
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 66(2) (2016), Pages 310–329

On the packing coloring of undirected and
oriented generalized theta graphs
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Abstract

The packing chromatic number χρ(G) of an undirected (respectively, ori-
ented) graph G is the smallest integer k such that its set of vertices V (G)
can be partitioned into k disjoint subsets V1, . . . , Vk, in such a way that
every two distinct vertices in Vi are at distance (respectively directed dis-
tance) greater than i in G for every i, 1 ≤ i ≤ k. The generalized theta
graph Θ�1,...,�p consists of two end-vertices joined by p ≥ 2 internally
vertex-disjoint paths with respective lengths 1 ≤ �1 ≤ · · · ≤ �p.

We prove that the packing chromatic number of any undirected gener-
alized theta graph lies between 3 and max{5, n3+2}, where n3 = |{i / 1 ≤
i ≤ p, �i = 3}|, and that both these bounds are tight. We then character-
ize undirected generalized theta graphs with packing chromatic number
k for every k ≥ 3. We also prove that the packing chromatic number of
any oriented generalized theta graph lies between 2 and 5 and that both
these bounds are tight.

1 Introduction

All the graphs we consider are simple and loopless. For an undirected graph G, we
denote by V (G) its set of vertices and by E(G) its set of edges. The distance dG(u, v),
or simply d(u, v) when G is clear from the context, between vertices u and v in G is
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the length (number of edges) of a shortest path joining u and v. The diameter of G
is the maximum distance between two vertices of G. We denote by Pn, n ≥ 1, the
path of order n and by Cn, n ≥ 3, the cycle of order n.

A packing k-coloring of G is a mapping π : V (G) → {1, . . . , k} such that, for
every two distinct vertices u and v, π(u) = π(v) = i implies d(u, v) > i. The packing
chromatic number χρ(G) of G is then the smallest k such that G admits a packing
k-coloring. In other words, χρ(G) is the smallest integer k such that V (G) can be
partitioned into k disjoint subsets V1, . . . , Vk, in such a way that every two vertices
in Vi are at distance greater than i in G for every i, 1 ≤ i ≤ k.

This notion extends to digraphs in a natural way [15], by considering the (weak)
directed distance between vertices, defined as the number of arcs in a shortest directed
path linking these vertices, in either direction.

Packing coloring of undirected graphs has been introduced by Goddard, Hedet-
niemi, Hedetniemi, Harris and Rall [12, 13] under the name broadcast coloring and
has been studied by several authors in recent years. Several papers deal with the
packing chromatic number of certain classes of undirected graphs such as trees [3,
4, 13, 16, 17], lattices [4, 5, 9, 10, 14, 18], Cartesian products [4, 9, 16], distance
graphs [6, 7, 19] or hypercubes [13, 20, 21]. Complexity issues of the packing color-
ing problem were adressed in [1, 2, 3, 8, 11, 13].

Let H be a subgraph of G. Since dG(u, v) ≤ dH(u, v) for any two vertices u, v ∈
V (H), the restriction to V (H) of any packing coloring of G is a packing coloring
of H . This property obviously holds for digraphs as well. Hence, having packing
chromatic number at most k is a hereditary property:

Proposition 1.1 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall[13])
Let G and H be two undirected graphs, or two digraphs. If H is a subgraph of G,
then χρ(H) ≤ χρ(G).

Fiala and Golovach [8] proved that determining the packing chromatic number is
an NP-hard problem for undirected trees. The exact value of the packing chromatic
number of undirected trees with diameter at most 4 was given in [13]. The packing
chromatic number of undirected paths and cycles has been determined by Goddard
et al.:

Theorem 1.2 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall [13])

(1) For every n ≥ 1, χρ(Pn) ≤ 3. Moreover, χρ(Pn) = 1 if and only if n = 1 and
χρ(Pn) = 2 if and only if n ∈ {2, 3}.

