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Abstract

Let H be a subgraph of G in a graph pair (G,H). A backbone k-coloring
for (G,H) is a proper coloring of G by the set of colors {1, 2, . . . , k},
adding a condition that colors assigned to adjacent vertices in H must
differ by at least two. A list assignment L is a mapping that assigns a
set of positive integers L(v) to each vertex v in G. A k-assignment L
of G is a list assignment L with |L(v)| = k for each vertex v. If there
is a backbone coloring c of G such that c(v) ∈ L(v), then (G,H) is
backbone L-colorable. The backbone choice number of (G,H), denoted
by chBB(G,H), is the smallest integer k such that G is backbone L-
colorable for each k-assignment L. The concept of a backbone choice
number is a generalization of both the choice number and the L(2, 1)-
choice number.

The result of Bu, Finbow, Liu and Zhu [Discrete Appl. Math. 167
(2014), 45–51] implies that for a path or a cycle G, the upper bound of
chBB(G,H) is 9 where every component H is unicyclic. In this paper,
we show that the maximum possible value of chBB(G,H) is 5. Moreover,
we obtain exact values of chBB(G,H) where G is a path or a cycle in all
possible structures of subgraphs H of G.

∗ Also at: Department of Sciences and Mathematics, Faculty of Agro-Industrial Technology,
Kalasin University, Kalasin, 46000, Thailand
† Corresponding Author.



W. PIMPASALEE ET AL. /AUSTRALAS. J. COMBIN. 66 (3) (2016), 378–392 379

1 Introduction

Backbone coloring of graphs has its origin from the problem of channel assign-
ment by Hale [10]. In the channel assignment problem, each channel must be assigned
to a set of transmitters without interference. Interferences are separated into two
types: weak and strong. The channels assigned to two transmitters with weak in-
terference should be distinct while the channels assigned to two transmitters with
strong interference should be far apart. A graph G is constructed with the transmit-
ters represented by the vertices of G, and two vertices are adjacent in G when two
corresponding transmitters interfere with each another. Let H be a subgraph of G
such that an edge of H is formed from two vertices with strong interference. We call
a subgraph of H a backbone of G, and (G,H) a graph pair.

Let G be a graph andH be a subgraph of G. We say that (G,H) contains (G′, H ′)
if G′ is a subgraph of G and H ′ is a subgraph of H . In a graph pair (G,H), a vertex
coloring c : V (G) → {1, 2, . . . , k} such that |c(u)− c(v)| ≥ 1 if uv ∈ E(G) \ E(H),
and |c(u)− c(v)| ≥ 2 if uv ∈ E(H) is called a backbone k-coloring for (G,H). The
smallest integer k for which there exists a backbone k-coloring for (G,H) is called
the backbone chromatic number of (G,H), denoted by χBB(G,H).

Backbone coloring of graphs was first studied by Broersma et al. [1]. Denote the
chromatic number of a graph G by χ(G). Obviously, χBB(G,H) ≤ 2χ(G) − 1 for
any graph pair (G,H). This upper bound is sharp as shown in [2] that there is a
graph G and a spanning tree H of G with χ(G) = n and χBB(G,H) = 2χ(G) − 1
for any positive integer n. It is shown in [15] that for a graph G with maximum
degree Δ, χBB(G,H) ≤ Δ + d + 1 when H is a d-degenerate subgraph of G, and
χBB(G,M) ≤ Δ + 1 when M is a matching of G. This topic has been investigated
rather extensively in recent years (see [3, 4, 5, 7, 11, 14, 17]).

Furthermore, if E(H) = ∅, then χBB(G,H) = χ(G). Backbone coloring is a
generalization of L(2, 1)-labeling by setting G = H2, that is, V (G) = V (H) and
uv ∈ E(G) when uv ∈ E(H) or there is a path with length 2 from u to v in H . Thus,
a backbone coloring of (G,H) is equivalent to an L(2, 1)-labeling of H . The topic
of L(2, 1)-labeling was introduced by Griggs and Yeh [9] and has been investigated
widely by many authors (see [12, 13, 19]).

A mapping L is called a list assignment of a graph G if L assigns a set L(v) of
positive integers to each vertex v. A k-assignment L of a graph G is a list assignment
L such that |L(v)| = k for each v ∈ V (G). We say that c is a list coloring or an
L-coloring of a graph G if c is a proper coloring of G such that c(v) ∈ L(v) for each
v ∈ V (G). If a graph G has an L-coloring, then we say that G is L-colorable. A
graph G is k-choosable if every k-assignment of G gives a list coloring. The choice
number of a graph G, denoted by ch(G), is the smallest integer k such that G is
k-choosable. List coloring of graphs has been studied widely by many authors (see
[8, 16]).

In 2014, Bu et al. [6] introduced the concept of list backbone coloring of graphs.
Consider a graph pair (G,H). We say that c is a backbone L-coloring of (G,H) if c
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is a backbone coloring of (G,H) such that c(v) ∈ L(v) for each v ∈ V (G). If (G,H)
has a backbone L-coloring, then we say that (G,H) is backbone L-colorable. We say
that (G,H) is backbone k-choosable if every k-assignment L of G gives a backbone
L-coloring. The backbone choice number of (G,H), denoted by chBB(G,H), is the
smallest integer k such that G is backbone k-choosable. For V (G) = {v1, . . . , vn}, a
list assignment L ofG is of order (k1, . . . , kn) if |L(vi)| = ki for all i = 1, . . . , n. We say
that (G,H) is backbone (k1, . . . , kn)-choosable if (G,H) is backbone L-colorable for
every list assignment L of order (k1, . . . , kn). For convenience, we use (a, b, c[n], d) to

denote the sequence (a, b,

n︷ ︸︸ ︷
c, . . . , c, d). Obviously, chBB(G,H) = ch(G) if E(H) = ∅.

