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Abstract

The independence number of a graph G, denoted by α(G), is the max-
imum cardinality of an independent set of vertices in G. The transver-
sal number of G is the minimum cardinality of a set of vertices that
covers all the edges of G. If G is a bipartite graph of order n, then
it is easy to see that n

2
≤ α(G) ≤ n − 1. If G has no edges, then

α(G) = n = n(G). Volkmann [Australas. J. Combin. 41 (2008), 219–
222] presented a constructive characterization of bipartite graphs G of
order n for which α(G) = �n

2
�. In this paper we characterize all bipartite

graphs G of order n with α(G) = k, for each �n
2
� ≤ k ≤ n − 1. We

also give a characterization on the Nordhaus-Gaddum type inequalities
on the transversal number of trees.

1 Introduction

In this paper we study independence number and transversal number in bipartite
graphs. For notation and also terminology not given here, we refer to [7]. Let
G = (V,E) be a simple graph with vertex set V = V (G) and edge set E = E(G).
We denote by n(G) and m(G), or just n,m if G is specified, the order and size of
G, respectively. For a vertex v ∈ V , let NG(v) = {u|uv ∈ E(G)} denote the open
neighborhood of v. The degree of a vertex v, degG(v), or just deg(v), denotes the
number of neighbors of v in G. We refer Δ(G) and δ(G) as the maximum degree and
the minimum degree of the vertices of G, respectively. A leaf in a graph is a vertex
of degree one, and a support vertex is one that is adjacent to a leaf. We say that a
support vertex is strong if it is adjacent to at least two leaves. An edge of G is called
a pendant edge if at least one of its vertices is a leaf of G. The distance between two
vertices of a graph is the number of edges in a shortest path connecting them. The
eccentricity of a vertex is the greatest distance between it and any other vertex. The
diameter of a graph G, denoted by diam(G), is the maximum eccentricity among all
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vertices of G. For a subset S of V (G), we denote by G[S] the subgraph of G induced
by S. A clique is a subset of vertices such that its induced subgraph is complete.
The clique number, ω(G), of a graph G is the number of vertices in a maximum
clique in G. In this paper we denote by Pn the path on n vertices. A star Sn is
the complete bipartite graph K1,n. The vertex with degree n in the star Sn is called
central vertex. A double star is a tree with precisely two vertices that are not leaves,
called the central vertices of the double star. A double-star with central vertices of
degrees m and n is denoted by Sn,m. Note that the corona of a graph G, denoted by
cor(G), is a graph obtained from G by adding a leaf for every vertex of G. If T is a
rooted tree, then for any vertex v we denote by Tv the subtree rooted at v.

A set S of vertices in a graph G is an independent set if no pair of vertices of
S are adjacent. The independence number of G, denote by α(G), is the maximum
cardinality of an independent set in G. An independent set of cardinality α(G) is
called an α(G)-set. A matching (or independent edge set) in a graph is a set of
edges without common vertices. The matching number of G, denote by α′(G), is the
maximum cardinality of a matching in G. A vertex covers an edge if it is incident
with the edge. A transversal in G is a set of vertices that covers all the edges of
G. We remark that a transversal is also called a vertex-cover in the literature. The
transversal number of G, denoted by τ(G), is the minimum cardinality of a transver-
sal in G. A transversal of cardinality τ(G) is called a τ(G)-set. The independence
number is one of the most fundamental and well-studied graph parameters (see, for
example, [1, 2, 3, 4, 6, 7, 8, 10]). The following is well-known.

Theorem 1.1 (Gallai [5]). For any graph G of order n, we have α(G) + τ(G) = n.

According to the above relation, it is enough to discuss about only one of the
independence number and transversal number. If G is a graph with connected com-
ponents G1, . . . , Gk, then it is obvious that τ(G) =

∑k
i=1 τ(Gi). Therefore, in this

paper we will consider connected graphs.

If G is a bipartite graph with partite sets V1 and V2, then V1 and V2 are indepen-
dent sets and also transversals. Thus the following holds for every bipartite graph
G.

1 ≤ τ(G) ≤ n

2
≤ α(G) ≤ n− 1 (1)

As mentioned above, α(G) = n = n(G) is possible, for example for n = 1. Volkmann
in [11] characterized bipartite graphs G of order n with α(G) = �n

2
�. In this paper,

we will characterize bipartite graphs G of order n with α(G) = k, for each �n
2
� ≤ k ≤

n − 1. We also give a characterization on the Nordhause-Gaddum type inequalities
on the transversal number of trees. We make use of the following results for the next.

Theorem 1.2 (König [9]). If G is a bipartite graph, then τ(G) = α′(G).

