A note on the independence number in bipartite graphs

Elahe Sharifi Nader Jafari Rad

Department of Mathematics Shahrood University of Technology, Shahrood Iran n.jafarirad@gmail.com

Abstract

The independence number of a graph G, denoted by $\alpha(G)$, is the maximum cardinality of an independent set of vertices in G. The transversal number of G is the minimum cardinality of a set of vertices that covers all the edges of G. If G is a bipartite graph of order n, then it is easy to see that $\frac{n}{2} \leq \alpha(G) \leq n-1$. If G has no edges, then $\alpha(G) = n = n(G)$. Volkmann [Australas. J. Combin. 41 (2008), 219– 222] presented a constructive characterization of bipartite graphs G of order n for which $\alpha(G) = \lceil \frac{n}{2} \rceil$. In this paper we characterize all bipartite graphs G of order n with $\alpha(G) = k$, for each $\lceil \frac{n}{2} \rceil \leq k \leq n-1$. We also give a characterization on the Nordhaus-Gaddum type inequalities on the transversal number of trees.

1 Introduction

In this paper we study independence number and transversal number in bipartite graphs. For notation and also terminology not given here, we refer to [7]. Let G = (V, E) be a simple graph with vertex set V = V(G) and edge set E = E(G). We denote by n(G) and m(G), or just n, m if G is specified, the order and size of G, respectively. For a vertex $v \in V$, let $N_G(v) = \{u | uv \in E(G)\}$ denote the open neighborhood of v. The degree of a vertex v, $\deg_G(v)$, or just $\deg(v)$, denotes the number of neighbors of v in G. We refer $\Delta(G)$ and $\delta(G)$ as the maximum degree and the minimum degree of the vertices of G, respectively. A leaf in a graph is a vertex of degree one, and a support vertex is one that is adjacent to a leaf. We say that a support vertex is strong if it is adjacent to at least two leaves. An edge of G is called a pendant edge if at least one of its vertices is a leaf of G. The distance between two vertices of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex is the greatest distance between it and any other vertex. The diameter of a graph G, denoted by diam(G), is the maximum eccentricity among all vertices of G. For a subset S of V(G), we denote by G[S] the subgraph of G induced by S. A clique is a subset of vertices such that its induced subgraph is complete. The clique number, $\omega(G)$, of a graph G is the number of vertices in a maximum clique in G. In this paper we denote by P_n the path on n vertices. A star S_n is the complete bipartite graph $K_{1,n}$. The vertex with degree n in the star S_n is called *central vertex*. A double star is a tree with precisely two vertices that are not leaves, called the central vertices of the double star. A double-star with central vertices of degrees m and n is denoted by $S_{n,m}$. Note that the corona of a graph G, denoted by cor(G), is a graph obtained from G by adding a leaf for every vertex of G. If T is a rooted tree, then for any vertex v we denote by T_v the subtree rooted at v.

A set S of vertices in a graph G is an *independent set* if no pair of vertices of S are adjacent. The *independence number* of G, denote by $\alpha(G)$, is the maximum cardinality of an independent set in G. An independent set of cardinality $\alpha(G)$ is called an $\alpha(G)$ -set. A matching (or *independent edge set*) in a graph is a set of edges without common vertices. The matching number of G, denote by $\alpha'(G)$, is the maximum cardinality of a matching in G. A vertex covers an edge if it is incident with the edge. A transversal in G is a set of vertices that covers all the edges of G. We remark that a transversal is also called a vertex-cover in the literature. The transversal number of G, denoted by $\tau(G)$, is the minimum cardinality of a transversal in G is called a $\tau(G)$ -set. The independence number is one of the most fundamental and well-studied graph parameters (see, for example, [1, 2, 3, 4, 6, 7, 8, 10]). The following is well-known.

Theorem 1.1 (Gallai [5]). For any graph G of order n, we have $\alpha(G) + \tau(G) = n$.

According to the above relation, it is enough to discuss about only one of the independence number and transversal number. If G is a graph with connected components G_1, \ldots, G_k , then it is obvious that $\tau(G) = \sum_{i=1}^k \tau(G_i)$. Therefore, in this paper we will consider connected graphs.