From now on, we say that (G,Pm1 ∪ Pm2 ∪ · · · ∪ Pmk
) is a graph G = Pn or Cn

containing path backbones Pm1 , Pm2 , . . . , Pmk
with n = m1 + m2 + · · · + mk such

that V (G) = {v1, . . . , vn}, V (Pm1) = {v1, . . . , vm1}, and V (Pmi
) = {vA+1, vA+2, vA+3,

. . . , vB} where A =
i−1∑
j=1

mj and B =
i∑

j=1

mj for 2 ≤ i ≤ k. Note that mi can

be 1 for each i ∈ {1, . . . , k} to make this well-defined. For convenience, we use

(G,Pa ∪ P
[m]
b ∪ Pc) to denote the (G,Pa ∪

m︷ ︸︸ ︷
Pb ∪ · · · ∪ Pb ∪Pc).

Let L be a list assignment of a graph G. If a vertex v has been colored by p ∈ L(v),
then we define L′(u) = L(u)\{p} if uv ∈ E(G)\E(H), L′(u) = L(u)\{p−1, p, p+1}
if uv ∈ E(H), and L′(u) = L(u) if uv /∈ E(G). A list assignment L′ is called the
residual list assignment (RLA for abbreviation) for the graph G−v. This concept can
be extended to the situation when many vertices have been colored. Other standard
notations follow West [18].

For convenience, sometimes we use vivi+1 . . . vk to denote a path with a vertex set
{vi, vi+1, . . . , vk}, and v1v2 . . . vnv1 to denote a cycle with a vertex set {v1, v2, . . . , vn}.

For a cycle or a path G, the results of Bu et al. [6] implies that the upper bound
of chBB(G,H) is 9 where every component H is unicyclic. The aim of this paper is to
find exact values of chBB(G,H) where G is a path or a cycle in all possible structures
of subgraphs H of G. As a consequence, we show that the maximum possible value
of chBB(G,H) is 5.

2 Preliminaries

Bu et al. [6] provided several upper bounds for chBB(G,H) in terms of the choice
number of a k-choosable graph G and the structure of H in the following results:

chBB(G,H) ≤

⎧⎪⎨
⎪⎩
2k, if H is a matching;

2k + 1, if H is a disjoint union of paths with length at most 2;

3k, if each component of H is unicyclic.

The next remark presents results that will be useful.

Remark 2.1. Let G be a graph and H be a subgraph of G.
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(i) ([8]) If a connected graph G is neither complete nor an odd cycle, then ch(G) ≤
Δ(G).

(ii) χ(G) ≤ ch(G) ≤ Δ(G) + 1.

(iii) ([2]) χBB(G,H) ≤ 2χ(G)− 1.

(iv) If E(H) 	= ∅, then chBB(G,H) ≥ 3.

(v) If E(H) = ∅, then chBB(G,H) = ch(G).

If G is a path or an even cycle, then ch(G) = 2, by Remarks 2.1(i, ii). So G is
2-choosable. Then

chBB(G,H) ≤

⎧⎪⎨
⎪⎩
4, if H is a matching;

5, if H is a disjoint union of paths with length at most 2;

6, otherwise.

Similarly, if G is an odd cycle, then G is 3-choosable, and

chBB(G,H) ≤

⎧⎪⎨
⎪⎩
6, if H is a matching;

7, if H is a disjoint union of paths with length at most 2;

9, otherwise.

From these results, we can see that the value of chBB(G,H) is at most 9 where G is
a path or a cycle. In this paper, we show that chBB(G,H) ≤ 5 where G is a path or
cycle in all possible structures of subgraphs H of G.

3 Main Results

In this paper, we assume that a graph G is a path or a cycle with n vertices
unless the context suggests otherwise and V (G) = {v1, . . . , vn} when a vertex set is
not identified. The main result of this paper is the following.

Main Theorem. Let G be a cycle or a path and H be a spanning subgraph of G.
Then chBB(G,H) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, when G = H = P1;
2, when E(H) = ∅ and G is not an odd cycle;
5, when G = H and G is an odd cycle;
4, when (i) G = H and G is an even cycle

or (ii) H contains a path with length at least 3
or (iii) G is a cycle and H is a disjoint union of paths

with length at least 1 and at least one path has length 2

or (iv) (G,H) contains (P2k+6, P3 ∪ P
[k]
2 ∪ P3) where k ≥ 0;

3, otherwise.
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Throughout the proof, we repeatedly use the following easy observation.

Proposition 3.1. If (G,H) contains (G′, H ′), then chBB(G,H) ≥ chBB(G
′, H ′).

Proof. Let k = chBB(G,H). Assume that L is any k-assignment of G′. Note that
(G,H) is backbone k-choosable. Since E(H ′) ⊆ E(H) and E(G′) ⊆ E(G), (G′, H ′)
is also backbone k-choosable. Hence k ≥ chBB(G

′, H ′).

