design theory; they are used to construct triple systems, starters, and balanced
ternary designs. They are also applied in finding factorizations of complete graphs
and answering set partitioning problems.

In 1991, Mendelsohn and Shalaby extended the concept of Skolem labelling to
graphs [7]. Similar to Skolem sequences, a graph on 2n vertices can be (weakly)
Skolem labelled if the vertices can be assigned labels from the set D = {1, . . . , n} such
that exactly two vertices at distance i are labelled i, for each integer i ∈ D. If some
of the vertices are not labelled, or are labelled by 0 or ∗, then the labelling is called
hooked Skolem (and the graph is said to have been hook-Skolem labelled). A Skolem
sequence of order n is equivalent to a Skolem labelling of a path with 2n vertices,
and a graph with an odd number of vertices must have a vertex labelled by ∗. It is
noted that Skolem labellings of graphs can be used to test communication networks
for node, link and distance reliability, and have applications in areas such as the
modeling and analysis of networks, as well as in designing monitoring systems such
as radio antenna arrays [3, 7, 9]. Skolem labelling of various classes of graphs such as
k-windmills, ladder graphs, and Cartesian products of paths have been studied [1, 2,
5, 6] and, in [9], the pseudo-Skolem sequences are introduced and are used to Skolem
label a variety of classes of graphs.

In this paper, Skolem labellings of graphs with arbitrarily large chordless cycles
are considered. With the exception of grids, this is the first time such graphs have
been studied. In fact, until now, only tree-like and grid-like graphs have been Skolem
labelled [1, 2, 5, 6]. Here, specifically, we study the Skolem labelling of generalised
Dutch windmills, which are comprised of a number of cycles called vanes sharing
a vertex called the pivot. Other types of labellings of these graphs, like graceful,
harmonious, cordial, prime and Felicitous labellings, have been extensively stud-
ied [4]. But Skolem labellings of such graphs, up until now, have been conspicuously
missing from the literature. As with windmills, networks with a central hub may
be modeled using these graphs. A generalised Dutch windmill with more than two
vanes has no Skolem labelling. Let Cm and Cn be the vanes of a generalised Dutch
windmill Dm,n, n ≥ m, with two vanes. We make use of Skolem-type sequences as
well as Skolem labelled generalised 3-windmills to (hook-) Skolem label Dm,n, when
n −m ≡ 0, 1, 2, 4, 6, 7 (mod 8) and when n −m ≡ 3, 5 (mod 8) and m is even. We
also benefit from the Skolem parity of a sub-tree of Dm,n to show that Dm,n cannot
be Skolem labelled when n−m ≡ 3, 5 (mod 8) and m is odd. Showing that a Skolem
labelling does not exist is, in general, a complex problem and in Sections 3.1.4 and
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3.1.5 we offer this new technique for doing so.

2 Existence results

In this section, we present the existence results that are used as tools in subsequent
sections. A k-near Skolem sequence of order n is a Skolem-type sequence (s1, . . . , sm)
with D = {1, 2, . . . , n} \ {k}. For k ≤ n, a k-near Rosa sequence of order n, denoted
k-near Rn, is a k-near Skolem-type sequence of order n with m = 2n−1 and sn = 0.

Theorem 2.1 (Shalaby [11]) A k-near Rosa sequence of order n exists if and only
if n ≡ 0,3 (mod 4) and k is even, or n ≡ 1,2 (mod 4) and k is odd, with exceptions
when (n, k) = (3, 2), (4, 2).

We will also use the concept of Skolem parity of a tree T with an even number of
vertices [6]. If T is a tree and u ∈ V (T ), then the Skolem parity of T is defined to be
D(

u, V (T )
) ≡ ∑

v∈V (T ) d(u, v) (mod 2), where d(u, v) denotes the distance between
vertices u and v.

Theorem 2.2 (Mendelsohn and Shalaby [6]) The Skolem parity of a tree T with 2k
vertices is independent of u ∈ V (T ).

A k-windmill is a tree consisting of k paths of equal length, the vanes, which
meet at a pivot. In a generalised k-windmill, denoted gk-windmill, the vanes may
have different lengths.

Theorem 2.3 (Baker and Manzer [2]) A g3-windmill T has a Skolem labelling if
and only if T satisfies the following Skolem parity conditions: either

(i) n ≡ 0,3 (mod 4) and the parity of T is even, or

(ii) n ≡ 1,2 (mod 4) and the parity of T is odd.

Note that if a tree with an even number of vertices is Skolem labelled, then it
satisfies one of the Skolem parity conditions (i) and (ii) above ([6]).

