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Abstract
Let D(n) be the maximal determinant for n × n {±1}-matrices, and
R(n) = D(n)/nn/2 be the ratio of D(n) to the Hadamard upper bound.
Using the probabilistic method, we prove new lower bounds on D(n) and
R(n) in terms of d = n− h, where h is the order of a Hadamard matrix
and h is maximal subject to h ≤ n. For example,

R(n) >

(
2

πe

)d/2

if 1 ≤ d ≤ 3, and

R(n) >

(
2

πe

)d/2(
1− d2

( π

2h

)1/2)
if d > 3.

By a recent result of Livinskyi, d2/h1/2 → 0 as n → ∞, so the second
bound is close to (πe/2)−d/2 for large n. Previous lower bounds tended to
zero as n → ∞ with d fixed, except in the cases d ∈ {0, 1}. For d ≥ 2, our
bounds are better for all sufficiently large n. If the Hadamard conjecture
is true, then d ≤ 3, so the first bound above shows that R(n) is bounded
below by a positive constant (πe/2)−3/2 > 0.1133.
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1 Introduction

Let D(n) be the maximal determinant possible for an n× n matrix with elements in
{±1}. Hadamard [14] proved that D(n) ≤ nn/2, and the Hadamard conjecture is that
a matrix achieving this upper bound exists for each positive integer n divisible by
four. The function R(n) := D(n)/nn/2 is a measure of the sharpness of the Hadamard
bound. Clearly R(n) = 1 if a Hadamard matrix of order n exists; otherwise R(n) < 1.
In this paper we give lower bounds on D(n) and R(n).

Let H be the set of orders of Hadamard matrices, and let h ∈ H be maximal
subject to h ≤ n. Then d = n − h can be regarded as the “gap” between n and
the nearest (lower) Hadamard order. We are interested the case that n is not a
Hadamard order, i.e. d > 0 and R(n) < 1.

Except in the cases d ∈ {0, 1}, previous lower bounds on R(n) tended to zero
as n → ∞. For example, the well-known bound of Clements and Lindström [10,
Corollary to Thm. 2] shows that R(n) > (3/4)n/2, and [4, Thm. 9] shows that R(n) ≥
(ne/4)−d/2. In contrast, our results imply that, for fixed d, R(n) is bounded below
by a positive constant (depending only on d).

Our lower bound proof uses the probabilistic method pioneered by Erdős (see for
example [1, 12]). This method does not appear to have been applied previously to the
Hadamard maximal determinant problem, except in the case d = 1 (so n ≡ 1 mod 4);
in this case the concept of excess has been used [13], and lower bounds on the maximal
excess were obtained by the probabilistic method [2, 8, 12, 13].

§2 describes our probabilistic construction and determines the mean μ and vari-
ance σ2 of elements in the Schur complement generated by the construction (see
Lemmas 2.6 and 2.8). Informally, we adjoin d extra columns to an h× h Hadamard
matrix A, and fill their h × d entries with random (uniformly and independently
distributed) ±1 values. Then we adjoin d extra rows, and fill their d× (h+d) entries
with values chosen deterministically in a way intended to approximately maximise
the determinant of the final matrix Ã. To do so, we use the fact that this determinant
can be expressed in terms of the d× d Schur complement of A in Ã.

In the case d = 1, this method is essentially the same as the known method
involving the excess of matrices Hadamard-equivalent to A, and leads to the same
bounds that can be obtained by bounding the excess in a probabilistic manner.

In §3 we give lower bound results on both D(n) and R(n). Of course, a lower
bound on D(n) immediately gives an equivalent lower bound on R(n). However, we
use some elementary inequalities to obtain simpler (though slightly weaker) bounds
on R(n). For example, if d ≤ 3 then Theorem 3.6 states that D(n) ≥ hh/2(μd − η),
where μ and η are certain functions of h and d. Theorem 3.6 also states the (weaker)
result that R(n) > (πe/2)−d/2. The lower bound on R(n) clearly shows that the
ratio of our bound to the Hadamard bound is at least (πe/2)−3/2 > 0.1133, whereas
this conclusion is not immediately obvious from the lower bound on D(n).