Our proof of the Main Theorem is split into numerous cases, so it is helpful
to provide a brief outline here. (We defer the complete proof to the end of the
paper.) Remark 2.1(ii) implies that chBB(G,H) = 1 if and only if G has no edges.
Remarks 2.1(iv,v) imply that chBB(G,H) = 2 if and only if H has no edges and G
is a path with length at least 1 or an even cycle. The case when G is a cycle and
H = G requires significant work, so we defer it to Section 3.3. When H 	= Cn, we
always have the upper bound chBB(G,H) ≤ chBB(Cn, Pn) ≤ 4; the first inequality
is from Proposition 3.1 and we prove the second inequality in Lemma 3.2. Thus,
the remainder of the proof consists of determining for which pairs (G,H) we have
chBB(G,H) ≥ 4 (Section 3.1) and for which we have chBB(G,H) ≤ 3 (Section
3.2). It is easy to show that chBB(P4, P4) = 4, as we do in Lemma 3.2. Thus,
we need only consider the case when H consists of disjoint paths of length at most
2. Similarly, if E(H) 	= ∅ and I is a set of vertices isolated in H , then we have
chBB(G,H) = chBB(G− I,H − I), as we show in Lemma 3.8. Thus, we can assume
that H consists of disjoint paths, each of length 1 or 2. Now, as stated in the Main
Theorem, we have chBB(G,H) = 4 if either H contains at least two paths of length
two (see Corollary 3.5) or G is a cycle and H contains a single path of length two (see
Corollary 3.7). Otherwise chBB(G,H) = 3, as we show in Theorems 3.11 and 3.14.

3.1 H is a union of paths and chBB(G,H) = 4

Lemma 3.2. chBB(Cn, Pn) = 4 for n ≥ 3 and chBB(Pn, Pn) = 4 for n ≥ 4.

Proof. We begin by showing that chBB(C3, P3) ≥ 4 and chBB(P4, P4) ≥ 4. After
this, by Proposition 3.1 it suffices to show that chBB(Cn, Pn) ≤ 4.

First, let C3 = v1v2v3v1 and let L(v1) = L(v2) = L(v3) = {1, 2, 3}. Suppose
that (C3, P3) has a backbone L-coloring ϕ. We must have |ϕ(v1)− ϕ(v2)| = 2
and |ϕ(v2)− ϕ(v3)| = 2. But this implies ϕ(v1) = ϕ(v3), a contradiction; hence
chBB(C3, P3) ≥ 4. Now instead, let P4 = v1v2v3v4, let L(v1) = L(v4) = {2, 3, 4}, and
let L(v2) = L(v3) = {1, 2, 3}. Suppose that (P4, P4) has a backbone L-coloring ϕ.
By symmetry, we may assume that ϕ(v2) = 3 and ϕ(v3) = 1. However, now we have
no color available for v1, a contradiction; hence chBB(P4, P4) ≥ 4.

Now we show that chBB(Cn, Pn) ≤ 4, for all n. Let Cn = v1v2v3 . . . vnv1. Assume
that L is any 4-assignment of Cn. Since |L(v1)| = 4, we can assign color a1 to v1 such
that a1 	= minL(v1) and a1 	= maxL(v1). For i = 2, 3, . . . , n, we can assign color
ai ∈ L(vi) to vi such that ai /∈ {ai−1 − 1, ai−1, ai−1 + 1}. If a1 	= an, then we have a
backbone L-coloring.
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Assume that a1 = an. Define c(vi) = ai for i ∈ {2, 3, . . . , n}. If there is b ∈
L(v1)\{a1, a2−1, a2, a2+1}, then we assign c(v1) = b to obtain a backbone coloring
c of (Cn, Pn). Otherwise, L(v1) = {a1, a2 − 1, a2, a2 + 1}. Because a2 − 1, a2, and
a2 + 1 are consecutive numbers, we have that a1 = minL(v1) or a1 = maxL(v1).
This contradicts to the choice of a1. Hence we can assign c(v1) ∈ L(v1) to obtain a
backbone coloring c of (Cn, Pn). Therefore chBB (Cn, Pn) ≤ 4.

Theorem 3.3. Let H be a spanning subgraph of G such that H is a disjoint union
of paths with any length. If some component of H has length at least 3, then
chBB(G,H) = 4.

Proof. Assume that there is a component of H with length at least 3. By Proposi-
tion 3.1 and Lemma3.2, we have

4 = chBB(P4, P4) ≤ chBB(G,H) ≤ chBB(Cn, Pn) = 4.

Therefore chBB(G,H) = 4.

Lemma 3.4. For k ≥ 0, chBB(P2k+6, P3 ∪ P
[k]
2 ∪ P3) = 4.

Proof. Let k ≥ 0 and let P2k+6 = v1v2v3 . . . v2k+6. Let L(v1) = L(v2k+6) = {2, 3, 4}
and L(vi) = {1, 2, 3} for all other i. We show that (P2k+6, P3 ∪ P

[k]
2 ∪ P3) has no

backbone L-coloring. Assume, to the contrary, that it has a backbone L-coloring ϕ.
Since no vi is isolated in P3 ∪ P

[k]
2 ∪ P3, we must have ϕ(vi) 	= 2 for all i ∈ {2, . . . ,

2k+5}. Thus these vi must alternate the colors 1 and 3. By symmetry, we can assume
that ϕ(v2i) = 1 and ϕ(v2i+1) = 3 for all i ∈ {1, . . . , 2k+2}. But now ϕ(v2k+5) = 3, so

v2k+6 has no allowable color. Hence chBB(P2k+6, P3 ∪P
[k]
2 ∪P3) ≥ 4. By Proposition

3.1 and Lemma 3.2, chBB(P2k+6, P3∪P
[k]
2 ∪P3) ≤ chBB(C2k+6, P2k+6) = 4. Therefore

chBB(P2k+6, P3 ∪ P
[k]
2 ∪ P3) = 4.

Corollary 3.5. Let H be a spanning subgraph of Pn such that H is a disjoint union
of paths, each with length 1 or 2. If at least two components of H have length 2, then
chBB(Pn, H) = 4.