3 Skolem labellings of Dutch windmills

The Dutch windmill graph Dm
n has as its vanes m copies of Cn which meet at a pivot.

A Dutch windmill, which has m(n − 1) + 1 vertices, can only be Skolem labelled if
m(n− 1) + 1 is even. In addition, in order to use label i, there must be two vertices
at distance i. The longest distance between two vertices of a Dutch windmill is n
when n is even and n−1 otherwise. Therefore, the number of vertices being labelled
is at most 2n; i.e. only the vertices of two vanes can be labelled. As well, D2

n can
only be hook-Skolem labelled since |V (D2

n)| is odd. Here, we consider the class of
generalised Dutch windmills in which the two vanes may have different lengths.
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3.1 Generalised Dutch windmills

As above, we study generalised Dutch windmills in which the lengths of the vanes
can be different. Following the argument above, such graphs with more than two
vanes cannot be (hook-) Skolem labelled. As in the Introduction, let Dm,n be a Dutch
windmill with Cm and Cn as its vanes, with n ≥ m. For convenience, we adopt a
drawing of Dm,n that has an axis of symmetry � with the pivot p and the farthest
vertex of an even cycle on the symmetry axis as shown in Figure 1.

�

Cm Cn

p

Figure 1: Generalised Dutch windmill Dm,n where m is odd and n is even.

When Skolem labelling generalised Dutch windmills, the distance between two
vertices of Cn is at most n

2
or n−1

2
, depending on the parity of n. Therefore, if u is

the maximum label of the Skolem labelling, then the labels u, u−1, . . . , n
2
+1 or n+1

2
,

depending on the parity of n, are forced. We call these labels permanent. As well,
if two vertices x and y of Cn are labelled such that the shortest path between them
contains vertices with permanent labels, then we say they are labelled around Cn.
In the figures, by a dashed arrow with ±2, we mean that we label the vertices
in the direction of the arrow by increasing or decreasing 2 at a time. The main
result of this paper is Theorem 3.1 below. Theorems 3.5 and 3.7 prove that when
n − m ≡ 3, 5 (mod 8) and m is odd, Dm,n does not have a Skolem labelling, and
Theorems 3.2, 3.3, 3.4, 3.6, and 3.8 prove the existence of a labelling with the Skolem
property for Dm,n in all remaining cases.

Theorem 3.1 The generalised Dutch windmill Dm,n, n ≥ m, does not have a
(hooked) Skolem labelling if and only if n−m ≡ 3,5 (mod 8) and m is odd.

In the following subsections, we find the necessary and sufficient conditions for
Dm,n to be Skolem labellable as stated in Theorem 3.1. To achieve this, we examine
the graph based on the value of n−m modulo 8.

3.1.1 n − m ≡ 0, 2, 6 (mod 8)

In these cases, m and n have the same parity and the maximum label in a Skolem
labelling is u = n+m−2

2
. When n−m ≡ 0 (mod 8), u is odd when m is even and is

even when m is odd. When n−m ≡ 2, 6 (mod 8), u is even when m is even and is
odd when m is odd. We use Skolem sequences to Skolem label the graph Dm,n.

Theorem 3.2 If n−m ≡ 0, 2, 6 (mod 8), then Dm,n can be hook-Skolem labelled.
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Proof First we consider the case when n−m ≡ 0, 6 (mod 8). We assign a hook to a
vertex of the m-cycle which is farthest from the pivot. Then we assign the labels in
descending order until all the vertices of the m-cycle, except the pivot, are labelled.
The number of vertices awaiting a label is n−m+2; these vertices are all consecutive
along Cn. Since

n−m+2
2

≡ 0, 1 (mod 4) when n−m ≡ 0, 6 (mod 8), we can complete
the labelling using a Skolem labelling of order n−m+2

2
.

If n−m ≡ 2 (mod 8), then we assign a hook to a vertex of Cn which is farthest
from the pivot, and then assign labels in descending order until all vertices of Cm

except the pivot are labelled. The number of vertices awaiting labels is n−m. Since
n−m
2

≡ 1 (mod 4), we can complete the labelling using a Skolem labelling of order
n−m
2

. �

3.1.2 n − m ≡ 1, 7 (mod 8)

When n−m ≡ 1,7 (mod 8), then m and n have different parities and the maximum
label in a Skolem labelling is u = n+m−1

2
. If n −m ≡ 1 (mod 8), u is odd when m

is odd and is even when m is even. If n −m ≡ 7 (mod 8), u and m have different
parities. We make use of near Rosa sequences to Skolem label Dm,n.