We outline the bounds on R(n) here. Theorem 3.4 gives a lower bound

R(n) >

(
2

πe

)d/2(
1− d2

( π

2h

)1/2)
(1)
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which is nontrivial whenever h > πd4/2. By the results of Livinskyi [19], d = O(h1/6)
as h → ∞ (see [6, §6] for details), so the condition h > πd4/2 holds for all sufficiently
large n. Also, as n → ∞, d2/h1/2 = O(n−1/6) → 0, so the lower bound (1) is close to
(πe/2)−d/2. For fixed d > 1 and large n, our lower bounds on R(n) are better than
previous bounds (see Table 1 in §4).

Theorem 3.6 applies only for d ≤ 3, but whenever it is applicable it gives sharper
results than Theorem 3.4. In fact, Theorem 3.6 shows that the factor 1−O(d2/h1/2)
in (1) can be omitted when d ≤ 3, giving R(n) > (πe/2)−d/2. Theorem 3.6 is
always applicable if the Hadamard conjecture is true, since this conjecture implies
that d ≤ 3.

In §4, we give some numerical examples to illustrate Theorems 3.4 and 3.6, and
to compare our results with previous bounds on D(n) and/or R(n).

Rokicki et al [22] showed, by extensive computation, that R(n) ≥ 1/2 for n ≤ 120,
and conjectured that this inequality always holds. It seems difficult to bridge the
gap between the constants 1/2 and (πe/2)−3/2 by the probabilistic method. The
best that we can do is to improve the term of order d2/h1/2 in the bound (1) at the
expense of a more complicated proof – for details see [6].

2 The probabilistic construction

We now describe our probabilistic construction and prove some of its properties. In
the case d = 1 our construction reduces to that of Best [2].

Let A be a Hadamard matrix of order h ≥ 4. We add a border of d rows and
columns to give a larger (square) matrix Ã of order n. The border is defined by
matrices B, C and D as shown:

Ã =

[
A B
C D

]
. (2)

The d × d matrix D − CA−1B is known as the Schur complement of A in Ã after
Schur [23]. The Schur complement lemma (see for example [11]) gives

det(Ã) = det(A) det(D − CA−1B). (3)

In our construction the matrices A, B, and C have entries in {±1}. We allow the
matrix D to have entries in {0,±1}, but each zero entry can be replaced by one
of +1 or −1 without decreasing | det(Ã)|, so any lower bounds that we obtain on
max(| det(Ã)|) are valid lower bounds on maximal determinants of n × n {±1}-
matrices. Note that the Schur complement is not in general a {±1}-matrix.

In the proof of Lemma 3.2 we show that our choice of B, C and D gives a
Schur complement D−CA−1B that, with positive probability, has sufficiently large
determinant. From equation (3) and the fact that A is a Hadamard matrix, a large
value of det(D − CA−1B) implies a large value of det(Ã).
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2.1 Details of the probabilistic construction

Let A be any Hadamard matrix of order h. B is allowed to range over the set of all
h× d {±1}-matrices, chosen uniformly and independently from the 2hd possibilities.
The d× h matrix C = (cij) is a function of B. We choose

cij = sgn(ATB)ji ,

where

sgn(x) :=

{
+1 if x ≥ 0,

−1 if x < 0.

To complete the construction, we choose D = −I. As mentioned above, it is incon-
sequential that D is not a {±1}-matrix.

2.2 Properties of the construction

Define F = CA−1B and G = F−D = F +I (so −G is the Schur complement defined
above). Note that, since A is a Hadamard matrix, AT = hA−1, so hF = CATB.

Since B is random, we expect the elements of ATB to be usually of order h1/2.
The definition of C ensures that there is no cancellation in the inner products defining
the diagonal entries of hF = C · (ATB). Thus, we expect the diagonal entries fii of
F to be nonnegative and of order h1/2, but the off-diagonal entries fij (i �= j) to be
of order unity with high probability. Similarly for the elements of G. This intuition
is justified by Lemmas 2.6 and 2.8.

In the following we denote the expectation of a random variable X by E[X ], and
the variance by V[X] = E[X2]− E[X]2.

Lemmas 2.1–2.2 are essentially due to Best [2] and Lindsey.1

Lemma 2.1. If h ≥ 2 and F = (fij) is chosen as above, then

E[fij ] =

⎧⎨⎩2−hh

(
h

h/2

)
if i = j,

0 if i �= j.

Proof. The case i = j follows as in Best [2, proof of Theorem 3]. The case i �= j is
easy, since B is chosen randomly.

