Nonagon quadruple systems:
 existence, balance, embeddings

Paola Bonacini Mario Gionfriddo

Lucia Marino
Department of Mathematics and Computer Science
University of Catania
Italy
bonacini@dmi.unict.it gionfriddo@dmi.unict.it
lmarino@dmi.unict.it

Abstract

A cycle of length 9 of vertices $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$, in the cyclical order, with the three edges $\left\{x_{1}, x_{4}\right\},\left\{x_{4}, x_{7}\right\},\left\{x_{1}, x_{7}\right\}$ is called an $N Q$-graph or also a nonagon quadruple graph. A nonagon quadruple system, briefly $N Q S$, of order v and index λ is an $N Q$-decomposition of the complete multigraph λK_{v}. An $N Q S$ is said to be perfect if the inside K_{3}, generated by the vertices x_{1}, x_{4}, x_{7}, forms a Steiner triple system; it is said to be balanced if all the vertices have the same degree. In this paper, the spectrum of $N Q S \mathrm{~s}$, the spectrum of perfect $N Q S$ s and the spectrum of balanced $N Q S$ s are completely determined.

1 Introduction

Let λK_{v} be the complete multigraph defined in a vertex-set X, with $|X|=v$, so that there are exactly λ edges joining each pair of vertices. Let G be a subgraph of λK_{v}. A G-decomposition of λK_{v}, of order v and index λ, is a pair $\Sigma=(X, \mathcal{B})$, where \mathcal{B} is a partition of the edge-set of λK_{v} into subsets all of which yield subgraphs isomorphic to G. A G-decomposition of λK_{v} is also called a G-design, of order v and index λ. The classes of the partition \mathcal{B} are said the blocks of Σ.

A cycle of length 9 of vertices $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$, in the cyclical order, with the three edges $\left\{x_{1}, x_{4}\right\},\left\{x_{4}, x_{7}\right\},\left\{x_{1}, x_{7}\right\}$ is called a nonagon quadruple graph, briefly a $N Q$-graph. Such a graph will be indicated by $\left[\left(x_{1}\right), x_{2}, x_{3},\left(x_{4}\right), x_{5}, x_{6},\left(x_{7}\right), x_{8}, x_{9}\right]$.

A nonagon quadruple system, briefly a $N Q S$, of order v and index λ is a $N Q$ decomposition of the complete multigraph λK_{v}. A $N Q S$ is said perfect, briefly a $P N Q S$, if the inside graphs K_{3}, generated by the vertices x_{1}, x_{4}, x_{7}, form a 3 -cycle
system of order v, which we say is embedded (or also nested) in the $N Q S$. If a perfect $N Q S$ has index λ and the inside triples form a 3 -cycle system of order v and index μ, we will say that the $P N Q S$ has indices (λ, μ).

A nonagon quadruple system $N Q S$ is said to be balanced, briefly denoted $B N Q S$, if all the vertices have the same degree: in other words, there exists a constant d, such that every vertex is contained in d blocks.

In this paper, the spectrum of $N Q S$ s, the spectrum of perfect $N Q S$ s and the spectrum of balanced $N Q S$ s are completely determined.

The problem of studying the embedding of a Steiner triple system in another design started with the case of the embedding of a Steiner triple system in an hexagon triple system [9] or in a dexagon triple system case [10]. Later similar ideas, dealing also with the problem of embedding a 4 -cycle system, have been developed in $[3,6$, $1,2,4,5]$.

Observe that, in what follows, we will use difference methods to construct G designs. This means that, fixed as vertex-set $X=\mathbb{Z}_{v}$, the ring of integers modulo v, the translates of a base-block of vertices $\{x, y, \ldots, z\}$ will be all the blocks having for vertices $\{x+i, y+i, \ldots, z+i\}$, for every $i \in \mathbb{Z}_{v}$. For a given v, we will consider the difference set $D(v)=\left\{|x-y|: x, y \in \mathbb{Z}_{v}, x \neq y\right\}$. Further, when the index of a system is not indicated, it means that the index is equal to one.

2 Necessary existence conditions

In this section we determine necessary existence conditions for $N Q S \mathrm{~s}, P N Q S \mathrm{~s}$ and BNQSs.

2.1 NQSs:

Theorem 2.1 If $\Sigma=(X, \mathcal{B})$ is a $N Q S$ of order v and index λ, then:

1) $|\mathcal{B}|=\frac{\lambda v(v-1)}{24}$;
2) $\lambda=1 \Longrightarrow v \equiv 1,9(\bmod 24), v \geq 9$.

Proof: 1) Immediate. 2) If $\lambda=1$, since all the vertices have even degree in the blocks of Σ, it follows that v is odd. Therefore $v=8 k+1$, for $k \in \mathbb{N}, v \geq 9$. Further, necessarily $v(v-1) \equiv 0(\bmod 3)$. From this, by simple calculations, it follows $v \equiv 1,9(\bmod 24)$.

2.2 BNQSs:

If $\Sigma=(X, \mathcal{B})$ is a balanced $N Q S$ of order v, we indicate by d the constant number of blocks containing any vertex $x \in X$, by C_{x} the number of blocks in which a vertex x occupies a central position as x_{1}, x_{4}, x_{7}, by E_{x} the number of blocks in which a vertex x occupies a non-central position.

Theorem 2.2 If $\Sigma=(X, \mathcal{B})$ is a balanced $N Q S$ of order v, then:

1) $d=\frac{3(v-1)}{8}$;
2) for every vertex $x \in X, C_{x}=\frac{v-1}{8}, E_{x}=\frac{v-1}{4}$;
3) necessarily $v \equiv 1,9(\bmod 24), v \geq 9$.

Proof: Let $\Sigma=(X, \mathcal{B})$ be a balanced $N Q S$ of order v.