Theorem 3.3 If n−m ≡ 1,7 (mod 8), then Dm,n can be Skolem labelled.

Proof First we partially label the graph as illustrated in Figures 2 and 3 depending
on the parities of m and n. If there is a 1-near Rn−m+3

2
then we can complete the

labelling. By Theorem 2.1, a 1-near Rn−m+3
2

exists if and only if n−m+3
2

≡ 1, 2 (mod

4), which implies that n −m ≡ 1,7 (mod 8). It is easy to show that the number of
unlabelled vertices is even and the pivot is in the middle of the vertices. �

Cm Cn
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Figure 2: Partial labelling of Dm,n when n − m ≡ 1,7 (mod 8), m is odd and n is
even.

Note that we may obtain a Skolem labelling of Dm,n when n −m ≡ 7 (mod 8),
m is odd and n is even from a hooked Skolem labelling of Dm+1,n, and conversely.
This is illustrated in Example 3.1 below.
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Figure 3: Partial labelling of Dm,n when n −m ≡ 1,7 (mod 8), m is even and n is
odd.

Example 3.1 Figure 4 illustrates how we Skolem label D9,16 using a 1-near R5 and
then use this labelling to hook-Skolem label D10,16.

C9 C16

12 10 8 6

11 9 7 1

1
12

10863453

11972524

C10 C16∗
12 10 8 6

11 9 7 1

1
12

10863453

11972524

(a)

(b)

Figure 4: (a) Skolem labelled D9,16 using a 1-nearR5, (b) hook-Skolem labelled D10,16

using the labelling of D9,16 in (a).

3.1.3 n − m ≡ 4 (mod 8)

Theorem 3.4 If n−m ≡ 4 (mod 8), then Dm,n can be Skolem labelled.

Proof When n−m ≡ 4 (mod 8), then the greatest label is u = m+n−2
2

. We consider
two cases based on the parities of m and n.

Case 1: both n and m are even. We first assign the hook to a vertex of Cn which is
at distance n

2
− 1 from the pivot, and assign the labels u, u− 1, u− 2, . . . , n−m

2
+2 as

shown in Figure 5.

Removing all the labelled vertices leaves us with a g3-windmill T with |V (T )| =
n−m+2. Note that by symmetry D

(
p, V (T )

) ≡
(
d(z, p)+d(x, p)+d(y, p)

)
(mod 2),

where D
(
p, V (T )

)
is the Skolem parity of T , x, y are the two vertices of T farthest
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Cm Cn
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Figure 5: Partial labelling of Dm,n when n−m ≡ 4 (mod 8) and n and m are both
even.

from p, and z is the leaf of the vane of T which is of length one; see Figure 5.
Therefore,

D
(
p, V (T )

) ≡
(
1 + d(x, p) + d(y, p)

)
(mod 2).

Since either d(x, p) or d(y, p) is odd, then the parity of T is even. Since |V (T )|
2

=
n−m
2

+ 1 = 4k + 3, for some integer k, we can complete the partial labelling by
combining it with a Skolem labelling of T , by Theorem 2.3.

Case 2: both n and m are odd. This case is also divided into two subcases based on
the parity of m+1

2
:

(a) m+1
2

≡ 0 (mod 2): see Figure 6 for a Skolem labelling of Dm,n.
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Figure 6: Skolem labelling of Dm,n when n−m ≡ 4 (mod 8), m and n are odd, and
m+1
2

≡ 0 (mod 2).

(b) m+1
2

≡ 1 (mod 2): see Figure 7 for a Skolem labelling of Dm,n.

�

The only remaining cases are when n −m ≡ 3, 5 (mod 8). In what follows, we
show that when m ∈ 2Z+1 and n ∈ 2Z, then Dm,n does not have a Skolem labelling.
Otherwise, we present a Skolem labelling of the graph.
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Figure 7: Skolem labelling of Dm,n when n−m ≡ 4 (mod 8), m and n are odd, and
m+1
2

≡ 1 (mod 2).

3.1.4 n − m ≡ 3 (mod 8)

First we show that when m is odd and n is even, then Dm,n does not have a Skolem
labelling.

Theorem 3.5 If n −m ≡ 3 (mod 8), m ∈ 2Z + 1, and n ∈ 2Z, then Dm,n cannot
be Skolem labelled.