Observation 1.3 (Volkmann [11]). If G is a connected graph with a maximum
matching M , then G contains a spanning tree with the maximum matching M .
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2 Main Results

We begin with the following straightforward observation.

Observation 2.1. For the star Sn, the double star Sn,m and the path Pn, we have
τ(Sn) = 1, τ(Sn,m) = 2 and τ(Pn) = �n

2
�.

Proposition 2.2. For every integers n and k with 1 ≤ k ≤ n
2
, there exists a bipartite

graph G of order n with τ(G) = k.

Proof. Let n and k be integers with 1 ≤ k ≤ n
2
. We construct a bipartite graph

Gk,n of order n with transversal number k. Let G be a bipartite graph of order k
with vertex set V = {v1, . . . , vk}. We construct a graph Gk,n from cor(G) by adding
n − 2k new vertices u1, u2, . . . , un−2k together with new edges viui, 1 ≤ i ≤ n− 2k,
where the indices of vertices in V are taken in modulo k when n− 2k > k. It can be
checked that Gk,n is a bipartite graph of order n with τ(Gk,n) = k.

We next wish to characterize bipartite graphs G with τ(G) = k for 1 ≤ k ≤ �n
2
�.

For this purpose we first consider trees. For 1 ≤ k ≤ �n
2
�, we define a family Tk of

trees as follows. Let Tk, be the collection of trees T of order n that can be obtained
from a sequence T1, T2, . . . , Tk, of trees as follows. If n is even, then T1 = P2 and
otherwise T1 = P3, and let v1 be the central vertex of T1 (Note that each of vertices
of P2 is a central vertex of P2). If k ≥ 2 then Ti+1 can be obtained recursively from
Ti by the following operation.

• Operation O: Assume that v is an arbitrary vertex of Ti. Then Ti+1 is
obtained from Ti by adding a path P2 with vertex set {vi+1, wi+1} and joining
v to vi+1.

Finally, add ni ≥ 0 leaves to vi for i = 1, 2, ..., k in the tree Tk such that
∑k

i=1 ni =

n − 2k if n is even and
∑k

i=1 ni = n − 2k − 1 if n is odd. We call v1, v2, ..., vk the
special vertices of Tk.

We are now ready to establish the following result.

Theorem 2.3. Let T be a tree of order n. Then τ(T ) = k for 1 ≤ k ≤ �n
2
�, if and

only if T ∈ Tk.

Proof. (⇐=) Let T ∈ Tk. By definition of the family Tk, T is obtained from a
sequence T1, T2, . . . , Tk of trees, by adding some leaves to special vertices of Tk. If
k = 1, then T is a star. By Observation 2.1, τ(T ) = 1. Thus assume that k ≥ 2,
and so Ti+1 is obtained from Ti according to Operation O, for i = 1, 2, ..., k − 1,
by adding a path P2 = vi+1wi+1 and joining vi+1 to a vertex of Ti. We prove that
τ(Ti+1) = τ(Ti) + 1 for i = 1, 2, ..., k − 1. Let S be a τ(Ti)-set. Clearly S ∪ {vi+1}
is a transversal for Ti+1, and so τ(Ti+1) ≤ τ(Ti) + 1. Since V (Ti) ∩ {vi+1, wi+1} = ∅,
no τ(Ti)-set covers the edge vi+1wi+1 in Ti+1. Thus τ(Ti+1) ≥ τ(Ti) + 1. Therefore,
τ(Ti+1) = τ(Ti) + 1. Hence, τ(Tk) = k, since τ(T1) = 1. It is easy to see that
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{v1, . . . , vk} is a transversal for Tk. Since T is obtained from Tk by adding ni ≥ 0
leaves to vi for i = 1, 2, ..., k, {v1, . . . , vk} is also a transversal for T , and so τ(T ) ≤ k.
But Tk is an induced subgraph of T , and thus τ(T ) ≥ τ(Tk) = k. Therefore,
τ(T ) = k.

(=⇒) We prove by an induction on n to show that any tree T of order n with
τ(T ) = k, 1 ≤ k ≤ �n

2
�, belongs to Tk. It is obvious that n ≥ 2. If diam(T ) = 1,

then T = P2 ∈ T1. Now assume that diam(T ) = 2. Thus T is a star. By Observation
2.1, τ(T ) = 1. If n is even then T is obtained from a path P2 by adding n− 2 leaves
to a vertex of P2, and thus T ∈ T1. If n is odd then T is obtained from a path P3