1) The technique to calculate the degree d of the vertices is well-known. Easily, since every block contains 9 vertices, it follows that:
$d \cdot v=9 \cdot|\mathcal{B}|$,
from which: $d \cdot v=9 v(v-1) / 24$, and then $d=\frac{3(v-1)}{8}$.
2) For every $x \in X$, we have:
$4 C_{x}+2 E_{x}=v-1$,
$C_{x}+E_{x}=d=\frac{3(v-1)}{8}$,
and hence: $C_{x}=\frac{v-1}{8}, E_{x}=\frac{v-1}{4}$.
3) From Theorem 2.1: $v \equiv 1$ or $9(\bmod 24)$. From 1$)$ and 2$)$, we must have $v \equiv 1$ $(\bmod 8)$. Necessarily $v \equiv 1$ or $9(\bmod 24), v \geq 9$.

From Theorem 2.2 it follows that the possible spectrum of $N Q S$ s is the same of the possible spectrum of $B N Q S \mathrm{~s}$. Further, always from Theorem 2.2, we have that: in a balanced $N Q S$ there are two constants $C, E \in N$, such that $C_{x}=C, E_{x}=E$, for every vertex x. This means that every balanced NQS is strongly balanced; which is equivalent to saying that in balanced $N Q S$ s every vertex has constant degree inside the two automorphism classes of the graph $N Q$ ([7]).

2.3 PNQSs:

Theorem 2.3 If $\Sigma=(X, \mathcal{B})$ is a perfect $N Q S$ of order v and indices (λ, μ), then:

1) $\lambda=4 \mu$;
2) for $\mu=1$, necessarily $v \equiv 1,3 \bmod 6, v \geq 9$.

Proof: 1) Let $\Sigma=(X, \mathcal{B})$ be a perfect $N Q S$ of order v and indices (λ, μ). If $\Sigma^{\prime}=\left(X, B^{\prime}\right)$ is the STS nested in Σ, necessarily $|\mathcal{B}|=\left|\mathcal{B}^{\prime}\right|$. Therefore, since

$$
|\mathcal{B}|=\lambda \frac{v(v-1)}{24}, \quad\left|\mathcal{B}^{\prime}\right|=\mu \frac{v(v-1)}{6},
$$

we easily have $\lambda=4 \mu$. To prove 2), let $\mu=1$. It is sufficient to consider that Σ^{\prime} is a Steiner triple system of index 1 and it is well-known ([8]) that the spectrum consists of all $v \equiv 1,3 \bmod 6, v \geq 3$. In this case, necessarily $v \geq 9$.

3 The spectrum of $N Q S \mathrm{~s}$ and $B N Q S \mathrm{~s}$

In this section we completely determine the spectrum of $N Q S$ s and the spectrum of balanced $N Q S$ s. We will see that the two spectra coincide.

Theorem 3.1 There exist balanced $N Q S$ s of order $v=24 k+9, v \geq 9$.

Proof: Let $X=\mathbb{Z}_{v}$.

1) Let $v=9$. Observe that the difference set is $D(9)=\{1,2,3,4\}$. Therefore, consider the following base-blocks:

$$
\begin{aligned}
& B_{1}=[(0), 7,8,(3), 1,2,(6), 4,5], \\
& B_{2}=[(1), 8,0,(4), 2,3,(7), 5,6], \\
& B_{3}=[(2), 0,1,(5), 3,4,(8), 6,7] .
\end{aligned}
$$

If $\mathcal{B}=\left\{B_{1}, B_{2}, B_{3}\right\}$, we can verify that $\Sigma=\left(\mathbb{Z}_{9}, \mathcal{B}\right)$ is a balanced $N Q S$ of order 9 and index $\lambda=1$, consisting of $|\mathcal{B}|=\frac{1 \cdot 9 \cdot 8}{24}=3$ blocks and every vertex appears in $d=\frac{3(9-1)}{8}=3$ blocks.
2) Let $v=33$. Observe that the difference set is $D(33)=\{1,2, \ldots, 16\}$. At first, consider the family $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{11},\right\}$ of $N Q$ s defined as follows:

$$
\begin{aligned}
& F_{1}=[(0), 1,15,(14), 12,32,(13), 11,31], \\
& F_{2}=[(3), 4,18,(17), 15,2,(16), 14,1], \\
& F_{3}=[(6), 7,21,(20), 18,5,(19), 17,4], \\
& F_{4}=[(9), 10,24,(23), 21,8,(22), 20,7], \\
& F_{5}=[(12), 13,27,(26), 24,11,(25), 23,10], \\
& F_{6}=[(15), 16,30,(29), 27,14,(28), 26,13], \\
& F_{7}=[(18), 19,0,(32), 30,17,(31), 29,16], \\
& F_{8}=[(21), 22,3,(2), 0,20,(1), 32,19], \\
& F_{9}=[(24), 25,6,(5), 3,23,(4), 2,22], \\
& F_{10}=[(27), 28,9,(8), 6,26,(7), 5,25], \\
& F_{11}=[(30), 31,12,(11), 9,29,(10), 8,28] .
\end{aligned}
$$

Further, consider the following base-block:
$B=[(0), 15,10,(16), 13,3,(12), 4,11]$.
If \mathcal{B} is the collection of all the translates of B and $\Gamma=\mathcal{F} \cup \mathcal{B}$, we can see that $\Sigma=(X, \Gamma)$ is a $N Q S$ of order $v=33$.

To verify this, observe that in the blocks of \mathcal{F} there are all the edges $\{x, y\}$, for $x, y \in X$, such that $|x-y|=1,2,13,14$. In the blocks of \mathcal{B} there are all the edges in which the differences between the extremes belongs to $D(33)-\{1,2,13,14\}$.