Lemma 2.2. If F = (fij) is chosen as above, then |fij| ≤ h1/2 for 1 ≤ i, j ≤ d.

Proof. The matrix Q := h−1/2AT is orthogonal with rows and columns of unit length
(in the Euclidean norm). Thus ||Qb||2 = ||b||2 = h1/2 for each column b of B. Since
h1/2F = C.QB, each element h1/2fij of h1/2F is the inner product of a row of C
(having length h1/2) and a column of QB (also having length h1/2). It follows from
the Cauchy-Schwartz inequality that |h1/2fij | ≤ h1/2 · h1/2 = h, so |fij| ≤ h1/2.

1See [12, footnote on pg. 88].
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Lemma 2.3. If F is chosen as above and {i, j} ∩ {k, �} = ∅, then fij and fk� are
independent.

Proof. This follows from the fact that fij depends only on the fixed matrix A and
on columns i and j of B.

Lemma 2.4. Let A ∈ {±1}h×h be a Hadamard matrix, C ∈ {±1}d×h, and U =
CA−1. Then, for each i with 1 ≤ i ≤ d,

h∑
j=1

u2
ij = 1.

Proof. Since A is Hadamard, UUT = h−1CCT . Also, since cij = ±1, diag(CCT ) =
hI. Thus diag(UUT ) = I.

Lemma 2.5. If F = (fij) is chosen as above, then

E[f 2
ij ] = 1 for i �= j. (4)

Proof. We can assume, without loss of generality, that i = 1, j > 1. Write F = UB,
where U = CA−1 = h−1CAT . Now

f1j =
∑
k

u1kbkj , (5)

where

u1k =
1

h

∑
�

c1�ak�, c1� = sgn

(∑
m

bm1am�

)
.

Observe that c1� and u1k depend only on the first column of B. Thus, f1j depends
only on the first and j-th columns of B. If we fix the first column of B and take
expectations over all choices of the other columns, we obtain

E[f 2
1j ] = E

[∑
k

∑
�

u1ku1�bkjb�j

]
.

The expectation of the terms with k �= � vanishes, and the expectation of the terms
with k = � is

∑
k u

2
1k. Thus, (4) follows from Lemma 2.4.

Lemma 2.6. Let A be a Hadamard matrix of order h ≥ 4 and B, C be {±1}-matrices
chosen as above. Let G = F + I where F = CA−1B. Then

E[gii] = 1 +
h

2h

(
h

h/2

)
, (6)

E[gij ] = 0 for 1 ≤ i, j ≤ d, i �= j, (7)

V[gii] = 1 +
h(h− 1)

2h+1

(
h/2

h/4

)2

− h2

22h

(
h

h/2

)2

, (8)

V[gij ] = 1 for 1 ≤ i, j ≤ d, i �= j. (9)



R.P. BRENT ET AL. /AUSTRALAS. J. COMBIN. 66 (3) (2016), 350–364 355

Proof. Since G = F + I, the results (6), (7) and (9) follow from Lemma 2.1 and
Lemma 2.5 above. Thus, we only need to prove (8). Since gii = fii+1, it is sufficient
to compute V[fii].

Since A is a Hadamard matrix, hF = CATB. We compute the second moment
about the origin of the diagonal elements hfii of hF . Since h is a Hadamard order
and h ≥ 4, we can write h = 4k where k ∈ Z. Consider h independent random
variables Xj ∈ {±1}, 1 ≤ j ≤ h, where Xj = +1 with probability 1/2. Define
random variables S1, S2 by

S1 =
4k∑
j=1

Xj, S2 =
2k∑
j=1

Xj −
4k∑

j=2k+1

Xj .

Consider a particular choice of X1, . . . , Xh and suppose that k+ p of X1, . . . , X2k

are +1, and that k + q of X2k+1, . . . , X4k are +1. Then we have S1 = 2(p + q) and
S2 = 2(p−q). Thus, taking expectations over all 24k possible (equally likely) choices,
we see that

E[|S1S2|] = 4E[|p2 − q2|] = 4

24k

∑
p

∑
q

(
2k

k + p

)(
2k

k + q

)
|p2 − q2|

=
4

24k
· 2k2

(
2k

k

)2

=
h2

2h+1

(
2k

k

)2

.