by adding n − 3 leaves to the central vertex of P3, and thus T ∈ T1. Assume that
diam(T ) = 3. Then T is a double star. Let abcd be a path of length three in T .
If n is even, then T is obtained from the path ab by adding a path cd, and then
adding degT (b)− 2 leaves to b, and degT (c)− 2 leaves to c, and thus T ∈ T2. Thus
assume that n is odd. Then clearly we may assume, without loss of generality, that
deg(b) ≥ 3. Let b1 �= a be a leaf adjacent to b. Then T is obtained from the path
abb1 by adding a path cd, and then adding degT (b)− 3 leaves to b, and degT (c)− 2
leaves to c, and thus T ∈ T2. These are sufficient for the base step of the induction.
Now assume that diam(T ) ≥ 4. Assume that the result holds for every tree T ′ of
order n′ < n. Assume that T has some strong support vertices. We remove all leaves
except one from each strong support vertex to obtain a tree T ′ with no strong support
vertex. Clearly τ(T ′) ≤ τ(T ). Let S be a τ(T ′)-set. We can assume that S contains
every support vertex to cover each pendant edge. Then S is also a transversal for
T , and so τ(T ) ≤ τ(T ′). Thus τ(T ′) = τ(T ) = k. By the induction hypothesis,
T ′ ∈ Tk. Hence, T ′ is obtained from a sequence T1, T2, . . . , Tk of trees according to
the Operation O and adding some leaves to the special vertices of Tk. Let v1, . . . , vk
be the special vertices of Tk. It is easy to see that the support vertices of Tk are a
subset of {v1, . . . , vk}. Since T ′ is obtained from Tk by adding leaves to the special
vertices of Tk, and T is obtained from T ′ by adding leaves to some support vertices
of T ′, we obtain that T ∈ Tk.

Thus assume for the next that T has no strong support vertex. We now root T at
a leaf x0 of a diametrical path x0x1 . . . xd, where d =diam(T ). Let T ′ = T−Txd−1

, and
let S be a τ(T ′)-set. Then S∪{xd−1} is a transversal for T , and so τ(T ) ≤ τ(T ′)+1.
Since V (T ′) ∩ {xd−1, xd} = ∅, no τ(T ′)-set in T covers the edge xd−1xd. Hence,
τ(T ) ≥ τ(T ′) + 1. Thus, τ(T ′) = τ(T ) − 1 = k − 1. By the induction hypothesis,
T ′ ∈ Tk−1. Then T is obtained by adding the path P2 : xd−1xd and joining xd−2 to
xd−1 according to Operation O. Hence T ∈ Tk.

Now we present our main result. As an immediate consequence of Theorem 2.3,
we have the following characterization of bipartite graphs of order n with transversal
number k, 1 ≤ k ≤ n

2
.

Theorem 2.4. Let G be a bipartite graph of order n. Then τ(G) = k for 1 ≤ k ≤
�n
2
�, if and only if G has a spanning tree T ∈ Tk, and no spanning tree of G belongs

to Tk′ for each k′ > k.
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Proof. Let τ(G) = k, where 1 ≤ k ≤ �n
2
�. Since G is a bipartite graph, by Theorem

1.2, G has a maximum matching M of cardinality k. Hence, by Observation 1.3,
G contains a spanning tree T with the maximum matching M . Then τ(T ) = k.
Therefore, by Theorem 2.3, T ∈ Tk. Suppose that G has a spanning tree T ′ ∈ Tk′

where k′ > k. Then, by Theorem 2.3, τ(T ′) = k′. But τ(G) ≥ τ(T ′) = k′ > k,
a contradiction. Conversely, assume that G has a spanning tree T ∈ Tk and no
spanning tree of G belongs to Tk′ for each k′ > k. By Theorem 2.3, τ(T ) = k. Thus
τ(G) ≥ τ(T ) = k. Let τ(G) = k′ > k. By the first part of the theorem, G has a
spanning tree T ′ ∈ Tk′, a contradiction. Therefore, τ(G) = k.

Theorem 2.4 is equivalent to a characterization of all bipartite graphs G of order
n with α(G) = k, for each �n

2
� ≤ k ≤ n− 1 and also, all bipartite graphs G of order

n with α′(G) = k, for each 1 ≤ k ≤ �n
2
�.

We end the paper with a characterization on the Nordhaus-Gaddum type in-
equalities on the transversal number of trees. If G is a bipartite graph of order n,
then ω(G) = 2, and so by Theorem 1.1, we have

τ(G) = n− α(G) = n− ω(G) = n− 2. (2)

Therefore, by (1) and (2), we obtain the following bounds that are sharp by Obser-
vation 2.1.

Observation 2.5. If G is a bipartite graph of order n, then n− 1 ≤ τ(G) + τ(G) ≤
3
2
n− 2, and these bounds are sharp.

As a consequence of Theorem 2.3, we have the following characterization.

Corollary 2.6. Let T be a tree of order n. Then τ(T ) + τ(T ) = k for n− 1 ≤ k ≤
3
2
n− 2, if and only if T ∈ Tk−n+2.
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