We can also see that Σ is balanced. Indeed, every vertex has degree 3 in \mathcal{F} and degree 9 in \mathcal{B}. At last, every vertex has degree $d=12$.
3) Let $v=24 k+9, k \geq 2$. Observe that the difference set is $D(v)=\{1,2, \ldots, 12 k+4\}$. At first, consider the family \mathcal{A} of $N Q$ s defined as follows:

$$
\mathcal{A}=\left\{A_{i}: i=0,1,2, \ldots, 8 k+2\right\},
$$

where
$A_{i}=[(3 i), 3 i+1,3 i+12 k+3,(3 i+12 k+2), 3 i+12 k, 3 i-1,(3 i+12 k+1), 3 i+$ $12 k-1,3 i-2]$.

Then, define the following base-blocks:

$$
B=[(0), 12 k, 2,(8 k), 20 k-1,10 k,(2 k+1), 14 k+5,12 k+3],
$$

and

$$
C_{j}=[(0), 6 k-2 j-1,18 k-4 j-2,(8 k-2 j-1), 2 j-1,12 k-2 j-1,
$$ $(2 j+1), 22 k+9,2 j+2]$

for every $j=1,2, \ldots, k-1$.
If \mathcal{B} is the family of all the translates of the blocks B, \mathcal{C} is the family of all the translates of the blocks C_{j}, for every $j=1,2, \ldots, k-1$, and $\Gamma=\mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$, we can see that $\Sigma=(X, \Gamma)$ is a $N Q S$ of order $v=24 k+9$.

To verify, observe that:

- in the blocks of \mathcal{A} there are all the edges $\{x, y\}$, for $x, y \in X$, such that $|x-y|=1,2,12 k+1,12 k+2$;
- in the blocks of \mathcal{B} there are all the edges $\{x, y\}$, for $x, y \in X$, such that $|x-y|=$ $2 k+1,2 k+2,6 k-1,8 k-2,8 k-1,8 k, 10 k-1,12 k-2,12 k-1,12 k, 12 k+3,12 k+4 ;$
- in the blocks of \mathcal{C} there are all the edges in which the differences between the extremes are all the others in D.

We can also see that Σ is balanced. Indeed, every vertex has degree 3 in \mathcal{A}, degree 9 in \mathcal{B} and degree $9(k-1)$ in \mathcal{C}. Finally, every vertex has degree $d=9 k+3$.

Theorem 3.2 There exist balanced $N Q S$ s of order $v=24 k+1, v \geq 25$.

Proof: Let $X=\mathbb{Z}_{v}$. Consider the following base-blocks defined in \mathbb{Z}_{v} :

$$
B_{i}=[(0), 6 k-2 i-1,18 k-4 i-2,(8 k-2 i-1), 2 i-1,12 k-2 i-1,(2 i+1), 22 k+
$$ $1,2 i+2]$,

for every $i=0,1,2, \ldots, k-1$. If \mathcal{B} is the collection of all the translates of B_{0}, B_{1}, \ldots, B_{k-1}, we can verify that $\Sigma=(X, \mathcal{B})$ is a $N Q S$ of order $v=24 k+1$. Further, since all the blocks of Σ are obtained by the fixed base-blocks so that every vertex is contained in nine translates of any base-block, every vertex has degree $d=9 k$ and Σ is balanced.

Collecting together the results of this section, it follows that:

Theorem 3.3 There exists a NQS of order v if and only if $v \equiv 1$ or $9(\bmod 24)$.
Theorem 3.4 There exists a balanced NQS of order v if and only if $v \equiv 1$ or $9(\bmod 24)$.

4 The spectrum of perfect $N Q S$ s

In this section we determine the spectrum of $P N Q S$ s.
We recall that an automorphism of a $\operatorname{STS}(v) \Sigma=(X, \mathcal{B})$ is a bijection $\varphi: X \rightarrow X$ such that $B=\{x, y, z\} \in \mathcal{B}$ if and only if $\varphi(B)=\{\varphi(x), \varphi(y), \varphi(z)\} \in \mathcal{B}$. An $\operatorname{STS}(v)$ is said to be cyclic if it admits an automorphism that is a permutation consisting of a single cycle of length v. The following is well-known.

Theorem 4.1 ([12]) For every $v \geq 3$ and $v \equiv 1$ or $3(\bmod 6), v \neq 9$, there exists a cyclic STS(v).

Peltesohn, in her construction (see [7, 11, 12]) considers the cases $v=18 k+1$, $v=18 k+7, v=18 k+13$, if $v \equiv 1(\bmod 6)$, and the cases $v=18 k+3, v=18 k+9$ and $v=18 k+15$, if $v \equiv 3(\bmod 6)$. Given, on the vertex set Z_{v}, the difference set $D(v)=\left\{1,2, \ldots, \frac{v-1}{2}\right\}$, if $v \equiv 1(\bmod 6)$, and $D(v)=\left\{1,2, \ldots, \frac{v-1}{2}\right\}-\left\{\frac{v}{3}\right\}$, if $v \equiv 3$ $(\bmod 6)$, Peltesohn determines a partition of $D(v)$ into triples of differences. These triples are of type $\{3 h+1, a-3 h-1, a\},\{3 h+2, b-3 h-2, b\}$ and $\{3 h+3, c-3 h-3, c\}$, for some a, b, c and h. In all the cases we will consider the following blocks:

$$
\left\{\begin{array}{l}
A_{h}=[(0), b, a+b,(a), a+b-3 h-2, b-1,(3 h+1), 6 h+3,3 h+2], \tag{1}\\
B_{h}=[(0), c, b+c,(b), b+c-3 h-3, c-1,(3 h+2), 6 h+5,3 h+3], \\
C_{h}=[(0), a, a+c,(c), a+c-3 h-1, a+2,(3 h+3), 6 h+4,3 h+1],
\end{array}\right.
$$

in such a way that all the differences $3 h+1,3 h+2,3 h+3, a-3 h-1, b-3 h-2$, $c-3 h-3, a, b$ and c appear globally four times in A_{h}, B_{h} and C_{h} and once in the inside triples. Note also that, given two of the above differences x and y, we must have $x-y \not \equiv 0(\bmod v)$ and $x+y \not \equiv 0(\bmod v)$. So we can immediately say, without any computation, that some of the vertices in the blocks above are pairwise distinct.