(2) For every n ≥ 3, 3 ≤ χρ(Cn) ≤ 4. Moreover, χρ(Cn) = 3 if and only if n = 3
or n ≡ 0 (mod 4).

In this paper, we consider undirected graphs and orientations of undirected
graphs, obtained by giving to each edge of such a graph one of its two possible
orientations. The so-obtained oriented graphs are thus digraphs having no pair of
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opposite arcs. Let
−→
G be any orientation of an undirected graph G. Since for any

two vertices u, v in V (G) we have dG(u, v) ≤ d−→
G
(u, v), where d−→

G
(u, v) denotes the

directed distance between u and v, we get:

Proposition 1.3 For every orientation
−→
G of an undirected graph G, χρ(

−→
G) ≤

χρ(G).

Let u be a vertex in an oriented graph
−→
G . We say that u is a source if u has

no incoming arc and that u is a sink if u has no outgoing arc. If −−→uvw is a directed

path in
−→
G , then d−→

G
(u, w) ≤ 2. Hence, u and w cannot be both assigned color 2 in

any packing coloring of
−→
G . From this observation, we get an easy characterization

of oriented graphs with packing chromatic number 2:

Proposition 1.4 (Läıche, Bouchemakh and Sopena [15])

For every orientation
−→
G of an undirected graph G, χρ(

−→
G ) = 2 if and only if (i) G

is bipartite and (ii) one part of the bipartition of G contains only sources or sinks

in
−→
G .

In [15], we determined the packing chromatic number of undirected and oriented
generalized coronae of paths and cycles. In particular, the packing chromatic number
of oriented paths and cycles is given as follows:

Theorem 1.5 (Läıche, Bouchemakh and Sopena [15])

Let
−→
Pn be any orientation of the path Pn. Then, for every n ≥ 2, 2 ≤ χρ(

−→
Pn) ≤ 3.

Moreover, χρ(
−→
Pn) = 2 if and only if one part of the bipartition of Pn contains only

sources or sinks in
−→
Pn.

Theorem 1.6 (Läıche, Bouchemakh and Sopena [15])

Let
−→
Cn be any orientation of the cycle Cn. Then, for every n ≥ 3, 2 ≤ χρ(

−→
Cn) ≤ 4.

Moreover, χρ(
−→
Cn) = 2 if and only if Cn is bipartite and one part of the bipartition

contains only sources or sinks in
−→
Cn, and χρ(

−→
Cn) = 4 if and only if

−→
Cn is a directed

cycle (all arcs have the same direction), n ≥ 5 and n �≡ 0 (mod 4).

The generalized theta graph Θ�1,...,�p is the graph obtained by identifying the end-
vertices of p ≥ 2 paths with respective lengths 1 ≤ �1 ≤ · · · ≤ �p. (Since we
only consider simple graphs, note here that we necessarily have �2 ≥ 2.) Packing
colorings of undirected generalized theta graphs were considered by William and
Roy in [22] who gave some necessary condition for such a graph to have packing
chromatic number 4. In this paper, we determine the packing chromatic number of
every undirected generalized theta graph.

Our paper is organized as follows. In Section 2 we provide tight lower and upper
bounds on the packing chromatic number of undirected generalized theta graphs and
characterize undirected generalized theta graphs with any given packing chromatic
number. In Section 3, we provide tight lower and upper bounds on the packing
chromatic number of oriented generalized theta graphs.
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2 Undirected generalized theta graphs

In this section, we determine the packing chromatic number of undirected generalized
theta graphs Θ�1,...,�p. Since we only consider undirected graphs in this section, we
will simply write generalized theta graph instead of undirected generalized theta
graph.