Proof. Assume that H contains two components with length 2. Then (Pn, H) con-

tains (P2k+6, P3 ∪ P
[k]
2 ∪ P3) where k ≥ 0. By Proposition 3.1 and Lemma 3.4,

we have that chBB(Pn, H) ≥ chBB(P2k+6, P3 ∪ P
[k]
2 ∪ P3) = 4. From Proposition

3.1 and Lemma 3.2, we have that chBB(Pn, H) ≤ chBB(Cn, Pn) = 4. Therefore
chBB(Pn, H) = 4.

Lemma 3.6. For k ≥ 0, chBB(C2k+3, P3 ∪ P
[k]
2 ) = 4.

Proof. Let C2k+3 = v1v2v3 . . . v2k+3v1. If k = 0 then we have that chBB(C2k+3, P3 ∪
P

[k]
2 ) = chBB(C3, P3) = 4 by Lemma 3.2. Now, we assume that k ≥ 1. Without

loss of generality, we consider C2k+3 with lists of colors such that L(vi) = {1, 2, 3}
for i = 1, . . . , 2k + 3. Note that we cannot assign 2 to vi for i = 1, . . . , 2k + 3 to
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obtain a backbone coloring. We must color each vertex either 1 or 3. However, then
the number of vertices we can color is at most 2

⌊
2k+3
2

⌋
< 2k + 3, a contradiction.

Hence chBB(C2k+3, P3 ∪ P
[k]
2 ) ≥ 4. By Proposition 3.1 and Lemma 3.2, we have

chBB(C2k+3, P3∪P
[k]
2 ) ≤ chBB(C2k+3, P2k+3) = 4. Therefore chBB(C2k+3, P3∪P

[k]
2 ) =

4.

Corollary 3.7. Let H be a spanning subgraph of Cn such that H is a disjoint
union of paths, each with length 1 or 2. If some component of H has length 2,
then chBB(Cn, H) = 4.

Proof. Assume that there is a component of H with length 2. We consider two cases.

CASE 1: There is exactly one component of H with length 2. By Lemma 3.6, we
obtain chBB(Cn, H) = 4.

CASE 2: There is at least two components of H with length 2. By Proposition 3.1,
Lemma 3.2, and Corollary 3.5, we obtain that 4 = chBB(Pn, H) ≤ chBB(Cn, H) ≤
chBB(Cn, Pn) = 4. Therefore chBB(Cn, H) = 4.

From both cases, we obtain chBB(Cn, H) = 4.

3.2 H is a union of paths and chBB(G,H) = 3

Recall that chBB(P4, P4) = 4, so chBB(G,H) ≥ 4 if P4 ⊆ H . Thus, in this
section, we consider the case when H is a disjoint union of paths, each with length
at most two. The bounds in this section rely on the following important lemma.

Lemma 3.8. Let H be a spanning subgraph of G and I be the set of all isolated
vertices in H. If E(H − I) 	= ∅, then chBB(G,H) = chBB(G− I,H − I).

Proof. Let k = chBB(G − I,H − I). Let L be any k-assignment of G. Because
E(H − I) 	= ∅, chBB(G− I,H − I) ≥ 3 by Remark 2.1(iv). Consider a k-assignment
L of (G,H). We can assign an available color in L(v) to v for each v ∈ V (G − I)
to give an L-backbone coloring. Since G is a path or a cycle, dG(u) ≤ 2 for each
u ∈ I. We can assign an available color in L(u) to u for each u ∈ I because
k ≥ 3 and dG(u) ≤ 2. Then we obtain an L-backbone coloring for (G,H). So,
chBB(G,H) ≤ chBB(G− I,H − I). Since (G,H) contains (G− I,H − I), we obtain
that chBB(G,H) ≥ chBB(G− I,H − I) by Proposition 3.1. Therefore chBB(G,H) =
chBB(G− I,H − I).

Note that for any graph pair (G,H), we have chBB(G−I,H−I) ≤ chBB(G,H) ≤
max(chBB(G− I,H− I), 1+max

v∈I
dG(v)). The lemma above is the special case where

1 + max
v∈I

dG(v) = 3, so both inequalities hold with equality.

As a result of Lemma 3.8, it suffices to consider the case when each component
of H is a path of length 1 or 2. In the next few lemmas, we consider the case where
each component of H is a path of length 1.
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Lemma 3.9. For n ≥ 1, a graph pair (P2n, P
[n]
2 ) is backbone (2, 3[2n−1])-choosable.

Thus, chBB(P2n, P
[n]
2 ) = 3.

Proof. Let P2n = v1v2 . . . v2n. Assume that L is a list assignment of P2n of order
(2, 3[2n−1]). We show that (P2n, P

[n]
2 ) is backbone (2, 3[2n−1])-choosable by induction

on n. Let P (n) be the proposition that (P2n, P
[n]
2 ) is backbone (2, 3[2n−1])-choosable.

Base case: k = 1. We show that P (1) is true. We have that P2 = v1v2 and L
is a list assignment of P2 of order (2, 3). Color v1 with a color a ∈ L(v1) such that
L(v2) 	= {a − 1, a, a + 1}. Now color v2. Thus, (P2, P2) is backbone L-colorable, so
(P2, P2) is backbone (2, 3)-choosable.