Using this notation we will prove the following theorem.
Theorem 4.2 If $v \equiv 1(\bmod 6), v \geq 13$, there exists a $P N Q S$ of order v and with indices $(\lambda=4, \mu=1)$.

Proof: It is known that for every $v \equiv 1$ or $3(\bmod 6), v \geq 3$, there exist Steiner triple systems STS of order v. Let $\Sigma^{\prime}=\left(X, \mathcal{B}^{\prime}\right)$ be an $\operatorname{STS}(v)$ with index $\mu=1$, whose blocks are the inside triples contained in the blocks of Σ. From Theorem 2.3, Σ has index $\lambda=4$.

1) Let $v=18 k+1$ for some $k \geq 1$.

Let $v=19$. Consider the base-blocks defined on \mathbb{Z}_{19} :

$$
\begin{aligned}
D_{1} & =[(0), 10,16,(6), 14,9,(1), 3,2], \\
D_{2} & =[(0), 7,17,(10), 14,6,(2), 5,3], \\
D_{3} & =[(0), 6,13,(7), 12,8,(3), 4,1] .
\end{aligned}
$$

If \mathcal{B} is the collection of all the translates of the blocks D_{1}, D_{2} and D_{3}, then one can verify that the system $\Sigma=\left(\mathbb{Z}_{19}, \mathcal{B}\right)$ is a $P N Q S$ of order 19 and indices $(4,1)$, whose inside triples determine an STS of order 19.

Let $k \geq 2$. In this case the partition of $D(v)$ given by Petelsohn is the following:

- $\{3 h+1,4 k-h+1,4 k+2 h+2\}$ for $h \in\{0, \ldots, k-1\}$
- $\{3 h+2,8 k-h, 8 k+2 h+2\}$ for $h \in\{0, \ldots, k-1\}$
- $\{3 h+3,6 k-2 h-1,6 k+h+2\}$ for $h \in\{0, \ldots, k-2\}$
- $\{3 k, 3 k+1,6 k+1\}$.

So a cyclic STS on \mathbb{Z}_{v} can be constructed with triples having these as differences and, keeping the notation given in (1), $a=4 k+2 h+2, b=8 k+2 h+2, c=6 k+h+2$.

Consider now the following base-blocks on $X=\mathbb{Z}_{v}$:

$$
\begin{aligned}
& A_{h} \text { for } 0 \leq h \leq k-1 \text { and } B_{h} \text { and } C_{h} \text { for } 0 \leq h \leq k-2, \\
& D_{1}=[(0), 6 k+1,16 k+1,(10 k), 13 k+1,6 k,(3 k-1), 6 k-1,3 k], \\
& D_{2}=[(0), 6 k, 12 k+1,(6 k+1), 9 k+3,6 k+2,(3 k), 6 k-2,3 k-2] .
\end{aligned}
$$

Note that in this case we have $4 k+2 \leq a \leq 6 k, 8 k+2 \leq b \leq 10 k$ and $6 k+2 \leq c \leq 7 k$. So we easily see that all the vertices in the blocks A_{h}, B_{h} and C_{h} are distinct.

If \mathcal{B} is the collection of all the translates of the blocks in the set:

$$
\left\{A_{h}: 0 \leq h \leq k-1\right\} \cup\left\{B_{h}: 0 \leq h \leq k-2\right\} \cup\left\{C_{h}: 0 \leq h \leq k-2\right\} \cup\left\{D_{1}, D_{2}\right\}
$$

then one can verify that the system $\Sigma=\left(\mathbb{Z}_{v}, \mathcal{B}\right)$ is a $P N Q S$ of order v with indices $(4,1)$, whose inside triples determine an STS of order v.
2) Let $v=18 k+7$ for some $k \geq 1$. In this case the partition of $D(v)$ given by Petelsohn is the following:

- $\{3 h+1,8 k-h+3,8 k+2 h+4\}$ for $h \in\{0, \ldots, k-1\}$
- $\{3 h+2,6 k-2 h+1,6 k+h+3\}$ for $h \in\{0, \ldots, k-1\}$
- $\{3 h+3,4 k-h+1,4 k+2 h+4\}$ for $h \in\{0, \ldots, k-1\}$
- $\{3 k+1,4 k+2,7 k+3\}$.

So a cyclic STS on \mathbb{Z}_{v} can be constructed with triples having these as differences and, keeping the notation given in (1), $a=8 k+2 h+4, b=6 k+h+3, c=4 k+2 h+4$.

Consider now the following base-blocks on $X=\mathbb{Z}_{v}$:

$$
\begin{aligned}
& A_{h} \text { and } B_{h} \text { for } 0 \leq h \leq k-1 \text { and } C_{h} \text { for } 1 \leq h \leq k-1, \text { in the case } k \geq 2, \\
& D_{1}=[(0), 7 k+3,11 k+7,(4 k+4), 8 k+6,4 k+5,(3), 3 k+4,3 k+1] \\
& D_{2}=[(0), 8 k+4,15 k+7,(7 k+3), 15 k+6,11 k+4,(3 k+1), 3 k+2,1] .
\end{aligned}
$$

Note that in this case we have $8 k+4 \leq a \leq 10 k+2,6 k+3 \leq b \leq 7 k+2$ and $4 k+4 \leq c \leq 6 k+2$. So we easily see that all the vertices in the blocks A_{h}, B_{h} and C_{h} are distinct.