If G is a bipartite graph with partite sets V_1 and V_2 , then V_1 and V_2 are independent sets and also transversals. Thus the following holds for every bipartite graph G.

$$1 \le \tau(G) \le \frac{n}{2} \le \alpha(G) \le n - 1 \tag{1}$$

As mentioned above, $\alpha(G) = n = n(G)$ is possible, for example for n = 1. Volkmann in [11] characterized bipartite graphs G of order n with $\alpha(G) = \lceil \frac{n}{2} \rceil$. In this paper, we will characterize bipartite graphs G of order n with $\alpha(G) = k$, for each $\lceil \frac{n}{2} \rceil \leq k \leq$ n-1. We also give a characterization on the Nordhause-Gaddum type inequalities on the transversal number of trees. We make use of the following results for the next.

Theorem 1.2 (König [9]). If G is a bipartite graph, then $\tau(G) = \alpha'(G)$.

Observation 1.3 (Volkmann [11]). If G is a connected graph with a maximum matching M, then G contains a spanning tree with the maximum matching M.

2 Main Results

We begin with the following straightforward observation.

Observation 2.1. For the star S_n , the double star $S_{n,m}$ and the path P_n , we have $\tau(S_n) = 1$, $\tau(S_{n,m}) = 2$ and $\tau(P_n) = \lfloor \frac{n}{2} \rfloor$.

Proposition 2.2. For every integers n and k with $1 \le k \le \frac{n}{2}$, there exists a bipartite graph G of order n with $\tau(G) = k$.

Proof. Let n and k be integers with $1 \leq k \leq \frac{n}{2}$. We construct a bipartite graph $G_{k,n}$ of order n with transversal number k. Let G be a bipartite graph of order k with vertex set $V = \{v_1, \ldots, v_k\}$. We construct a graph $G_{k,n}$ from $\operatorname{cor}(G)$ by adding n - 2k new vertices $u_1, u_2, \ldots, u_{n-2k}$ together with new edges $v_i u_i, 1 \leq i \leq n - 2k$, where the indices of vertices in V are taken in modulo k when n - 2k > k. It can be checked that $G_{k,n}$ is a bipartite graph of order n with $\tau(G_{k,n}) = k$.

We next wish to characterize bipartite graphs G with $\tau(G) = k$ for $1 \le k \le \lfloor \frac{n}{2} \rfloor$. For this purpose we first consider trees. For $1 \le k \le \lfloor \frac{n}{2} \rfloor$, we define a family \mathcal{T}_k of trees as follows. Let \mathcal{T}_k , be the collection of trees T of order n that can be obtained from a sequence T_1, T_2, \ldots, T_k , of trees as follows. If n is even, then $T_1 = P_2$ and otherwise $T_1 = P_3$, and let v_1 be the central vertex of T_1 (Note that each of vertices of P_2 is a central vertex of P_2). If $k \ge 2$ then T_{i+1} can be obtained recursively from T_i by the following operation.

• **Operation** \mathcal{O} : Assume that v is an arbitrary vertex of T_i . Then T_{i+1} is obtained from T_i by adding a path P_2 with vertex set $\{v_{i+1}, w_{i+1}\}$ and joining v to v_{i+1} .

Finally, add $n_i \ge 0$ leaves to v_i for i = 1, 2, ..., k in the tree T_k such that $\sum_{i=1}^k n_i = n - 2k$ if n is even and $\sum_{i=1}^k n_i = n - 2k - 1$ if n is odd. We call $v_1, v_2, ..., v_k$ the special vertices of T_k .

We are now ready to establish the following result.

Theorem 2.3. Let T be a tree of order n. Then $\tau(T) = k$ for $1 \le k \le \lfloor \frac{n}{2} \rfloor$, if and only if $T \in \mathcal{T}_k$.

Proof. (\Leftarrow) Let $T \in \mathcal{T}_k$. By definition of the family \mathcal{T}_k , T is obtained from a sequence T_1, T_2, \ldots, T_k of trees, by adding some leaves to special vertices of T_k . If k = 1, then T is a star. By Observation 2.1, $\tau(T) = 1$. Thus assume that $k \geq 2$, and so T_{i+1} is obtained from T_i according to Operation \mathcal{O} , for $i = 1, 2, \ldots, k - 1$, by adding a path $P_2 = v_{i+1}w_{i+1}$ and joining v_{i+1} to a vertex of T_i . We prove that $\tau(T_{i+1}) = \tau(T_i) + 1$ for $i = 1, 2, \ldots, k - 1$. Let S be a $\tau(T_i)$ -set. Clearly $S \cup \{v_{i+1}\}$ is a transversal for T_{i+1} , and so $\tau(T_{i+1}) \leq \tau(T_i) + 1$. Since $V(T_i) \cap \{v_{i+1}, w_{i+1}\} = \emptyset$, no $\tau(T_i)$ -set covers the edge $v_{i+1}w_{i+1}$ in T_{i+1} . Thus $\tau(T_{i+1}) \geq \tau(T_i) + 1$. Therefore, $\tau(T_{i+1}) = \tau(T_i) + 1$. Hence, $\tau(T_k) = k$, since $\tau(T_1) = 1$. It is easy to see that