In the rest of this paper, we denote by u and v the end-vertices of the theta graph
Θ�1,...,�p and by Pi = ux1

i . . . x
�i−1
i v the corresponding paths of length �i for every i,

1 ≤ i ≤ p. Moreover, we denote by n�, � ≥ 1, the number of paths of length �, that
is

n� = |{i / 1 ≤ i ≤ p, �i = �}|.
In order to describe k-colorings of paths, we use color patterns, given as words

on the alphabet {1, . . . , k}, using standard notation from Combinatorics on Words,
with u+ = u∗u for every word u. Hence, for instance, the color pattern 12(1312)∗4
describes colorings of the form 124, 1213124, 1213121312 . . .4.

We first prove the following general upper bound:

Theorem 2.1 For every generalized theta graph Θ = Θ�1,...,�p, p ≥ 2,

χρ(Θ) ≤ max{5, n3 + 2}.
Moreover, this upper bound is tight whenever n3 ≥ 3.

Proof. We first prove that χρ(Θ) ≤ 5 whenever n3 ≤ 3. Let ϕ : V (Θ) −→ {1, . . . , 5}
be the mapping defined as follows:

1. ϕ(u) = 4, ϕ(v) = 5,

2. the (at most three) paths of length 3 are colored using the distinct patterns
4125, 4215 and 4315,

3. if �i ≡ 0 (mod 4), �i ≥ 4, ϕ(Pi) is defined by the pattern 4121(3121)∗5,

4. if �i ≡ 1 (mod 4), �i ≥ 5, ϕ(Pi) is defined by the pattern 41231(2131)∗5,

5. if �i ≡ 2 (mod 4), ϕ(Pi) is defined by the pattern 41(2131)∗5,

6. if �i ≡ 3 (mod 4), �i �= 3, ϕ(Pi) is defined by the pattern 412(3121)∗5.

We claim that ϕ is a packing 5-coloring of Θ. To see that, we will show that
for any two distinct vertices x and y with ϕ(x) = ϕ(y) = c, c ∈ {1, 2, 3}, we have
dΘ(x, y) > c (the case c ∈ {4, 5} does not need to be considered since there is only
one vertex with color 4 and one vertex with color 5). Note first that the restriction
of ϕ to any path Pi is a packing coloring of Pi. Hence, we just need to consider the
case when x and y do not belong to the same path. If c = 1, the property obviously
holds since only internal vertices are colored with color 1. Since at most one vertex
with color 2 is adjacent to u and at most one vertex with color 2 is adjacent to v, the
property also holds when c = 2. Since at most one vertex with color 3 is adjacent
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to u, no vertex with color 3 is at distance 2 from u and no vertex with color 3 is
adjacent to v, the property also holds when c = 3. Hence, ϕ is a packing 5-coloring
of Θ.

Finally, when n3 > 3, we color three paths of length 3 as above and the remaining
ones using distinct patterns of the form 4165, 4175, etc. Since each color c > 5 is
used only once, we clearly get a packing (n3 + 2)-coloring of Θ.

The fact that max{5, n3 + 2} is a tight upper bound whenever n3 ≥ 3 follows
from Lemma 2.2 proven below. �

We will now characterize generalized theta graphs with packing chromatic number
k for every k ≥ 3. Since every generalized theta graph contains a cycle, we know
by Proposition 1.1 and Theorem 1.2(2) that χρ(Θ) ≥ 3 for every generalized theta
graph Θ. Moreover, Theorem 1.2(2) characterizes generalized theta graphs Θ�1,...,�p

with packing chromatic number 3 and 4 whenever p = 2. Therefore, unless otherwise
specified, we will always consider p ≥ 3 in the rest of this section.

The next lemma determines the packing chromatic number of generalized theta
graphs of the form Θ3,...,3:

Lemma 2.2 Let Θ = Θ�1,...,�p, p ≥ 3, with n3 = p.We then have χρ(Θ) = p+ 2.

Proof. By Theorem 2.1, we have χρ(Θ) ≤ p + 2. Therefore, it is enough to prove
that for every packing k-coloring π of Θ, k ≥ p+ 2.

