A note on the independence number in bipartite graphs

Elahe Sharifi Nader Jafari Rad
Department of Mathematics
Shahrood University of Technology, Shahrood
Iran
n.jafarirad@gmail.com

Abstract

The independence number of a graph G, denoted by $\alpha(G)$, is the maximum cardinality of an independent set of vertices in G. The transversal number of G is the minimum cardinality of a set of vertices that covers all the edges of G. If G is a bipartite graph of order n, then it is easy to see that $\frac{n}{2} \leq \alpha(G) \leq n-1$. If G has no edges, then $\alpha(G)=n=n(G)$. Volkmann [Australas. J. Combin. 41 (2008), 219222] presented a constructive characterization of bipartite graphs G of order n for which $\alpha(G)=\left\lceil\frac{n}{2}\right\rceil$. In this paper we characterize all bipartite graphs G of order n with $\alpha(G)=k$, for each $\left\lceil\frac{n}{2}\right\rceil \leq k \leq n-1$. We also give a characterization on the Nordhaus-Gaddum type inequalities on the transversal number of trees.

1 Introduction

In this paper we study independence number and transversal number in bipartite graphs. For notation and also terminology not given here, we refer to [7]. Let $G=(V, E)$ be a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. We denote by $n(G)$ and $m(G)$, or just n, m if G is specified, the order and size of G, respectively. For a vertex $v \in V$, let $N_{G}(v)=\{u \mid u v \in E(G)\}$ denote the open neighborhood of v. The degree of a vertex $v, \operatorname{deg}_{G}(v)$, or just $\operatorname{deg}(v)$, denotes the number of neighbors of v in G. We refer $\Delta(G)$ and $\delta(G)$ as the maximum degree and the minimum degree of the vertices of G, respectively. A leaf in a graph is a vertex of degree one, and a support vertex is one that is adjacent to a leaf. We say that a support vertex is strong if it is adjacent to at least two leaves. An edge of G is called a pendant edge if at least one of its vertices is a leaf of G. The distance between two vertices of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex is the greatest distance between it and any other vertex. The diameter of a graph G, denoted by $\operatorname{diam}(G)$, is the maximum eccentricity among all
vertices of G. For a subset S of $V(G)$, we denote by $G[S]$ the subgraph of G induced by S. A clique is a subset of vertices such that its induced subgraph is complete. The clique number, $\omega(G)$, of a graph G is the number of vertices in a maximum clique in G. In this paper we denote by P_{n} the path on n vertices. A star S_{n} is the complete bipartite graph $K_{1, n}$. The vertex with degree n in the star S_{n} is called central vertex. A double star is a tree with precisely two vertices that are not leaves, called the central vertices of the double star. A double-star with central vertices of degrees m and n is denoted by $S_{n, m}$. Note that the corona of a graph G, denoted by $\operatorname{cor}(G)$, is a graph obtained from G by adding a leaf for every vertex of G. If T is a rooted tree, then for any vertex v we denote by T_{v} the subtree rooted at v.

A set S of vertices in a graph G is an independent set if no pair of vertices of S are adjacent. The independence number of G, denote by $\alpha(G)$, is the maximum cardinality of an independent set in G. An independent set of cardinality $\alpha(G)$ is called an $\alpha(G)$-set. A matching (or independent edge set) in a graph is a set of edges without common vertices. The matching number of G, denote by $\alpha^{\prime}(G)$, is the maximum cardinality of a matching in G. A vertex covers an edge if it is incident with the edge. A transversal in G is a set of vertices that covers all the edges of G. We remark that a transversal is also called a vertex-cover in the literature. The transversal number of G, denoted by $\tau(G)$, is the minimum cardinality of a transversal in G. A transversal of cardinality $\tau(G)$ is called a $\tau(G)$-set. The independence number is one of the most fundamental and well-studied graph parameters (see, for example, $[1,2,3,4,6,7,8,10])$. The following is well-known.

Theorem 1.1 (Gallai [5]). For any graph G of order n, we have $\alpha(G)+\tau(G)=n$.
According to the above relation, it is enough to discuss about only one of the independence number and transversal number. If G is a graph with connected components G_{1}, \ldots, G_{k}, then it is obvious that $\tau(G)=\sum_{i=1}^{k} \tau\left(G_{i}\right)$. Therefore, in this paper we will consider connected graphs.

If G is a bipartite graph with partite sets V_{1} and V_{2}, then V_{1} and V_{2} are independent sets and also transversals. Thus the following holds for every bipartite graph G.

$$
\begin{equation*}
1 \leq \tau(G) \leq \frac{n}{2} \leq \alpha(G) \leq n-1 \tag{1}
\end{equation*}
$$

As mentioned above, $\alpha(G)=n=n(G)$ is possible, for example for $n=1$. Volkmann in [11] characterized bipartite graphs G of order n with $\alpha(G)=\left\lceil\frac{n}{2}\right\rceil$. In this paper, we will characterize bipartite graphs G of order n with $\alpha(G)=k$, for each $\left\lceil\frac{n}{2}\right\rceil \leq k \leq$ $n-1$. We also give a characterization on the Nordhause-Gaddum type inequalities on the transversal number of trees. We make use of the following results for the next.