Inductive step: k ≥ 2. Assume that P (k − 1) is true. Then (P2k−2, P
[k−1]
2 )

is backbone (2, 3[2k−3])-choosable. We can obtain a backbone coloring by assigning
color ai ∈ L(vi) to vi for i = 1, 2, . . . , 2k − 2. Consider the path P = v2k−2v2k−1v2k.
Since we assign a2k−2 to v2k−2, the order of the RLA for the path P−v2k−2 = v2k−1v2k
is (2, 3). From case k = 1, we obtain (P2k, P

[k]
2 ) is backbone (2, 3[2k−1])-choosable.

Therefore (P2n, P
[n]
2 ) is backbone (2, 3[2n−1])-choosable. Furthermore, we obtain

that chBB(P2n, P
[n]
2 ) ≤ 3. By Remark 2.1(iv), we have that chBB(P2n, P

[n]
2 ) ≥ 3.

Therefore chBB(P2n, P
[n]
2 ) = 3.

Lemma 3.10. Let A and B be sets, each consisting of three distinct integers. If
A 	= B, then there exist x, y, p, q, r, where x 	= y and p 	= q, such that

1. x, y ∈ A and p, q, r ∈ B, or

2. x, y ∈ B and p, q, r ∈ A

which satisfy |x− p| ≥ 2, |x− q| ≥ 2, and |y − r| ≥ 2.

Proof. Assume that A and B are sets consisting of three distinct integers such that
A 	= B. Let m = min(A ∪ B) and M = max(A ∪ B). We consider three cases.

CASE 1: m,M ∈ A ∩ B. Since A 	= B, we may assume that there are k ∈ A and
l ∈ B such that m < k < l < M and A = {m, k,M} and B = {m, l,M}. We choose
x = m, y = k, p = M , q = l, and r = M to make |x− p| ≥ 2, |x− q| ≥ 2, and
|y − r| ≥ 2.

CASE 2: m ∈ A \ B. Since |B| = 3, there are distinct k, l ∈ B with |k −m| ≥ 2
and |l −m| ≥ 2. We choose x = m, p = k, and q = l. Let s ∈ A \ {m}. If
there is t ∈ B such that |s− t| ≥ 2, then we choose y = s and r = t. Otherwise,
B = {s− 1, s, s+ 1}. There is w ∈ A \ {m, s} such that |w − b| ≥ 2 for some b ∈ B.
We choose y = w and r = b.

CASE 3: M ∈ A \B. This case is similar to CASE 2.

From these three cases, the proof is completed.

Now we use Lemma 3.10 to strengthen the bound in Lemma 3.9 to the case when
G = C2n.
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Theorem 3.11. chBB(C2n, P
[n]
2 ) = 3.

Proof. Let C2n = v1v2v3 . . . v2nv1. For each i = 1, 2, 3, . . . , n, we may assume that
v2i−1 and v2i are endpoints of an edge ei. Let L be any 3-assignment of C2n. We

show that chBB(C2n, P
[n]
2 ) ≤ 3 by considering three cases.

CASE 1: There is j ∈ {1, 2, . . . , n} such that L(v2j−1) 	= L(v2j). Without loss
of generality, we may assume that L(v1) 	= L(v2). By Lemma 3.10, we may assume
further that there are x, y ∈ L(v1) and p, q, r ∈ L(v2) such that |x− p| ≥ 2, |x− q| ≥
2, and |y − r| ≥ 2 where x 	= y and p 	= q. We can assign y to v1 and r to v2. Consider
the path P = v2v3v4 . . . v2n−1v2n. Then the order of the RLA for the path P − v2
is (2, 3[2n−3]). Note that in forming this list assignment, we deleted from L(v3) the
color r used on v2, but we did not delete from L(v2n) the color y used on v1, since
v1 /∈ V (P ). From Lemma 3.9, we can extend this coloring to P2n to obtain a backbone
coloring by assigning color ai to vi for i = 3, 4, . . . , 2n. If y 	= a2n, then we obtain a
desired backbone coloring of (C2n, P

[n]
2 ). If y = a2n and p 	= a3, then we can assign

x to v1 and p to v2. If y = a2n and p = a3, then we can assign x to v1 and q to v2.
We obtain a backbone coloring of (C2n, P

[n]
2 ).

Next, we assume that L(v2j−1) = L(v2j) where ej = v2j−1v2j for all j = 1, 2, . . . , n.

CASE 2: All lists of endpoints of ej have the same list for j = 1, 2, . . . , n. Without
loss of generality, we may assume that L(vi) = {p, q, r} where p < q < r for all
i = 1, 2, 3, . . . , 2n. Then r − p ≥ 2. We obtain a desired backbone coloring by
assigning colors p to v2j−1 and r to v2j , for all j = 1, 2, . . . , n.

CASE 3: There are ek and el where k 	= l and k, l ∈ {1, 2, . . . , n} such that L(v2k) 	=
L(v2l). Without loss of generality, we may assume that k = 1 and l = n and
L(v1) = L(v2) = L1 and L(v2n−1) = L(v2n) = L2 where L1 	= L2. Let M1 = maxL1,
m1 = minL1, M2 = maxL2, and m2 = minL2. Since |L1| = 3 and |L2| = 3,
M1 −m1 ≥ 2 and M2 −m2 ≥ 2.

CASE 3.1: M1 /∈ L2. We assign M1 to v1 and m1 to v2. Consider the path P =
v2v3v4 . . . v2n−3v2n−2. Then the order of the RLA for the path P − v2 is (2, 3[2n−5]).
From Lemma 3.9, we can extend a coloring to P2n−2 to obtain a backbone coloring
by assigning color ai to vi for i = 3, 4, . . . , 2n− 2. If a2n−2 	= M2, then we can assign
M2 to v2n−1 and m2 to v2n. Otherwise, we can assign m2 to v2n−1 and M2 to v2n.
Since M1 /∈ L2, we obtain a desired backbone coloring.