If π(u) = π(v) = 1 then at most two remaining vertices can be assigned color 2
and all other remaining vertices must be assigned distinct colors, so that π uses at
least 2(p− 1) + 2 = 2p ≥ p + 2 colors.

If π(u) = 1 and π(v) �= 1, then none of the vertices x1
i , 1 ≤ i ≤ p, can be assigned

color 1 and, since the p + 1 vertices {v, x1
1, . . . , x

1
p} are pairwise at distance 2, they

must be assigned distinct colors so that π must use at least p + 2 colors. The case
π(v) = 1 and π(u) �= 1 is similar.

Finally, if π(u) �= 1 and π(v) �= 1, then at most p internal vertices can be assigned
color 1 (one per path). Since any two internal vertices are at distance at most 3 from
each other and from u and v, and no three such vertices (including u and v) are
pairwise at distance 3 from each other, color 2 can be used at most twice, so that π
must use at least p+ 2 colors. �

The following lemma characterizes generalized theta graphs with packing chro-
matic number k for every k > 5:

Lemma 2.3 Let Θ = Θ�1,...,�p, p ≥ 3, be a generalized theta graph. Then, for every
k > 5, χρ(Θ) = k if and only if n3 = k − 2.

Proof. If n3 = k − 2, we get χρ(Θ) ≤ k by Theorem 2.1, and χρ(Θ) ≥ k by
Lemma 2.2 and Proposition 1.1.

If χρ(Θ) = k, we get n3 ≥ k − 2 by Theorem 2.1 and n3 ≤ k − 2 by Lemma 2.2.
�

Generalized theta graphs with packing chromatic number 3 are characterized as
follows.
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Lemma 2.4 Let Θ = Θ�1,...,�p, p ≥ 2, be a generalized theta graph. We then have
χρ(Θ) = 3 if and only if one of the following conditions holds:

(i) �1 = 1 and �2 = · · · = �p = 2, or

(ii) for every i and j, 1 ≤ i < j ≤ p, �i + �j ≡ 0 (mod 4).

Proof. By Theorem 1.2(2), if p = 2 then χρ(Θ) = 3 if and only if �1 = 1 and �2 = 2,
or �1 + �2 ≡ 0 (mod 4). Therefore, assume p ≥ 3.

We first prove that if �1 = 1, �2 = 2 and �p > 2 then χρ(Θ) > 3. Assume to
the contrary that there exists a packing 3-coloring π of Θ. Since P1 and P2 induce
a cycle of length 3, we necessarily have π(x1

2) = π(x1
p) = 1 and, without loss of

generality, π(u) = 2 and π(v) = 3, which implies that no color is available for x2
p

since dΘ(x
2
p, x

1
p) = 1, dΘ(x

2
p, u) = 2 and dΘ(x

2
p, v) ≤ 3, a contradiction.

We know by Theorem 1.2(2) that, for every n ≥ 3, 3 ≤ χρ(Cn) ≤ 4 and χρ(Cn) =
3 if and only if n = 3 or n ≡ 0 (mod 4). Therefore, if Θ contains a cycle of length
� �≡ 0 (mod 4), � > 3, then χρ(Θ) > 3. Clearly, this happens whenever there exist i
and j, 1 ≤ i < j ≤ p, with �i + �j = �.

Conversely, assume first that �1 = 1 and �i = 2 for every i, 2 ≤ i ≤ p. In that
case, a packing 3-coloring π of Θ is obtained by coloring each path of length 2 with
213. Assume now that for every i and j, 1 ≤ i < j ≤ p, �i+�j ≡ 0 (mod 4). We have
two cases to consider. If �i ≡ 0 (mod 4) for every i, 1 ≤ i ≤ p, a packing 3-coloring
π of Θ is obtained by coloring each path Pi with the color pattern (2131)∗2. If �i ≡ 2
(mod 4) for every i, 1 ≤ i ≤ p, a packing 3-coloring π of Θ is obtained by coloring
each path Pi with the color pattern 21(3121)∗3.