Here the closed form for the double sum is a special case of [3, Prop. 1.1]. By the
definitions of B, C and F , we see that hfii is a sum of the form Y1 + Y2 + · · ·+ Yh,
where each Yj is a random variable with the same distribution as |S1|, and each
product YjY� (for j �= �) has the same distribution as |S1S2|. Also, Y 2

j has the same
distribution as |S1|2 = S2

1 . The random variables Yj are not independent, but by
linearity of expectations we obtain

h2
E[f 2

ii] = hE[S2
1 ] + h(h− 1)E[|S1S2|] = h2 + h(h− 1) · h2

2h+1

(
2k

k

)2

.

This gives

E[f 2
ii] = 1 +

h(h− 1)

2h+1

(
2k

k

)2

.

The result for V[gii] now follows from V[gii] = V[fii] = E[f 2
ii]− E[fii]

2.

For convenience we write μ(h) := E[gii] = E[fii] + 1 and σ(h)2 := V[gii]. If h is
understood from the context we write simply μ and σ2 respectively.

To estimate μ and σ2 from Lemma 2.6, we need a sufficiently accurate estimate for
a central binomial coefficient

(
2m
m

)
(where m = h/2 or h/4). An asymptotic expansion

for ln
(
2m
m

)
may be deduced from Stirling’s asymptotic expansion of ln Γ(z), as in [15].

However, [15] does not give an error bound. We state such a bound in the following
Lemma, which may be of independent interest.
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Lemma 2.7. If k and m are positive integers, then

ln

(
2m

m

)
= m ln 4− ln(πm)

2
−

k−1∑
j=1

B2j(1− 4−j)

j(2j − 1)
m1−2j + ek(m), (10)

where
|ek(m)| < |B2k|

k(2k − 1)
m1−2k. (11)

Proof. Using the facts that m is real and positive, and that the sign of the Bernoulli
number B2k is (−1)k−1, we obtain from Olver [20, (4.03) and (4.05) of Ch. 8] that

ln Γ(m) = (m− 1
2
) lnm−m+

ln(2π)

2
+

k−1∑
j=1

B2j

2j(2j − 1)
m1−2j − (−1)krk(m), (12)

where
0 < rk(m) <

|B2k|
2k(2k − 1)

m1−2k. (13)

Now (
2m

m

)
=

(2m)!

m!m!
=

2

m

Γ(2m)

Γ(m)2
,

so from (12) and the same equation with m �→ 2m we obtain (10) with

ek(m) = (−1)k(2rk(m)− rk(2m)).

Using the bound (13), this gives

ek(m) =
(−1)k|B2k|
k(2k − 1)

m1−2kθ,

where −2−2k < θ < 1. In particular, |θ| < 1, so we obtain the desired bound (11).

We now show that μ(h) is of order h1/2, and that σ(h) is bounded.

Lemma 2.8. For h ∈ 4Z, h ≥ 4, we have

σ(h)2 < 1 (14)

and √
2h

π
+ 0.9 < μ(h) <

√
2h

π
+ 1. (15)

Proof. From Lemma 2.7 with k = 2 and m a positive integer, we have(
2m

m

)
=

4m√
πm

exp

[
− 1

8m
+

θm
180m3

]
, (16)

where |θm| < 1.
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First consider the bounds (16) on μ(h). Taking m = h/2 and using the expres-
sion (6) for μ(h), the inequality (15) is equivalent to√

m

π
− 1

20
<

m

4m

(
2m

m

)
<

√
m

π
.

The upper bound is immediate from (16), since − 1
8m

+ 1
180m3 < 0.

For the lower bound, a computation verifies the inequality for m = 2, since√
2/π− 1

20
< 3

4
= m

4m

(
2m
m

)
. Hence, we can assume that m ≥ 4. The lower bound now

follows from (16), since

m

4m

(
2m

m

)
>

√
m

π
exp

[
− 1

8m
− 1

180m3

]
>

√
m

π

[
1− 1

8m
− 1

180m3

]
and √

m

π

[
1

8m
+

1

180m3

]
<

1

20
.

Now consider the upper bound (14) on σ(h)2. From (16) we have(
h/2

h/4

)2

<
2h+2

πh
exp

[
−1

h
+

32

45h3

]
and (

h

h/2

)2

>
22h+1

πh
exp

[
− 1

2h
− 4

45h3

]
.