 $\{v_1, \ldots, v_k\}$ is a transversal for T_k . Since T is obtained from T_k by adding $n_i \ge 0$ leaves to v_i for $i = 1, 2, \ldots, k, \{v_1, \ldots, v_k\}$ is also a transversal for T, and so $\tau(T) \le k$. But T_k is an induced subgraph of T, and thus $\tau(T) \ge \tau(T_k) = k$. Therefore, $\tau(T) = k$.

 (\Longrightarrow) We prove by an induction on n to show that any tree T of order n with $\tau(T) = k, 1 \leq k \leq \lfloor \frac{n}{2} \rfloor$, belongs to \mathcal{T}_k . It is obvious that $n \geq 2$. If diam(T) = 1, then $T = P_2 \in \mathcal{T}_1$. Now assume that diam(T) = 2. Thus T is a star. By Observation 2.1, $\tau(T) = 1$. If n is even then T is obtained from a path P_2 by adding n-2 leaves to a vertex of P_2 , and thus $T \in \mathcal{T}_1$. If n is odd then T is obtained from a path P_3 by adding n-3 leaves to the central vertex of P_3 , and thus $T \in \mathcal{T}_1$. Assume that $\operatorname{diam}(T) = 3$. Then T is a double star. Let *abcd* be a path of length three in T. If n is even, then T is obtained from the path ab by adding a path cd, and then adding deg_T(b) - 2 leaves to b, and deg_T(c) - 2 leaves to c, and thus $T \in \mathcal{T}_2$. Thus assume that n is odd. Then clearly we may assume, without loss of generality, that $\deg(b) \geq 3$. Let $b_1 \neq a$ be a leaf adjacent to b. Then T is obtained from the path abb_1 by adding a path cd, and then adding $\deg_T(b) - 3$ leaves to b, and $\deg_T(c) - 2$ leaves to c, and thus $T \in \mathcal{T}_2$. These are sufficient for the base step of the induction. Now assume that diam $(T) \geq 4$. Assume that the result holds for every tree T' of order n' < n. Assume that T has some strong support vertices. We remove all leaves except one from each strong support vertex to obtain a tree T' with no strong support vertex. Clearly $\tau(T') \leq \tau(T)$. Let S be a $\tau(T')$ -set. We can assume that S contains every support vertex to cover each pendant edge. Then S is also a transversal for T, and so $\tau(T) \leq \tau(T')$. Thus $\tau(T') = \tau(T) = k$. By the induction hypothesis, $T' \in \mathcal{T}_k$. Hence, T' is obtained from a sequence T_1, T_2, \ldots, T_k of trees according to the Operation \mathcal{O} and adding some leaves to the special vertices of T_k . Let v_1, \ldots, v_k be the special vertices of T_k . It is easy to see that the support vertices of T_k are a subset of $\{v_1, \ldots, v_k\}$. Since T' is obtained from T_k by adding leaves to the special vertices of T_k , and T is obtained from T' by adding leaves to some support vertices of T', we obtain that $T \in \mathcal{T}_k$.

Thus assume for the next that T has no strong support vertex. We now root T at a leaf x_0 of a diametrical path $x_0x_1 \ldots x_d$, where $d = \operatorname{diam}(T)$. Let $T' = T - T_{x_{d-1}}$, and let S be a $\tau(T')$ -set. Then $S \cup \{x_{d-1}\}$ is a transversal for T, and so $\tau(T) \leq \tau(T') + 1$. Since $V(T') \cap \{x_{d-1}, x_d\} = \emptyset$, no $\tau(T')$ -set in T covers the edge $x_{d-1}x_d$. Hence, $\tau(T) \geq \tau(T') + 1$. Thus, $\tau(T') = \tau(T) - 1 = k - 1$. By the induction hypothesis, $T' \in \mathcal{T}_{k-1}$. Then T is obtained by adding the path $P_2 : x_{d-1}x_d$ and joining x_{d-2} to x_{d-1} according to Operation \mathcal{O} . Hence $T \in \mathcal{T}_k$.

Now we present our main result. As an immediate consequence of Theorem 2.3, we have the following characterization of bipartite graphs of order n with transversal number $k, 1 \le k \le \frac{n}{2}$.