CASE 3.2: m1 /∈ L2. This case is similar to CASE 3.1.

CASE 3.3: M1, m1 ∈ L2. Recall that L1 = {m1, b,M1} where m1 < b < M1.

CASE 3.3.1: L1 	= {b − 1, b, b + 1}. Then m1 ≤ b − 2 or M1 ≥ b + 2. We can
assign color b to v1 and color m1 or M1 to v2 to make b − m1 ≥ 2 or M1 − b ≥ 2.
Consider the path P = v2v3v4 . . . v2n−3v2n−2. Then the order of the RLA for the path
P −v2 is (2, 3

[2n−5]). From Lemma 3.9, we can extend a coloring to P2n−2 to obtain a
backbone coloring by assigning color ai to vi for i = 3, 4, . . . , 2n− 2. If a2n−2 	= M2,
then we can assign M2 to v2n−1 and m2 to v2n. Otherwise, we can assign m2 to v2n−1

and M2 to v2n. Since L1 	= L2, we have b /∈ L2. Then b 	= M2 and b 	= m2. Hence,
we obtain a desired backbone coloring.
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CASE 3.3.2: L1 = {b−1, b, b+1}. Then M1 = b+1 and m1 = b−1. Since L1 	= L2,
L2 = {b−1, b+1, c} where c ≥ b+2 or c ≤ b−2. Without loss of generality, we may
assume that c ≥ b+ 2. Then M2 = c and m2 = b− 1. We can assign b+ 1 to v1 and
b− 1 to v2. Consider the path P = v2v3v4 . . . v2n−3v2n−2. Then the order of the RLA
for the path P−v2 is (2, 3

[2n−5]). From Lemma 3.9, we can extend a coloring to P2n−2

to obtain a backbone coloring by assigning color ai to vi for i = 3, 4, . . . , 2n− 2. If
a2n−2 	= c, then we can assign c to v2n−1 and b− 1 to v2n. Otherwise, we can assign
b+ 1 to v2n−1 and b− 1 to v2n. Hence, we obtain a desired backbone coloring.

From three cases, we obtain that chBB(C2n, P
[n]
2 ) ≤ 3. By Remark 2.1(iv), we

have that chBB(C2n, P
[n]
2 ) ≥ 3. Therefore chBB(C2n, P

[n]
2 ) = 3.

Next, we consider the case where G is a path and H has a single component that
is a path of length 2. Recall that we considered the analogous case for G = C2n+1 in

the previous section, where we showed that chBB(C2k+3, P3 ∪ P
[k]
2 ) = 4.

Lemma 3.12. chBB(P3, P3) = 3.

Proof. Assume that P3 = v1v2v3. Let L be any 3-assignment of P3. Assign color
a2 to v2 such that a2 ∈ L(v2) where L(v1) 	= {a2 − 1, a2, a2 + 1} 	= L(v3). Then
we obtain a backbone coloring of (P3, P3). We obtain that chBB(P3, P3) ≤ 3. By
Remark 2.1(iv), we have that chBB(P3, P3) ≥ 3. Therefore chBB(P3, P3) = 3.

Lemma 3.13. Let H be a spanning subgraph of Pn(n ≥ 2) such that H is a disjoint
union of paths, each with length at most 2. If at most one component of H has length
2, then chBB(Pn, H) = 3.

Proof. By Lemma 3.8, we can assume that H has no isolated vertices, so each path
in H has length 1 or 2. Let Pn = v1v2 . . . vn. If H has exactly one component, then
H = P2 or H = P3. By Lemmas 3.9 and 3.12, we obtain that chBB(Pn, H) = 3.
Assume that H has at least two components. Let L be any 3-assignment of Pn. We
consider two cases.

CASE 1: There is exactly one component of H with length 2, say P3. Then other
components of H are paths with length 1. Let V (P3) = {vi, vi+1, vi+2} for some
1 ≤ i ≤ n − 2. Note that in this case n and i are odd. By Lemma 3.12, we have
that chBB(P3, P3) = 3. Then we can obtain a backbone coloring to vi, vi+1, and vi+2

as follows. Consider the path P = v1 . . . vi. Since we assign ai to vi, the order of the

RLA for the path P − vi is (3[i−2], 2). By Lemma 3.9, (P − vi, P
[ i−1

2 ]
2 ) is backbone

(3[i−2], 2)-choosable. Similarly, (P ∗−vi+2, P
[n−i−2

2 ]
2 ) is backbone (2, 3[n−i−3])-choosable

where P ∗ = vi+2 . . . vn. Hence we obtain a backbone coloring of (Pn, H).

CASE 2: Each component of H is a path with length 1. Then n is even and

H = P
[n2 ]
2 . By Lemma 3.9, we obtain that chBB(Pn, P

[n2 ]
2 ) = 3.

From both cases, we have that chBB(Pn, H) ≤ 3. We obtain that chBB(Pn, H) ≥ 3
by Remark 2.1(iv). Therefore chBB(Pn, H) = 3.
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Our next theorem summarizes most of the results of this section (all of those for
which H has at least one isolated vertex).

Theorem 3.14. Let H be a spanning subgraph of G such that H is a disjoint union
of paths, each with length at most 2, and let I be the set of all isolated vertices in H.
Assume that I 	= ∅ and E(H − I) 	= ∅. Let G− I =

⋃
i∈Λ

Gi, where Gi is a component

of G − I and Hi = Gi ∩ H. If for each i ∈ Λ, Hi contains at most one component
with length 2, then chBB(G,H) = 3. Otherwise, there is some j ∈ Λ such that Hj

contains at least two components with length 2, and then chBB(G,H) = 4.