Using these inequalities in (8) and simplifying gives

σ(h)2 < 1 +
2h

π

[
exp

(
−1

h
+

32

45h3

)
− exp

(
− 1

2h
− 4

45h3

)]
− 2

π
exp

(
−1

h
+

32

45h3

)
. (17)

It is easy to see that the term in square brackets is negative for h ≥ 4, so (17)
implies (14).

Remark 2.9. We can show from (17) and a corresponding lower bound on σ(h)2 that
σ(h+4)2 < σ(h)2, so σ(h)2 is monotonic decreasing and bounded above by σ(4)2 = 1

4
.

Also, for large h we have σ(h)2 = (1 − 3/π) + O(1/h). Since these results are not
needed below, we omit the details.

3 A probabilistic lower bound

We now prove lower bounds on D(n) and R(n) where, as usual, n = h+ d and h is
the order of a Hadamard matrix. The key result is Lemma 3.2. Theorem 3.4 simply
converts the result of Lemma 3.2 into lower bounds on D(n) and R(n), giving away
a little for the sake of simplicity in the latter case.

For the proof of Lemma 3.2 we need the following bound on the determinant of a
matrix which is “close” to the identity matrix. It is due to Ostrowski [21, eqn. (5,5)];
see also [7, Corollary 1].
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Lemma 3.1 (Ostrowski). If M = I − E ∈ R
d×d, |eij| ≤ ε for 1 ≤ i, j ≤ d, and

dε ≤ 1, then
det(M) ≥ 1− dε.

The idea of Lemma 3.2 is that we can, with positive probability, apply Lemma 3.1
to the matrix M = μ−1G, thus obtaining a lower bound on the maximum value
attained by det(G).

Lemma 3.2. Suppose d ≥ 1, 4 ≤ h ∈ H, n = h + d, G as in §2.2. Then, with
positive probability,

detG

μd
≥ 1− d2

μ
. (18)

Proof. Let λ be a positive parameter to be chosen later, and μ = μ(h). We say
that G is good if the conditions of Lemma 3.1 apply with M = μ−1G and ε = λ/μ.
Otherwise G is bad.

Assume 1 ≤ i, j ≤ d. From Lemma 2.6, V[gij] = 1 for i �= j; from Lemma 2.8,
V[gii] = σ2 < 1. It follows from Chebyshev’s inequality [9] that

P[|gij| ≥ λ] ≤ 1

λ2
for i �= j,

and
P[|gii − μ| ≥ λ] ≤ σ2

λ2
.

Thus,

P[G is bad] ≤ d(d− 1)

λ2
+

dσ2

λ2
<

d2

λ2
.

Taking λ = d gives P[G is bad] < 1, so P[G is good] is positive. Whenever G
is good we can apply Lemma 3.1 to μ−1G, obtaining μ−d det(G) = det(μ−1G) ≥
1− dε = 1− dλ/μ = 1− d2/μ.

The following lemma is useful for deducing lower bounds on R(n).

Lemma 3.3. If n = h+ d > h > 0, then

(h/n)n > exp(−d− d2/h).

Proof. Writing x = d/n, the inequality ln(1− x) > −x/(1 − x) implies that

(1− x)n > exp

(
− nx

1− x

)
.

Since 1− x = h/n, we obtain(
h

n

)n

> exp

( −d

1− d/n

)
= exp(−d− d2/h).
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We are now ready to prove our main result. Theorem 3.4 gives lower bounds on
D(n) and R(n). If the reader needs a lower bound for a specific value of n, then the
inequality (19) should be used. The inequality (20) is slightly weaker than what can
be obtained simply by dividing both sides of (19) by nn/2, but it shows more clearly
the asymptotic behaviour if n and h are large but d is small.

Theorem 3.4. Suppose d ≥ 1, 4 ≤ h ∈ H, and n = h + d. Then

D(n) ≥ hh/2μd(1− d2/μ), (19)

where μ = 1 + h
2h

(
h

h/2

)
. Also,

R(n) >

(
2

πe

)d/2(
1− d2

√
π

2h

)
. (20)

Proof. Lemma 3.2 and the Schur complement lemma imply that there exists an n×n
{±1}-matrix with determinant at least hh/2μd(1− d2/μ). Thus, (19) follows from the
definition of D(n).