Proof To the contrary, assume that Dm,n has a Skolem labelling L obtained by
placing the m−1

2
permanent labels n

2
+1, n

2
+2, . . . , m+n−1

2
on Cm and Cn, and assigning

the rest of the labels 1, 2, . . . , n
2
. By removing the vertices with labels in {n

2
+ 1, n

2
+

2, . . . , m+n−1
2

}, we obtain a g4-windmill T (this is always the case when m and n
have opposite parity). It is not difficult to see that the labelling of the vertices of T
is not a Skolem labelling of T ; this is because T does not satisfy the Skolem parity
conditions. If some vertices x and y are labelled around Cn by n

2
−i, for some positive

integer i, then their distance in T is n
2
+ i. In other words, if aj and bj are the vertices

of T labelled j, for 1 ≤ j ≤ n
2
, and d(aj , bj) is their distance in T , then

d(an
2
−i, bn

2
−i) =

⎧⎨
⎩

n
2
+ i, if an

2
−i and bn

2
−i are labelled around Cn

n
2
− i, otherwise.

(*)

As before, let D
(
p, V (T )

)
denote the Skolem parity of T . By Lemmas 2.1 and

2.2 of [6],

D
(
p, V (T )

) ≡
(
D
(
p, V (T ) \ {an

2
, bn

2
})+ d(an

2
, bn

2
)
)
(mod 2)

≡
(
D
(
p, V (T ) \ {an

2
, bn

2
})+ n

2

)
(mod 2)

≡
(
D
(
p, V (T ) \ {an

2
, bn

2
, an

2
−1, bn

2
−1}

)
+ d(an

2
−1, bn

2
−1) +

n

2

)
(mod 2).
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Repeating, we get n
2
terms as shown in (1) below, including those associated with

vertices with labels n
2
− i going around Cn and at distance n

2
+ i, for 1 ≤ i ≤ n

2
− 1:

D
(
p, V (T )

)≡
(
1+· · ·+d(an

2
−3, bn

2
−3)+d(an

2
−2, bn

2
−2)+d(an

2
−1, bn

2
−1)+

n

2

)
(mod 2).(1)

Now note that since n
2
− i and n

2
+ i have the same parity then, in (1), we can

replace each d(an
2
−i, bn

2
−i) =

n
2
+ i, given by (*) above, with n

2
− i without changing

the parity of T . Therefore,

D(p, V (T )) ≡ 1+ 2+ · · ·+
(n
2
− 1

)
+

n

2
=

n
2
(n
2
+ 1)

2
(mod 2). (2)

Now we show that the parity of
n
2
(n
2
+1)

2
obtained in (2) above is different from the

actual parity of T (once calculated) to get our desired contradiction. We consider
the following four cases to calculate the parity of T based on the structure of T in
each case, i.e. the symmetry and the length of each vane.

1. n ≡ 0 (mod 8): If n = 8k for some integer k, then
n
2
(n
2
+1)

2
is even. Now let us

calculate the actual parity of T in this case. Since n −m ≡ 3 (mod 8), then
m ≡ 5 (mod 8) and the number of permanent labels is m−1

2
which is even. By

the structure of T (Figure 8), the parity of T is equivalent to that of
n−m−1

2

2

which is odd (contradiction). To see this, note that by symmetry

D
(
p, V (T )

) ≡ d(x, p) (mod 2),

where x is the vertex of T farthest from p. Therefore, D
(
p, V (T )

) ≡ n−m−1
2

2

(mod 2). Given that
n−m−1

2

2
≡ 1 (mod 2), we conclude that D

(
p, V (T )

) ≡ 1
(mod 2) which means the parity of T is odd.

Cm Cn

p

u u
−
2

u
−
4

u−
1

u−
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u−
5

−2���

−2���

n 2
+
2

n2
+
1

u

u
−
2

u
−
4

u−
1

u−
3

u−
5

−2���

−2���

n 2
+
2

x

n2
+
1

. . .

. . .

. . .

. . .

Figure 8: Partial labelling of Dm,n when n−m ≡ 3 (mod 8), n is even and m is odd.

We omit the details in cases 2–4 below as they are similar to the argument in
case 1 above.

2. n ≡ 2 (mod 8): If n = 8k + 2 for some integer k, then
n
2
(n
2
+1)

2
is odd. Given

that n −m ≡ 3 (mod 8), then m ≡ 7 (mod 8) and the number of permanent
labels, m−1

2
, is odd. By the structure of T , the parity of T is equivalent to that

of
m−m−1

2

2
which is even (contradiction).
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3. n ≡ 4 (mod 8): If n = 8k + 4 for some integer k, then
n
2
(n
2
+1)

2
is odd. Since

n−m ≡ 3 (mod 8), then m ≡ 1 (mod 8) and the number of permanent labels,
m−1
2

, is even. By the structure of T , the parity of T is equivalent to that of
n−m−1

2

2
which is even (contradiction).