If $k=1$, let \mathcal{B} the collection of all the translates of the blocks in the set $\left\{A_{0}, B_{0}, D_{1}, D_{2}\right\}$, while for $k \geq 2$ let \mathcal{B} the collection of all the translates of the blocks in the set:

$$
\left\{A_{h}: 0 \leq h \leq k-1\right\} \cup\left\{B_{h}: 0 \leq h \leq k-1\right\} \cup\left\{C_{h}: 1 \leq h \leq k-1\right\} \cup\left\{D_{1}, D_{2}\right\} .
$$

Then one can verify that the system $\Sigma=\left(\mathbb{Z}_{v}, \mathcal{B}\right)$ is a $P N Q S$ of order v and indices $(4,1)$, whose inside triples determine a STS of order v.
3) Let $v=18 k+13$ for some $k \geq 0$.

Let $v=13$. Consider the base-blocks defined on \mathbb{Z}_{13} :

$$
\begin{aligned}
& D_{1}=[(0), 7,11,(4), 9,6,(1), 3,2], \\
& D_{2}=[(0), 4,11,(7), 10,5,(2), 3,1] .
\end{aligned}
$$

If \mathcal{B} is the collection of all the translates of the blocks D_{1} and D_{2}, then one can verify that the system $\Sigma=\left(\mathbb{Z}_{13}, \mathcal{B}\right)$ is a $P N Q S$ of order 13 and indices $(4,1)$, whose inside triples determine a STS of order 13.

Let $k \geq 1$. In this case the partition of $D(v)$ given by Petelsohn is the following:

- $\{3 h+1,4 k-h+3,4 k+2 h+4\}$ for $h \in\{0, \ldots, k\}$
- $\{3 h+2,6 k-2 h+3,6 k+h+5\}$ for $h \in\{0, \ldots, k-1\}$
- $\{3 h+3,8 k-h+5,8 k+2 h+8\}$ for $h \in\{0, \ldots, k-1\}$
- $\{3 k+2,7 k+5,8 k+6\}$.

So a cyclic STS on Z_{v} can be constructed with triples having these as differences and, keeping the notation given in (1), $a=4 k+2 h+4, b=6 k+h+5, c=8 k+2 h+8$.

Consider now the following base-blocks on $X=\mathbb{Z}_{v}$:
A_{h}, B_{h} and C_{h} for $0 \leq h \leq k-1$,
$D_{1}=[(0), 7 k+5,13 k+9,(6 k+4), 14 k+10,11 k+7,(3 k+1), 6 k+3,3 k+2]$,
$D_{2}=[(0), 6 k+4,16 k+11,(10 k+7), 13 k+10,6 k+5,(3 k+2), 6 k+3,3 k+1]$.

Note that in this case we have $4 k+4 \leq a \leq 6 k+4,6 k+5 \leq b \leq 7 k+4$ and $8 k+8 \leq c \leq 10 k+6$. So we easily see that all the vertices in the blocks A_{h}, B_{h} and C_{h} are distinct.

If \mathcal{B} is the collection of all the translates of the blocks in the set

$$
\left\{A_{h}: 0 \leq h \leq k-1\right\} \cup\left\{B_{h}: 0 \leq h \leq k-1\right\} \cup\left\{C_{h}: 0 \leq h \leq k-1\right\} \cup\left\{D_{1}, D_{2}\right\}
$$

then one can verify that the system $\Sigma=\left(\mathbb{Z}_{v}, \mathcal{B}\right)$ is a $P N Q S$ of order v and with indices $(4,1)$, whose inside triples determine an STS of order v.

Using the same technique we will give a construction in the case $v \equiv 3(\bmod 6)$.
Theorem 4.3 If $v \equiv 3(\bmod 6), v \geq 13$, there exists a $P N Q S$ of order v with indices $(\lambda=4, \mu=1)$.

Proof: Let $v=9$. Consider the following blocks defined on \mathbb{Z}_{9} :

$$
\begin{aligned}
D_{1} & =[(1), 9,8,(3), 6,7,(2), 5,4] \\
D_{2} & =[(4), 2,8,(6), 7,1,(5), 3,9] \\
D_{3} & =[(7), 4,2,(9), 6,1,(8), 3,5] \\
D_{4} & =[(1), 2,5,(7), 3,6,(4), 8,9] \\
D_{5} & =[(2), 3,4,(8), 7,1,(5), 9,6] \\
D_{6} & =[(3), 5,8,(9), 2,4,(6), 1,7] \\
D_{7} & =[(1), 3,6,(9), 4,7,(5), 8,2] \\
D_{8} & =[(2), 3,9,(7), 4,5,(6), 8,1] \\
D_{9} & =[(3), 7,9,(4), 5,2,(8), 6,1] \\
D_{10} & =[(1), 4,3,(8), 7,2,(6), 5,9] \\
D_{11} & =[(2), 6,7,(9), 5,8,(4), 1,3] \\
D_{12} & =[(3), 9,2,(7), 8,1,(5), 6,4] .
\end{aligned}
$$

If \mathcal{B} is the collection of the blocks D_{1}, \ldots, D_{12}, then one can verify that the system $\Sigma=\left(\mathbb{Z}_{9}, \mathcal{B}\right)$ is a $P N Q S$ of order 9 and indices $(4,1)$.

Now we will prove the statement in the other cases, using the notation given previously in (1).