Theorem 1.2 (König [9]). If G is a bipartite graph, then $\tau(G)=\alpha^{\prime}(G)$.
Observation 1.3 (Volkmann [11]). If G is a connected graph with a maximum matching M, then G contains a spanning tree with the maximum matching M.

2 Main Results

We begin with the following straightforward observation.
Observation 2.1. For the star S_{n}, the double star $S_{n, m}$ and the path P_{n}, we have $\tau\left(S_{n}\right)=1, \tau\left(S_{n, m}\right)=2$ and $\tau\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Proposition 2.2. For every integers n and k with $1 \leq k \leq \frac{n}{2}$, there exists a bipartite graph G of order n with $\tau(G)=k$.

Proof. Let n and k be integers with $1 \leq k \leq \frac{n}{2}$. We construct a bipartite graph $G_{k, n}$ of order n with transversal number k. Let G be a bipartite graph of order k with vertex set $V=\left\{v_{1}, \ldots, v_{k}\right\}$. We construct a graph $G_{k, n}$ from $\operatorname{cor}(G)$ by adding $n-2 k$ new vertices $u_{1}, u_{2}, \ldots, u_{n-2 k}$ together with new edges $v_{i} u_{i}, 1 \leq i \leq n-2 k$, where the indices of vertices in V are taken in modulo k when $n-2 k>k$. It can be checked that $G_{k, n}$ is a bipartite graph of order n with $\tau\left(G_{k, n}\right)=k$.

We next wish to characterize bipartite graphs G with $\tau(G)=k$ for $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$. For this purpose we first consider trees. For $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, we define a family \mathcal{T}_{k} of trees as follows. Let \mathcal{T}_{k}, be the collection of trees T of order n that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}$, of trees as follows. If n is even, then $T_{1}=P_{2}$ and otherwise $T_{1}=P_{3}$, and let v_{1} be the central vertex of T_{1} (Note that each of vertices of P_{2} is a central vertex of P_{2}). If $k \geq 2$ then T_{i+1} can be obtained recursively from T_{i} by the following operation.

- Operation \mathcal{O} : Assume that v is an arbitrary vertex of T_{i}. Then T_{i+1} is obtained from T_{i} by adding a path P_{2} with vertex set $\left\{v_{i+1}, w_{i+1}\right\}$ and joining v to v_{i+1}.

Finally, add $n_{i} \geq 0$ leaves to v_{i} for $i=1,2, \ldots, k$ in the tree T_{k} such that $\sum_{i=1}^{k} n_{i}=$ $n-2 k$ if n is even and $\sum_{i=1}^{k} n_{i}=n-2 k-1$ if n is odd. We call $v_{1}, v_{2}, \ldots, v_{k}$ the special vertices of T_{k}.

We are now ready to establish the following result.
Theorem 2.3. Let T be a tree of order n. Then $\tau(T)=k$ for $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, if and only if $T \in \mathcal{T}_{k}$.