We now show that (20) follows from (19) by some elementary inequalities. Write
c :=

√
2/π. We can assume that d2 < ch1/2, for there is nothing to prove unless the

right side of (20) is positive. From Lemma 2.8, ch1/2 < μ, so d2 < μ. Also, from (19),

R(n) ≥ hh/2μd

nn/2

(
1− d2

μ

)
. (21)

Using ch1/2 < μ, this gives

R(n) > cd(h/n)n/2(1− d2/μ).

By Lemma 3.3, (h/n)n > exp(−d− d2/h), so

R(n) > cde−d/2f =

(
2

πe

)d/2

f, (22)

where
f = exp

(
− d2

2h

)(
1− d2

μ

)
. (23)

Thus, to prove (20), it suffices to prove that f ≥ 1−d2/(ch1/2). Since exp(−d2/(2h))
≥ 1− d2/(2h), it suffices to prove that(

1− d2

2h

)(
1− d2

μ

)
≥ 1− d2

ch1/2
. (24)

Expanding and simplifying shows that the inequality (24) is equivalent to

2h+ μ ≤ d2 + μ
√
2πh. (25)
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Now, by Lemma 2.8, μ > c
√
h + 0.9, so μ

√
2πh > 2h + 0.9

√
2πh (using c

√
2π = 2).

Thus, to prove (25), it suffices to show that μ ≤ d2 + 0.9
√
2πh. Using Lemma 2.8

again, we have μ ≤ ch1/2 + 1, so it suffices to show that

ch1/2 + 1 ≤ 0.9
√
2πh+ d2.

This follows from c ≤ 0.9
√
2π and 1 ≤ d2, so the proof is complete.

Remark 3.5. The inequality (20) of Theorem 3.4 gives a nontrivial lower bound on
R(n) iff the second factor in the bound is positive, i.e. iff h > πd4/2. By Livinskyi’s
results [19], this condition holds for all sufficiently large n (assuming as always that
we choose the maximal h ≤ n for given n).

The Hadamard conjecture implies that d ≤ 3. Theorem 3.6 improves on Theo-
rem 3.4 under the assumption that d ≤ 3. The proof of Theorem 3.6 is conceptually
simpler than that of Theorem 3.4, since it does not require any bounds on the vari-
ance σ(h)2. In the proof of Theorem 3.6 we simply expand det(G), obtaining d!
terms. By Lemma 2.3, the expectation of the diagonal term is E[g11 · · · gdd] = μd.
The expectation of the off-diagonal terms can be bounded to give the desired lower
bound on D(n). The same approach gives weak results for d > 3 because of the large
number (d!− 1) of off-diagonal terms (see [5, Theorem 1]).

Theorem 3.6. If 1 ≤ d ≤ 3, h ∈ H, n = h + d, and μ as in (19), then

D(n) ≥ hh/2(μd − η) and R(n) >

(
2

πe

)d/2

,

where

η =

{
d− 1 if 1 ≤ d ≤ 2,

5h1/2 + 3 if d = 3.

Proof. It is easy to verify the result for h ∈ {1, 2}, so suppose that h ≥ 4. For
notational convenience we give the proof for the case d = 2. The cases d ∈ {1, 3} are
similar.2

Since G = F+I, we have gii = fii+1 and det(G) = g11g22−f12f21. By Lemma 2.3,
the diagonal elements g11 and g22 are independent, so

E[g11g22] = E[g11]E[g22] = μ2.

By the Cauchy-Schwarz inequality and Lemma 2.5,

E[f12f21]
2 ≤ E[f 2

12]E[f
2
21] = 1.

Thus
E[det(G)] = E[g11g22]− E[f12f21] ≥ μ2 − 1.

2A detailed proof for the case d = 3 is given in [6, proof of Lemma 17].
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There must exist some G0 with det(G0) ≥ E[det(G)] ≥ μ2 − 1; hence

D(n) ≥ hh/2(μ2 − 1).

This proves the required lower bound for D(n) if d = 2. We now deduce the required
lower bound for R(n) = D(n)/nn/2. Define c :=

√
2/π and K := 0.9/c. From

Lemma 2.8, μ ≥ c(h1/2 +K), so μ2 ≥ c2h(1 + 2Kh−1/2). Thus, using n = h + 2,

D(n) ≥ c2hn/2
(
1 + 2Kh−1/2 − η

c2h

)
.