4. n ≡ 6 (mod 8): If n = 8k + 6 for some integer k, then
n
2
(n
2
+1)

2
is even. Given

that n −m ≡ 3 (mod 8), then m ≡ 3 (mod 8) and the number of permanent
labels, m−1

2
, is odd. By the structure of T , the parity of T is equivalent to that

of
m−m−1

2

2
which is odd (contradiction).

Therefore, Dm,n does not have such a Skolem labelling. �

We now give a Skolem labelling of Dm,n, when m is even and n is odd.

Theorem 3.6 If n −m ≡ 3 (mod 8), m ∈ 2Z, and n ∈ 2Z + 1, then Dm,n can be
Skolem labelled.

Proof We consider two sub-families of such graphs based on the parity of n+1
2
. If

n+1
2

≡ 0 (mod 2), we use the labelling in Figure 9 and if n+1
2

≡ 1 (mod 2), we use
the labelling in Figure 10.
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Figure 9: Skolem labelling of Dm,n when n−m ≡ 3 (mod 8) and n+1
2

≡ 0 (mod 2).
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Figure 10: Skolem labelling of Dm,n when n−m ≡ 3 (mod 8) and n+1
2

≡ 1 (mod 2).

�



N.E. CLARKE ET AL. /AUSTRALAS. J. COMBIN. 66 (3) (2016), 407–419 417

3.1.5 n − m ≡ 5 (mod 8)

Again, we divide the case n−m ≡ 5 (mod 8) into two subcases based on the parities
of n and m. First we show that when m is odd and n is even, Dm,n does not have a
Skolem labelling.

Theorem 3.7 If n −m ≡ 5 (mod 8), m ∈ 2Z + 1, and n ∈ 2Z, then Dm,n cannot
be Skolem labelled.

Proof The argument follows as per the proof of Theorem 3.5. If a Skolem labelling
of the graph exists, then the Skolem parity of its subtree T arising from the labelling
is

D
(
p, V (T )

) ≡
n
2
(n
2
+ 1)

2
(mod 2).

We show that the parity of
n
2
(n
2
+1)

2
is different from the actual parity of T .

1. n ≡ 0 (mod 8): If n = 8k for some integer k, then
n
2
(n
2
+1)

2
is even. Since

n−m ≡ 5 (mod 8), then m ≡ 3 (mod 8) and the number of permanent labels,
m−1
2

, is odd. By the structure of T , the parity of T is equivalent to that of
m−m−1

2

2
which is odd (contradiction).

2. n ≡ 2 (mod 8): If n = 8k + 2 for some integer k, then
n
2
(n
2
+1)

2
is odd. Given

that n −m ≡ 5 (mod 8), then m ≡ 5 (mod 8) and the number of permanent
labels, m−1

2
, is even. By the structure of T , the parity of T is equivalent to that

of
n−m−1

2

2
which is even (contradiction).

3. n ≡ 4 (mod 8): If n = 8k + 4 for some integer k, then
n
2
(n
2
+1)

2
is odd. Since

n−m ≡ 5 (mod 8), then m ≡ 7 (mod 8) and the number of permanent labels,
m−1
2

, is odd. By the structure of T , the parity of T is equivalent to that of
m−m−1

2

2
which is even (contradiction).

4. n ≡ 6 (mod 8): If n = 8k + 6 for some integer k, then
n
2
(n
2
+1)

2
is even. Given

that n −m ≡ 5 (mod 8), then m ≡ 1 (mod 8) and the number of permanent
labels, m−1

2
, even. By the structure of T , the parity of T is equivalent to that

of
n−m−1

2

2
which is odd (contradiction).

Therefore, Dm,n does not have such a Skolem labelling. �

Now we consider the case when m is even and n is odd.

Theorem 3.8 If n −m ≡ 5 (mod 8), m ∈ 2Z, and n ∈ 2Z + 1, then Dm,n can be
Skolem labelled.

Proof If m
2
≡ 1 (mod 2), then we use the Skolem labelling of Figure 11; otherwise

m
2
≡ 0 (mod 2) and we use the Skolem labelling of Figure 12.
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Figure 11: Skolem labelling of Dm,n when n−m ≡ 5 (mod 8) and m
2
≡ 1 (mod 2).
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Figure 12: Skolem labelling of Dm,n when n−m ≡ 5 (mod 8) and m
2
≡ 0 (mod 2).
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