1) Let $v=18 k+3$, for some $k \geq 1$. In this case the partition of $D(v)$ given by Petelsohn is the following:

- $\{3 h+1,8 k-h+1,8 k+2 h+2\}$ for $h \in\{0, \ldots, k-1\}$,
- $\{3 h+2,4 k-h, 4 k+2 h+2\}$ for $h \in\{0, \ldots, k-1\}$,
- $\{3 h+3,6 k-2 h-1,6 k+h+2\}$ for $h \in\{0, \ldots, k-1\}$.

So $a=8 k+2 h+2, b=4 k+2 h+2$ and $c=6 k+h+2$. Moreover, a cyclic STS on \mathbb{Z}_{v} can be constructed with triples having these are differences, plus the triples having differences $\{6 k+1,6 k+1,6 k+1\}$.

Consider now the following base-blocks defined on $X=\mathbb{Z}_{v}$:

$$
\begin{aligned}
& A_{h}, B_{h} \text { and } C_{h}, \text { for } 1 \leq h \leq k-1, \text { in the case } k \geq 2, \\
& D_{1}=[(0), 8 k+1,16 k+3,(8 k+2), 16 k+4,8 k+3,(1), 4,2], \\
& D_{2}=[(0), 6 k+2,10 k+4,(4 k+2), 10 k+1,6 k+1,(2), 5,3], \\
& D_{3}=[(0), 6 k+1,12 k+3,(6 k+2), 2 k+2,6 k+4,(3), 2,4 k+2] .
\end{aligned}
$$

Note that in this case for any h we have that $10 h+10 \leq a \leq 10 k, 6 h+6 \leq b \leq 6 k$, $7 h+8 \leq c \leq 7 k+1$. So we easily see that all the vertices in the blocks A_{h}, B_{h} and C_{h} are distinct.

Consider also the following blocks:

$$
E_{i}=[(i), i+18 k+2, i+18 k+1,(i+12 k+2), i+12 k+1, i+12 k,(i+6 k+1), i+
$$ $6 k, i+6 k-1]$.

for $i \in\{0, \ldots, 6 k\}$. Let $\mathcal{E}=\left\{E_{i}: i=0, \ldots, 6 k\right\}$, let \mathcal{F} be the collection of all the translates of the blocks in the set:

$$
\left\{A_{h}: 1 \leq h \leq k-1\right\} \cup\left\{B_{h}: 1 \leq h \leq k-1\right\} \cup\left\{C_{h}: 1 \leq h \leq k-1\right\}
$$

and let \mathcal{G} be the collection of all the translates of the blocks in the set $\left\{D_{1}, D_{2}, D_{3}\right\}$. If $k=1$, take $\mathcal{B}=\mathcal{E} \cup \mathcal{G}$, while for $k \geq 2$ take $\mathcal{B}=\mathcal{E} \cup \mathcal{F} \cup \mathcal{G}$. Then one can verify that the system $\Sigma=\left(Z_{v}, \mathcal{B}\right)$ is a $P N Q S$ of order v and indices $(4,1)$, whose inside triples determine a cyclic STS of order v.
2) Let $v=18 k+9$, for some $k \geq 1$.

Let $v=27$. Consider the base-blocks defined on \mathbb{Z}_{27} :

$$
\begin{aligned}
& D_{1}=[(0), 7,20,(13), 18,6,(1), 3,2], \\
& D_{2}=[(0), 8,15,(7), 18,13,(2), 11,9], \\
& D_{3}=[(0), 10,21,(11), 15,7,(3), 12,6], \\
& D_{4}=[(0), 13,23,(10), 22,16,(4), 5,1] .
\end{aligned}
$$

Furthermore consider the blocks:

$$
E_{i}=[(i), i+24, i+21,(i+18), i+15, i+12,(i+9), i+6, i+3],
$$

for $i \in\{0, \ldots, 8\}$. If \mathcal{B} is the collection of the blocks E_{i} and of all the translates of D_{1}, D_{2}, D_{3} and D_{4}, then one can verify that the system $\Sigma=\left(\mathbb{Z}_{27}, \mathcal{B}\right)$ is a PNQS of order 27 and indices $(4,1)$, whose inside triples determine a cyclic STS of order 27 .

Let $v=45$. Consider the base-blocks defined on $X=\mathbb{Z}_{45}$:

$$
\begin{aligned}
& D_{1}=[(0), 19,31,(12), 29,18,(1), 3,2], \\
& D_{2}=[(0), 23,42,(19), 39,22,(2), 5,3], \\
& D_{3}=[(0), 12,35,(23), 34,14,(3), 4,1], \\
& D_{4}=[(0), 24,38,(14), 32,22,(4), 10,6], \\
& D_{5}=[(0), 8,21,(13), 26,18,(5), 20,10], \\
& D_{6}=[(0), 16,40,(24), 33,15,(6), 13,7], \\
& D_{7}=[(0), 14,30,(16), 31,22,(7), 11,4] .
\end{aligned}
$$

Furthermore consider the blocks:

$$
E_{i}=[(i), i+40, i+35,(i+30), i+25, i+20,(i+15), i+10, i+5],
$$

for $i \in\{0, \ldots, 14\}$. If \mathcal{B} is the collection of the blocks E_{i} and of all the translates of D_{1}, \ldots, D_{7}, let $\Sigma=\left(\mathbb{Z}_{45}, \mathcal{B}\right)$. Note that the blocks D_{1}, D_{2} and D_{3} are constructed as A_{h}, B_{h} and C_{h}, so that with the previous notation $D_{1}=A_{0}, D_{2}=B_{0}$ and $D_{3}=C_{0}$. So one can verify that the system Σ is a $P N Q S$ of order 45 and indices $(4,1)$, whose inside triples determine a cyclic STS of order 45 .