Proof. ($\Longleftarrow) ~ L e t ~ T \in \mathcal{T}_{k}$. By definition of the family \mathcal{T}_{k}, T is obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}$ of trees, by adding some leaves to special vertices of T_{k}. If $k=1$, then T is a star. By Observation 2.1, $\tau(T)=1$. Thus assume that $k \geq 2$, and so T_{i+1} is obtained from T_{i} according to Operation \mathcal{O}, for $i=1,2, \ldots, k-1$, by adding a path $P_{2}=v_{i+1} w_{i+1}$ and joining v_{i+1} to a vertex of T_{i}. We prove that $\tau\left(T_{i+1}\right)=\tau\left(T_{i}\right)+1$ for $i=1,2, \ldots, k-1$. Let S be a $\tau\left(T_{i}\right)$-set. Clearly $S \cup\left\{v_{i+1}\right\}$ is a transversal for T_{i+1}, and so $\tau\left(T_{i+1}\right) \leq \tau\left(T_{i}\right)+1$. Since $V\left(T_{i}\right) \cap\left\{v_{i+1}, w_{i+1}\right\}=\emptyset$, no $\tau\left(T_{i}\right)$-set covers the edge $v_{i+1} w_{i+1}$ in T_{i+1}. Thus $\tau\left(T_{i+1}\right) \geq \tau\left(T_{i}\right)+1$. Therefore, $\tau\left(T_{i+1}\right)=\tau\left(T_{i}\right)+1$. Hence, $\tau\left(T_{k}\right)=k$, since $\tau\left(T_{1}\right)=1$. It is easy to see that
$\left\{v_{1}, \ldots, v_{k}\right\}$ is a transversal for T_{k}. Since T is obtained from T_{k} by adding $n_{i} \geq 0$ leaves to v_{i} for $i=1,2, \ldots, k,\left\{v_{1}, \ldots, v_{k}\right\}$ is also a transversal for T, and so $\tau(T) \leq k$. But T_{k} is an induced subgraph of T, and thus $\tau(T) \geq \tau\left(T_{k}\right)=k$. Therefore, $\tau(T)=k$.
(\Longrightarrow) We prove by an induction on n to show that any tree T of order n with $\tau(T)=k, 1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, belongs to \mathcal{T}_{k}. It is obvious that $n \geq 2$. If $\operatorname{diam}(T)=1$, then $T=P_{2} \in \mathcal{T}_{1}$. Now assume that $\operatorname{diam}(T)=2$. Thus T is a star. By Observation 2.1, $\tau(T)=1$. If n is even then T is obtained from a path P_{2} by adding $n-2$ leaves to a vertex of P_{2}, and thus $T \in \mathcal{T}_{1}$. If n is odd then T is obtained from a path P_{3} by adding $n-3$ leaves to the central vertex of P_{3}, and thus $T \in \mathcal{T}_{1}$. Assume that $\operatorname{diam}(T)=3$. Then T is a double star. Let $a b c d$ be a path of length three in T. If n is even, then T is obtained from the path $a b$ by adding a path $c d$, and then adding $\operatorname{deg}_{T}(b)-2$ leaves to b, and $\operatorname{deg}_{T}(c)-2$ leaves to c, and thus $T \in \mathcal{T}_{2}$. Thus assume that n is odd. Then clearly we may assume, without loss of generality, that $\operatorname{deg}(b) \geq 3$. Let $b_{1} \neq a$ be a leaf adjacent to b. Then T is obtained from the path $a b b_{1}$ by adding a path $c d$, and then adding $\operatorname{deg}_{T}(b)-3$ leaves to b, and $\operatorname{deg}_{T}(c)-2$ leaves to c, and thus $T \in \mathcal{T}_{2}$. These are sufficient for the base step of the induction. Now assume that $\operatorname{diam}(T) \geq 4$. Assume that the result holds for every tree T^{\prime} of order $n^{\prime}<n$. Assume that T has some strong support vertices. We remove all leaves except one from each strong support vertex to obtain a tree T^{\prime} with no strong support vertex. Clearly $\tau\left(T^{\prime}\right) \leq \tau(T)$. Let S be a $\tau\left(T^{\prime}\right)$-set. We can assume that S contains every support vertex to cover each pendant edge. Then S is also a transversal for T, and so $\tau(T) \leq \tau\left(T^{\prime}\right)$. Thus $\tau\left(T^{\prime}\right)=\tau(T)=k$. By the induction hypothesis, $T^{\prime} \in \mathcal{T}_{k}$. Hence, T^{\prime} is obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}$ of trees according to the Operation \mathcal{O} and adding some leaves to the special vertices of T_{k}. Let v_{1}, \ldots, v_{k} be the special vertices of T_{k}. It is easy to see that the support vertices of T_{k} are a subset of $\left\{v_{1}, \ldots, v_{k}\right\}$. Since T^{\prime} is obtained from T_{k} by adding leaves to the special vertices of T_{k}, and T is obtained from T^{\prime} by adding leaves to some support vertices of T^{\prime}, we obtain that $T \in \mathcal{T}_{k}$.

Thus assume for the next that T has no strong support vertex. We now root T at a leaf x_{0} of a diametrical path $x_{0} x_{1} \ldots x_{d}$, where $d=\operatorname{diam}(T)$. Let $T^{\prime}=T-T_{x_{d-1}}$, and let S be a $\tau\left(T^{\prime}\right)$-set. Then $S \cup\left\{x_{d-1}\right\}$ is a transversal for T, and so $\tau(T) \leq \tau\left(T^{\prime}\right)+1$. Since $V\left(T^{\prime}\right) \cap\left\{x_{d-1}, x_{d}\right\}=\emptyset$, no $\tau\left(T^{\prime}\right)$-set in T covers the edge $x_{d-1} x_{d}$. Hence, $\tau(T) \geq \tau\left(T^{\prime}\right)+1$. Thus, $\tau\left(T^{\prime}\right)=\tau(T)-1=k-1$. By the induction hypothesis, $T^{\prime} \in \mathcal{T}_{k-1}$. Then T is obtained by adding the path $P_{2}: x_{d-1} x_{d}$ and joining x_{d-2} to x_{d-1} according to Operation \mathcal{O}. Hence $T \in \mathcal{T}_{k}$.