From Lemma 3.3 with d = 2, (h/n)n/2 ≥ e−1−2/h ≥ e−1(1− 2/h), so

R(n) =
D(n)

nn/2
≥
(

2

πe

)(
1 + 2Kh−1/2 − 1

c2h

)(
1− 2

h

)
.

Since K is positive, the term 2Kh−1/2 dominates the O(h−1) terms, and the result
R(n) > 2/(πe) follows for all sufficiently large h. In fact, a small computation shows
that the inequality holds for all h ≥ 4.

4 Numerical examples

In this section we give some numerical comparisons between our lower bounds and
previously-known bounds.

There are two well-known approaches to constructing a large-determinant {±1}-
matrix of order n. The bordering approach takes a Hadamard matrix H of order
h ≤ n and adjoins a border of d = n−h rows and columns. The border is constructed
in a manner intended to result in a large determinant. Previously, deterministic
constructions were used – see for example [4, Lemma 7]. In this paper we have used
a probabilistic construction.

The minors approach takes a Hadamard matrix H+ of order h+ ≥ n and finds an
n × n submatrix with large determinant. This approach was used deterministically
by Koukouvinos et al [16, 17], and probabilistically by de Launey and Levin [18]. The
deterministic approach can be generalised using a theorem of Szöllőzi [24], and this
is better for h+ ≤ n + 6 than the probabilistic approach of [18] – see [4, Remarks 6
and 22].

To illustrate Theorem 3.4, consider the case n = 668, d = 4. At the time of
writing, n is the smallest positive multiple of 4 that is not known to be in H. It is
known that h := n− 4 ∈ H and h+ := n + 4 ∈ H.
The deterministic bordering approach [4, Lemma 7] gives a lower bound R(n) ≥
2dhh/2/nn/2 ≈ 4.88 × 10−6. The deterministic minors approach gives a lower bound
R(n) ≥ 16h

h+/2−4
+ /nn/2 ≈ 2.60 × 10−4. The probabilistic bordering approach of

Theorem 3.4 gives a lower bound (eqn. (21) above) R(n) ≥ hh/2μd(1− d2/μ)/nn/2 ≈
1.69 × 10−2, where μ is as in (19). For comparison, our conjectured lower bound is
(πe/2)−d/2 ≈ 5.48× 10−2.
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Table 1: Asymptotics of lower bounds on R(n) as n → ∞.

d KMS [16] B&O [4] Theorem 3.6

1 4
( e
n

)3/2
≈ 17.93

n3/2

(
2

πe

)1/2

≈ 0.4839

(
2

πe

)1/2

≈ 0.4839

2
2e

n
≈ 5.437

n

(
8

πe2n

)1/2

≈ 0.5871

n1/2

2

πe
≈ 0.2342

3
( e
n

)1/2
≈ 1.649

n1/2

( e
n

)1/2
≈ 1.649

n1/2

(
2

πe

)3/2

≈ 0.1133

To illustrate Theorem 3.6, Table 1 summarises the asymptotics of some lower
bounds on R(n) for d = (n mod 4) ∈ {1, 2, 3}, assuming that n−d ∈ H, n+4−d ∈ H.
The bounds are those given in Koukouvinos et al [16], Brent and Osborn [4, Table 1],
and Theorem 3.6 of the present paper. It can be seen that we improve on the previous
bounds by a factor of order at least n1/2 for d ∈ {2, 3}.

Since asymptotics may be misleading for small n, Table 2 gives lower bounds on
R(n) for various values of n ≡ 2 mod 4 (so d = 2).

Table 2: Comparison of lower bounds on R(n) for d = 2.

n KMS [16] B&O [4] Thm. 3.4 Thm. 3.6
10 0.4147 0.1856 – 0.3752
14 0.3183 0.1569 – 0.3609
18 0.2581 0.1384 0.0127 0.3498
98 0.0538 0.0593 0.1601 0.2897
998 0.0054 0.0186 0.2142 0.2524
limit 0.0000 0.0000 0.2342 0.2342

In the case d = 3, a computation shows that the first bound of our Theorem 3.6
is sharper than the bound D(n) ≥ (n + 1)(n−1)/2 of [16, Thm. 2] if n ≥ 135 (where
the latter bound assumes that n + 1 ∈ H).
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