Proof. Let i ∈ Λ. Assume that Hi contains at most one component with length 2.
By Lemma 3.13, chBB(Gi, Hi) = 3. Consequently, chBB(G − I,H − I) ≤ 3. Since
E(H − I) 	= ∅, chBB(G − I,H − I) ≥ 3. Therefore chBB(G − I,H − I) = 3. By
Lemma3.8, chBB(G,H) = chBB(G− I,H − I) = 3.

Otherwise, there is j ∈ Λ such that Hj contains at least two components with
length 2. By Corollary 3.5, chBB(Gj , Hj) = 4. Since (G−I,H−I) contains (Gj, Hj),
chBB(G− I,H − I) ≥ chBB(Gj, Hj) = 4 by Proposition 3.1. Since (Cn, Pn) contains
(G− I,H− I), we have that 4 = chBB(Cn, Pn) ≥ chBB(G− I,H− I) by Proposition
3.1 and Lemma 3.2. Hence, chBB(G− I,H − I) = 4. By Lemma3.8, chBB(G,H) =
chBB(G− I,H − I) = 4.

3.3 H is a cycle

In this section we consider the case when H = G = Cn. We first need the
following two lemmas about sets of integers.

Lemma 3.15. If A and B are each a set consisting of five distinct integers, then
there exists x, p, q such that

1. x ∈ A and p, q ∈ B, or

2. x ∈ B and p, q ∈ A

which satisfy |x− p| ≥ 2, |x− q| ≥ 2, and |p− q| ≥ 3.

Proof. Assume that A and B are sets consisting of five distinct integers. Let m =
min(A ∪ B) and M = max(A ∪B).

CASE 1: m,M ∈ A∩B. Assume that A = {m, a1, a2, a3,M} and B = {m, b1, b2, b3,
M} so that m < a1 < a2 < a3 < M and m < b1 < b2 < b3 < M . We choose x = a2,
p = m, and q = M to obtain |x− p| ≥ 2, |x− q| ≥ 2, and |p− q| ≥ 3.

CASE 2: m ∈ A \B. Assume that A = {m, a1, a2, a3, a4} and B = {b1, b2, b3, b4, b5}
so that m < a1 < a2 < a3 < a4 and b1 < b2 < b3 < b4 < b5. So we have that
m < b1 < b2 < b3 < b4 < b5. We choose x = m, p = b2, and q = b5 to obtain
|x− p| ≥ 2, |x− q| ≥ 2, and |p− q| ≥ 3.

CASE 3: M ∈ A \B. We can apply CASE 2 to the sets −A and −B.

This completes the proof.
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Lemma 3.16. Let u and v be two adjacent vertices in Cn and L be any k-assignment
of Cn such that k ≥ 4. The pair (Cn, Cn) has a backbone L-coloring if there are x, p, q
such that

1. x ∈ L(u) and p, q ∈ L(v), or

2. x ∈ L(v) and p, q ∈ L(u)

satisfy |x− p| ≥ 2, |x− q| ≥ 2, and |p− q| ≥ 3.

Proof. Assume that Cn = v1v2v3 . . . vnv1. Let k ≥ 4. It suffices to show only the
case k = 4. Let L be any 4-assignment of Cn. We may assume that x ∈ L(v1)
and p, q ∈ L(vn) such that |x− p| ≥ 2, |x− q| ≥ 2, and |p− q| ≥ 3. We assign
a1 = x to v1. For i = 2, 3, . . . , n − 1, we can assign color ai ∈ L(vi) to vi such that
ai /∈ {ai−1 − 1, ai−1, ai−1 + 1}. If |p− an−1| ≤ 1 and |q − an−1| ≤ 1, then |p− q| ≤ 2,
a contradiction. So |p− an−1| ≥ 2 or |q − an−1| ≥ 2. Then we can assign p or q to
vn. This yields a backbone L-coloring of (Cn, Cn).

Theorem 3.17. chBB(C2n+1, C2n+1) = 5.

Proof. We first observe that chBB(C2n+1, C2n+1) ≥ 5. We assign to each vertex
the list {1, 2, 3, 4}. Suppose that (C2n+1, C2n+1) has a backbone L-coloring. Note
that if a vertex has its color in {1, 2}, then neither of its neighbors has its color in
{1, 2}. The same is true for {3, 4}. Thus, at most

⌊
2n+1

2

⌋
vertices are colored with

1 or 2, and at most
⌊
2n+1

2

⌋
vertices are colored with 3 or 4, a contradiction. Thus,

chBB(C2n+1, C2n+1) ≥ 5.

Assume that C2n+1 = v1v2v3 . . . v2n+1v1. Let L be any 5-assignment of C2n+1. By
Lemma3.15, we may assume further that there are x ∈ L(v1) and p, q ∈ L(v2n+1) such
that |x− p| ≥ 2, |x− q| ≥ 2, and |p− q| ≥ 3. Lemma3.16 yields a desired backbone
coloring. So chBB(C2n+1, C2n+1) ≤ 5. Therefore chBB(C2n+1, C2n+1) = 5.

Theorem 3.18. chBB(C2n, C2n) = 4.

Proof. Assume that C2n = v1v2v3 . . . v2nv1. Let L be any 4-assignment of C2n. We
consider two cases.

CASE 1: Each vertex has the same list. We may assume that L(vi) = {a, b, c, d}
where a < b < c < d for all i = 1, . . . , 2n. Then d − a ≥ 2. We obtain a desired
backbone coloring by assigning a to v2j−1 and d to v2j for all j = 1, . . . , n.