Theorem 2.4. Let G be a bipartite graph of order n. Then $\tau(G) = k$ for $1 \le k \le \lfloor \frac{n}{2} \rfloor$, if and only if G has a spanning tree $T \in \mathcal{T}_k$, and no spanning tree of G belongs to $\mathcal{T}_{k'}$ for each k' > k.

Proof. Let $\tau(G) = k$, where $1 \le k \le \lfloor \frac{n}{2} \rfloor$. Since G is a bipartite graph, by Theorem 1.2, G has a maximum matching M of cardinality k. Hence, by Observation 1.3, G contains a spanning tree T with the maximum matching M. Then $\tau(T) = k$. Therefore, by Theorem 2.3, $T \in \mathcal{T}_k$. Suppose that G has a spanning tree $T' \in \mathcal{T}_{k'}$ where k' > k. Then, by Theorem 2.3, $\tau(T') = k'$. But $\tau(G) \ge \tau(T') = k' > k$, a contradiction. Conversely, assume that G has a spanning tree $T \in \mathcal{T}_k$ and no spanning tree of G belongs to $\mathcal{T}_{k'}$ for each k' > k. By Theorem 2.3, $\tau(T) = k$. Thus $\tau(G) \ge \tau(T) = k$. Let $\tau(G) = k' > k$. By the first part of the theorem, G has a spanning tree $T' \in \mathcal{T}_{k'}$, a contradiction. Therefore, $\tau(G) = k$.

Theorem 2.4 is equivalent to a characterization of all bipartite graphs G of order n with $\alpha(G) = k$, for each $\lceil \frac{n}{2} \rceil \le k \le n-1$ and also, all bipartite graphs G of order n with $\alpha'(G) = k$, for each $1 \le k \le \lfloor \frac{n}{2} \rfloor$.

We end the paper with a characterization on the Nordhaus-Gaddum type inequalities on the transversal number of trees. If G is a bipartite graph of order n, then $\omega(G) = 2$, and so by Theorem 1.1, we have

$$\tau(\overline{G}) = n - \alpha(\overline{G}) = n - \omega(G) = n - 2.$$
⁽²⁾

Therefore, by (1) and (2), we obtain the following bounds that are sharp by Observation 2.1.

Observation 2.5. If G is a bipartite graph of order n, then $n-1 \le \tau(G) + \tau(\overline{G}) \le \frac{3}{2}n-2$, and these bounds are sharp.

As a consequence of Theorem 2.3, we have the following characterization.

Corollary 2.6. Let T be a tree of order n. Then $\tau(T) + \tau(\overline{T}) = k$ for $n - 1 \le k \le \frac{3}{2}n - 2$, if and only if $T \in \mathcal{T}_{k-n+2}$.

Acknowledgements

We would like to thank the referees for their careful evaluation and some helpful comments.

References

- [1] E. Angel, R. Campigotto and C. Laforest, A new lower bound on the independence number of graphs, *Discrete Appl. Math.* 161 (2013), 847–852.
- [2] K. Dutta, D. Mubayi and C.R. Subramanian, New lower bounds for the independence number of sparse graphs and hypergraphs, *Siam J. Discrete Math.* 26 (2012), 1134–1147.
- [3] W. Goddard, and M.A. Henning, Independent domination in graphs: a survey and recent results, *Discrete Math.* 313 (2013), 839–854.

- [4] W. Goddard, M.A. Henning, J. Lyle and J. Southey, On the independent domination number of regular graphs, Ann. Comb. 16 (2012), 719–732.
- [5] T. Gallai, Uber extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 2 (1959), 133–138.
- [6] J. Harant, M.A. Henning, D. Rautenbach and I. Schiermeyer, Independence number in graphs of maximum degree three, *Discrete Math.* 308, (2008) 5829– 5833.
- [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [8] M.A. Henning, C. Löwenstein, J. Southey and A. Yeo, A new lower bound on the independence number of a graph and applications, *Electron. J. Combin.* 21 (2014), P1.38.
- [9] D. König, Graphen und Matrizen, Mat. Fiz. Lapok 38 (1931), 116–119.
- [10] A. Pedersen, D. Rautenbach and F. Regen, Lower bounds on the independence number of certain graphs of odd girth at least seven, *Discrete Appl. Math.* 159 (2011), 143–151.
- [11] L. Volkmann, A characterization of bipartite graphs with independence number half their order, Australas. J. Combin. 41 (2008), 219–222.

(Received 10 May 2016)