Let $v=63$. Consider the base-blocks defined on $X=\mathbb{Z}_{63}$:

$$
\begin{aligned}
D_{1} & =[(0), 29,45,(16), 43,28,(1), 3,2], \\
D_{2} & =[(0), 28,57,(29), 54,27,(2), 5,3], \\
D_{3} & =[(0), 16,44,(28), 43,18,(3), 4,1], \\
D_{4} & =[(0), 31,49,(18), 44,30,(4), 9,5], \\
D_{5} & =[(0), 23,54,(31), 48,22,(5), 11,6], \\
D_{6} & =[(0), 18,41,(23), 44,27,(6), 10,4], \\
D_{7} & =[(0), 13,33,(20), 40,27,(7), 28,14], \\
D_{8} & =[(0), 33,52,(19), 43,32,(8), 17,9], \\
D_{9} & =[(0), 22,55,(33), 45,21,(9), 19,10], \\
D_{10} & =[(0), 19,41,(22), 33,21,(10), 18,8] .
\end{aligned}
$$

Furthermore consider the blocks:

$$
E_{i}=[(i), i+56, i+49,(i+42), i+35, i+28,(i+21), i+14, i+7] \text {, }
$$

for $i \in\{0, \ldots, 20\}$. If \mathcal{B} is the collection of the blocks E_{i} and of all the translates of D_{1}, \ldots, D_{10}, let $\Sigma=\left(\mathbb{Z}_{63}, \mathcal{B}\right)$. Note that the blocks D_{1}, D_{2} and D_{3} and D_{8}, D_{9} and D_{10} are constructed as A_{h}, B_{h} and C_{h}. So one can verify that the system Σ is a $P N Q S$ of order 63 and indices $(4,1)$, whose inside triples determine a cyclic STS of order 63 .

Let $v=18 k+9$, for some $k \geq 4$. In this case the partition of $D(v)$ given by Petelsohn is the following:

- $\{3 h+1,4 k-h+3,4 k+2 h+4\}$ for $0 \leq h \leq k$,
- $\{3 h+2,8 k-h+2,8 k+2 h+4\}$ for $2 \leq h \leq k-2$,
- $\{3 h+3,6 k-2 h+1,6 k+h+4\}$ for $1 \leq h \leq k-2$,
- $\{2,8 k+3,8 k+5\},\{3,8 k+1,8 k+4\},\{5,8 k+2,8 k+7\},\{3 k-1,3 k+2,6 k+1\}$, $\{3 k, 7 k+3,8 k+6\}$.

So $a=4 k+2 h+4, b=8 k+2 h+4$ and $c=6 k+h+4$. Moreover, a cyclic STS on \mathbb{Z}_{v} can be constructed with triples having these are differences, plus the triples having differences $\{6 k+3,6 k+3,6 k+3\}$.

Consider now the following base-blocks defined on $X=\mathbb{Z}_{v}$:

$$
\begin{aligned}
& A_{h} \text { and } B_{h} \text { for } 2 \leq h \leq k-2 \text { and } C_{h}, \text { for } 1 \leq h \leq k-2, \\
& D_{1}=[(0), 8 k+5,14 k+7,(6 k+2), 14 k+5,11 k+1,(3 k-2), 3 k, 2], \\
& D_{2}=[(0), 8 k+4,16 k+9,(8 k+5), 16 k+6,8 k+3,(2), 5,3], \\
& D_{3}=[(0), 6 k+2,14 k+6,(8 k+4), 11 k+8,3 k+7,(3), 3 k+1,3 k-2], \\
& D_{4}=[(0), 6 k+1,14 k+8,(8 k+7), 11 k+9,3 k+7,(5), 3 k+4,3 k-1], \\
& D_{5}=[(0), 10 k+3,16 k+4,(6 k+1), 13 k+4,10 k+2,(3 k-1), 6 k-1,3 k], \\
& D_{6}=[(0), 8 k+7,1,(10 k+3), 18 k+5,11 k+2,(3 k), 3 k+5,5], \\
& D_{7}=[(0), 6 k+3,12 k+8,(6 k+4), 10 k+7,7 k+4,(3 k+1), 7 k+5,4 k+4], \\
& D_{8}=[(0), 3 k+3,7 k+9,(4 k+6), 10 k+10,6 k+8,(4), 3 k+5,3 k+1], \\
& D_{9}=[(0), 6 k-1,10 k+3,(4 k+4), 10 k+7,6 k+4,(1), 7,6,] .
\end{aligned}
$$

Note that in this case for any h we have that $6 h+4 \leq a \leq 6 k+4,10 h+20 \leq b \leq 10 k$, $7 h+16 \leq c \leq 7 k+2$. So we easily see that all the vertices in the blocks A_{h}, B_{h} and C_{h} are distinct.

Consider also the following blocks:
$E_{i}=[(i), i+1, i+2,(i+12 k+6), i+12 k+7, i+12 k+8,(i+6 k+3), i+6 k+4, i+6 k+5]$
for $i \in\{0, \ldots, 6 k+2\}$. Let $\mathcal{E}=\left\{E_{i}: i=0, \ldots, 6 k+2\right\}$ and let \mathcal{F} be the collection of all the translates of the blocks in the set:
$\left\{A_{h}: 2 \leq h \leq k-2\right\} \cup\left\{B_{h}: 2 \leq h \leq k-2\right\} \cup\left\{C_{h}: 1 \leq h \leq k-2\right\} \cup\left\{D_{1}, \ldots, D_{9}\right\}$.
If $\mathcal{B}=\mathcal{E} \cup \mathcal{F}$, let $\Sigma=\left(\mathbb{Z}_{v}, \mathcal{B}\right)$. Note that the blocks D_{1}, D_{2} and D_{3} and D_{4}, D_{5} and D_{6} are constructed as A_{h}, B_{h} and C_{h}. Then one can verify that the system Σ is a $P N Q S$ of order v and indices $(4,1)$, whose inside triples determine a cyclic STS of order v.
3) Let $v=18 k+15$, for some $k \geq 0$.