CASE 2: There are two adjacent vertices with different lists. Without loss of
generality, we may assume that L(v1) 	= L(v2n). Let M = max (L(v1) ∪ L(v2n)) and
m = min (L(v1) ∪ L(v2n)).

CASE 2.1: M,m ∈ L(v1) ∩ L(v2n). Since L(v1) 	= L(v2n), there are a, b, c ∈
L(v1) ∪ L(v2n) such that m < a < b < c < M . Without loss of generality, we may
assume that b ∈ L(v1). Then M−b ≥ 2, b−m ≥ 2, and M−m ≥ 3. By Lemma3.16,
there is a backbone L-coloring of (C2n, C2n).

CASE 2.2: M ∈ L(v1) \ L(v2n). We consider 2 subcases.
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CASE 2.2.1: m ∈ L(v1). Assume that L(v1) = {m, a1, b1,M} and L(v2n) =
{a2, b2, c2, d2} such that m < a1 < b1 < M and a2 < b2 < c2 < d2. Then m ≤ a2 <
b2 < c2 < d2 < M . We obtain M − c2 ≥ 2, c2 − m ≥ 2, and M − m ≥ 3. By
Lemma3.16, there is a backbone L-coloring of (C2n, C2n).

CASE 2.2.2: m /∈ L(v1). Assume that L(v1) = {a1, b1, c1,M} and L(v2n) =
{m, a2, b2, c2} such that a1 < b1 < c1 < M and m < a2 < b2 < c2. Then a1 ≥ m+ 1
and c2 ≤ M − 1. If a1 ≥ m + 2, then a1 −m ≥ 2, M −m ≥ 2, and M − a1 ≥ 3.
By Lemma3.16, there is a backbone L-coloring of (C2n, C2n). If c2 ≤ M − 2, then
M − c2 ≥ 2, M − m ≥ 2, and c2 − m ≥ 3. By Lemma3.16, there is a backbone
L-coloring of (C2n, C2n).

Let a1 = m + 1 and c2 = M − 1. If M − b1 ≥ 3, then M − m ≥ 2 and
b1−m > b1− (m+1) = b1− a1 ≥ 1. By Lemma3.16, there is a backbone L-coloring
of (C2n, C2n). If b2 − m ≥ 3, then M − m ≥ 2 and M − b2 > (M − 1) − b2 =
c2 − b2 ≥ 1. By Lemma3.16, there is a backbone L-coloring of (C2n, C2n). Suppose
that M − b1 = 2 and b2 − m = 2. Hence L(v1) = {m + 1,M − 2,M − 1,M} and
L(v2n) = {m,m+ 1, m+ 2,M − 1}.

It remains only to consider the list L with the property that for each i, if L(vi) =
{a, b, c, d}, where a < b < c < d, then L(vi+1 mod 2n) is one of {a, b, c, d}, {a−1, a, a+
1, d − 1}, and {a + 1, d − 1, d, d + 1}. Now, assign minL(vi) to vi for each odd i
and maxL(vi) to vi for each even i. We show that this assignment is a backbone
L-coloring of (C2n, C2n). Consider vivi+1. If i is odd then we assign a to vi. Three
possible colors for vi+1 are d − 1, d, and d + 1. Since d − a ≥ 3, we have that
(d − 1) − a ≥ 2 and (d + 1) − a ≥ 4. If i is even then we assign d to vi. Three
possible colors for vi+1 mod 2n are a − 1, a, and a + 1. Since d − a ≥ 3, we have
that d − (a + 1) ≥ 2 and d − (a − 1) ≥ 4. Thus, we have a backbone L-coloring of
(C2n, C2n).

CASE 2.3: m ∈ L(v1) \ L(v2n). This case is similar to CASE 2.2.

From both cases, we find that chBB(C2n, C2n) ≤ 4. By Proposition 3.1 and
Lemma 3.2, we have that chBB(C2n, C2n) ≥ chBB(C2n, P2n) = 4. Therefore
chBB(C2n, C2n) = 4.

3.4 Proof of Main Theorem

Now we are ready to prove the Main Theorem.

Proof. Obviously, chBB(G,H) = 1 when G = H = P1.

Assume that E(H) = ∅ and G is not an odd cycle. We obtain that chBB(G,H) =
2 by Remarks 2.1(i, ii, v).

By Theorem 3.17, we find that chBB(G,H) = 5 when G = H and G is an odd
cycle.

Suppose that G = H with G and H are even cycles or H contains a path with
length at least 3 or G is a cycle and H is a disjoint union of paths with length at
least 1 and at least one path has length 2 or (G,H) contains (P2k+6, P3 ∪ P

[k]
2 ∪ P3)
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where k ≥ 0. We obtain that chBB(G,H) = 4 by Theorems 3.3, 3.14, 3.18, and
Corollary 3.7.

For the remaining cases, we have

(i) G is an odd cycle and E(H) 	= ∅ or

(ii) G is a cycle and H is a disjoint union of paths with length 1 or

(iii) each Gi is a path and Hi is a disjoint union of paths such that each path has
length 1 except that possibly one path has length 2 where I is the set of all
isolated vertices in H such that I 	= ∅ and E(H − I) 	= ∅ and G− I =

⋃
i∈Λ

Gi

where Gi is a component of G− I and Hi = Gi ∩H .

By Remarks 2.1(ii, v), chBB(C2n+1, H) = ch(C2n+1) = 3 where E(H) = ∅. For (ii)
and (iii), we apply Theorems 3.11, 3.14, and Lemma3.13 to complete the proof.
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