Now we present our main result. As an immediate consequence of Theorem 2.3, we have the following characterization of bipartite graphs of order n with transversal number $k, 1 \leq k \leq \frac{n}{2}$.

Theorem 2.4. Let G be a bipartite graph of order n. Then $\tau(G)=k$ for $1 \leq k \leq$ $\left\lfloor\frac{n}{2}\right\rfloor$, if and only if G has a spanning tree $T \in \mathcal{T}_{k}$, and no spanning tree of G belongs to $\mathcal{T}_{k^{\prime}}$ for each $k^{\prime}>k$.

Proof. Let $\tau(G)=k$, where $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$. Since G is a bipartite graph, by Theorem $1.2, G$ has a maximum matching M of cardinality k. Hence, by Observation 1.3, G contains a spanning tree T with the maximum matching M. Then $\tau(T)=k$. Therefore, by Theorem 2.3, $T \in \mathcal{T}_{k}$. Suppose that G has a spanning tree $T^{\prime} \in \mathcal{T}_{k^{\prime}}$ where $k^{\prime}>k$. Then, by Theorem 2.3, $\tau\left(T^{\prime}\right)=k^{\prime}$. But $\tau(G) \geq \tau\left(T^{\prime}\right)=k^{\prime}>k$, a contradiction. Conversely, assume that G has a spanning tree $T \in \mathcal{T}_{k}$ and no spanning tree of G belongs to $\mathcal{T}_{k^{\prime}}$ for each $k^{\prime}>k$. By Theorem 2.3, $\tau(T)=k$. Thus $\tau(G) \geq \tau(T)=k$. Let $\tau(G)=k^{\prime}>k$. By the first part of the theorem, G has a spanning tree $T^{\prime} \in \mathcal{T}_{k^{\prime}}$, a contradiction. Therefore, $\tau(G)=k$.

Theorem 2.4 is equivalent to a characterization of all bipartite graphs G of order n with $\alpha(G)=k$, for each $\left\lceil\frac{n}{2}\right\rceil \leq k \leq n-1$ and also, all bipartite graphs G of order n with $\alpha^{\prime}(G)=k$, for each $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$.

We end the paper with a characterization on the Nordhaus-Gaddum type inequalities on the transversal number of trees. If G is a bipartite graph of order n, then $\omega(G)=2$, and so by Theorem 1.1, we have

$$
\begin{equation*}
\tau(\bar{G})=n-\alpha(\bar{G})=n-\omega(G)=n-2 . \tag{2}
\end{equation*}
$$

Therefore, by (1) and (2), we obtain the following bounds that are sharp by Observation 2.1.

Observation 2.5. If G is a bipartite graph of order n, then $n-1 \leq \tau(G)+\tau(\bar{G}) \leq$ $\frac{3}{2} n-2$, and these bounds are sharp.

As a consequence of Theorem 2.3, we have the following characterization.
Corollary 2.6. Let T be a tree of order n. Then $\tau(T)+\tau(\bar{T})=k$ for $n-1 \leq k \leq$ $\frac{3}{2} n-2$, if and only if $T \in \mathcal{T}_{k-n+2}$.

Acknowledgements

We would like to thank the referees for their careful evaluation and some helpful comments.

References

[1] E. Angel, R. Campigotto and C. Laforest, A new lower bound on the independence number of graphs, Discrete Appl. Math. 161 (2013), 847-852.
[2] K. Dutta, D. Mubayi and C.R. Subramanian, New lower bounds for the independence number of sparse graphs and hypergraphs, Siam J. Discrete Math. 26 (2012), 1134-1147.
[3] W. Goddard, and M.A. Henning, Independent domination in graphs: a survey and recent results, Discrete Math. 313 (2013), 839-854.
[4] W. Goddard, M.A. Henning, J. Lyle and J. Southey, On the independent domination number of regular graphs, Ann. Comb. 16 (2012), 719-732.
[5] T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 2 (1959), 133-138.
[6] J. Harant, M.A. Henning, D. Rautenbach and I. Schiermeyer, Independence number in graphs of maximum degree three, Discrete Math. 308, (2008) 58295833.
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[8] M.A. Henning, C. Löwenstein, J. Southey and A. Yeo, A new lower bound on the independence number of a graph and applications, Electron. J. Combin. 21 (2014), P1.38.
[9] D. König, Graphen und Matrizen, Mat. Fiz. Lapok 38 (1931), 116-119.
[10] A. Pedersen, D. Rautenbach and F. Regen, Lower bounds on the independence number of certain graphs of odd girth at least seven, Discrete Appl. Math. 159 (2011), 143-151.
[11] L. Volkmann, A characterization of bipartite graphs with independence number half their order, Australas. J. Combin. 41 (2008), 219-222.