Let $v=15$. Consider the base-blocks defined on $X=\mathbb{Z}_{15}$:

$$
\begin{aligned}
& D_{1}=[(0), 9,5,(4), 6,2,(1), 8,3], \\
& D_{2}=[(0), 4,11,(8), 13,7,(2), 9,3] .
\end{aligned}
$$

Furthermore consider the blocks:

$$
E_{i}=[(i), i+13, i+11,(i+10), i+8, i+6,(i+5), i+3, i+1],
$$

for $i \in\{0, \ldots, 4\}$. If \mathcal{B} is the collection of the blocks E_{i} and of all the translates of D_{1} and D_{2}, then one can verify that the system $\Sigma=\left(\mathbb{Z}_{15}, \mathcal{B}\right)$ is a PNQS of order 15 and indices $(4,1)$, whose inside triples determine a cyclic STS of order 15.

Let $v=18 k+15$, for some $k \geq 1$. In this case the partition of $D(v)$ given by Petelsohn is the following:

- $\{3 h+1,4 k-h+3,4 k+2 h+4\}$ for $0 \leq h \leq k$,
- $\{3 h+2,8 k-h+6,8 k+2 h+8\}$ for $0 \leq h \leq k$,
- $\{3 h+3,6 k-2 h+3,6 k+h+6\}$ for $0 \leq h \leq k-1$.

So $a=4 k+2 h+4, b=8 k+2 h+8$ and $c=6 k+h+6$. Moreover, a cyclic STS on \mathbb{Z}_{v} can be constructed with triples having these differences, plus the triples having differences $\{6 k+5,6 k+5,6 k+5\}$.

Consider now the following base-blocks defined on $X=\mathbb{Z}_{v}$:
A_{h} for $0 \leq h \leq k, B_{h}$ and C_{h} for $0 \leq h \leq k-1$,
$D=[(0), 6 k+5,16 k+13,(10 k+8), 13 k+9,6 k+3,(3 k+2), 9 k+7,3 k+3]$.
Note that in this case for any h we have that $6 h+4 \leq a \leq 6 k+4,10 h+8 \leq b \leq 10 k+8$, $7 h+12 \leq c \leq 7 k+5$. So we easily see that all the vertices in the blocks A_{h}, B_{h} and C_{h} are distinct.

Consider also the following blocks:
$E_{i}=[(i), i+3 k+2, i+18 k+14,(i+12 k+10), i+15 k+12, i+12 k+9,(i+6 k+$ 5), $i+9 k+7, i+6 k+4]$
for $i \in\{0, \ldots, 6 k+4\}$. Let $\mathcal{E}=\left\{E_{i}: i=0, \ldots, 6 k+4\right\}$ and let \mathcal{F} be the collection of all the translates of the blocks in the set:

$$
\left\{A_{h}: 0 \leq h \leq k\right\} \cup\left\{B_{h}: 0 \leq h \leq k-1\right\} \cup\left\{C_{h}: 0 \leq h \leq k-1\right\} \cup\{D\}
$$

If $\mathcal{B}=\mathcal{E} \cup \mathcal{F}$, then one can verify that the system $\Sigma=\left(\mathbb{Z}_{v}, \mathcal{B}\right)$ is a $P N Q S$ of order v and indices $(4,1)$, whose inside triples determine a cyclic STS of order v.

Corollary 4.4 There exists a PNQS of order v and indices $(\lambda=4, \mu=1)$ if and only if $v \equiv 1$ or $3(\bmod 6), v \geq 9$.

References

[1] L. Berardi, M. Gionfriddo and R. Rota, Perfect Octagon Quadrangle Systems, Discrete Math. 310 (2010), 1979-1985.
[2] L. Berardi, M. Gionfriddo and R. Rota, Perfect Octagon Quadrangle Systems with an upper C_{4}-system, J. Stat. Plan. Inference 141 (2011), 2249-2255.
[3] E. J. Billington, S. Küçükçifçi, C. C. Lindner and E. Ş. Yazıcı, Embedding 4-cycle systems into octagon triple systems, Util. Math. 79 (2009), 99-106.
[4] P. Bonacini, M. Gionfriddo and L. Marino, Balanced House-systems and Nestings, Ars Combin. 120 (2105), 429-436.
[5] P. Bonacini, M. Gionfriddo and L. Marino, Nestings House-designs, Discrete Math. 339 (2016), no. 4, 1291-1299.
[6] L. Gionfriddo and M. Gionfriddo, Perfect Dodecagon Quadrangle Systems, Discrete Math. 310 (2010), 3067-3071.
[7] M. Gionfriddo, S. Milazzo and V. Voloshin, Hypergraphs and Designs, Mathematics Research Developments, Nova Science Publishers Inc., New York (2015).
[8] T.P. Kirkman, On a Problem in Combinations, Cambridge and Dublin Math. J. 2 (1847), 191-204.
[9] S. Küçükçifçi and C. C. Lindner, Perfect hexagon triple systems, Discrete Math. 279 (2004), 325-335.
[10] C. C. Lindner and A. Rosa, Perfect dexagon triple systems, Discrete Math. 308 (2008), 214-219.
[11] C. C. Lindner and C. A. Rodger, Design Theory, CRC Press, Boca Raton (2009).
[12] R. Peltesohn, Eine Lösung der Beiden Heffterschen Differenzen-probleme, Compositio Math. 6 (1939), 251-257.