This completes the proof. �

It remains to characterize generalized theta graphs with packing chromatic num-
ber 4 and 5. Thanks to Theorem 1.2(2), we do not need to consider cycles. The
following series of lemmas will allow us to characterize generalized theta graphs (as-
suming p ≥ 3) with packing chromatic number at most 4, depending on the colors
assigned to the end-vertices u and v.

The first three lemmas characterize generalized theta graphs that admit a packing
4-coloring π with π(u) = π(v) = 4, 3 or 2.

Lemma 2.5 Let Θ = Θ�1,...,�p, p ≥ 3, be a generalized theta graph. There exists a
packing 4-coloring π of Θ with π(u) = π(v) = 4 if and only if n1 = n2 = n3 = n4 = 0.

Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = π(v) = 4. We
then necessarily have d(u, v) > 4, which implies n1 = n2 = n3 = n4 = 0.

Conversely, suppose that n1 = n2 = n3 = n4 = 0. We can color each path Pi,
1 ≤ i ≤ p, of length �i ≥ 5, using the following patterns, depending on the value of
(�i mod 4):

• 4(1213)+1214, if �i ≡ 0 (mod 4),



D. LAÏCHE ET AL. /AUSTRALAS. J. COMBIN. 66 (2) (2016), 310–329 316

• 413(1213)∗214, if �i ≡ 1 (mod 4),

• 4(1213)+14, if �i ≡ 2 (mod 4),

• 4(1213)+214, if �i ≡ 3 (mod 4).

The so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

Lemma 2.6 Let Θ = Θ�1,...,�p, p ≥ 3, be a generalized theta graph. There exists a
packing 4-coloring π of Θ with π(u) = π(v) = 3 if and only if n1 = n2 = n3 = 0,
n5 ≤ 2 and n5 + n6 ≤ 4.

Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = π(v) = 3. We
then necessarily have d(u, v) > 3, which implies n1 = n2 = n3 = 0. Note that we
can only use colors 1, 2 and 4 for coloring the internal vertices of each path Pi with
�i ≤ 7, 1 ≤ i ≤ p. Therefore, each coloring of a path of length 5 must use once the
color 4, which implies n5 ≤ 2, since otherwise we would have two vertices with color
4 at distance at most 4 from each other. Similarly, a path of length 6 can only be
colored 3121413, 3141213, 3121423, 3241213, 3124123, 3214213 or 3214123, which
implies n6 ≤ 4 (again, due to vertices with colour 4). Moreover, we necessarily have
n6 ≤ 2 whenever n5 = 2 and n6 ≤ 3 whenever n5 = 1, which gives n5 ≤ 2 and
n5 + n6 ≤ 4.

Conversely, suppose that n1 = n2 = n3 = 0, n5 ≤ 2 and n5 + n6 ≤ 4. We color
each path of length 4 with 31213. If n5 = 2, we color the two paths of length 5
with 312413 and 314213 and the (at most two) paths of length 6 with 3124123 and
3214213. If n5 = 1, we color the path of length 5 with 312413 and the (at most
three) paths of length 6 with 3141213, 3124123 and 3214213. If n5 = 0, we color the
(at most four) paths of length 6 with 3121413, 3141213, 3124123 and 3214213.

Finally, we color each path Pi, 1 ≤ i ≤ p, of length �i ≥ 7, using the following
patterns, depending on the value of (�i mod 4):

• 3(1213)+1213, if �i ≡ 0 (mod 4),

• 3(1213)+41213, if �i ≡ 1 (mod 4),

• 3(1213)+141213, if �i ≡ 2 (mod 4),

• 3(1213)∗1241213, if �i ≡ 3 (mod 4).

The so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

Lemma 2.7 Let Θ = Θ�1,...,�p, p ≥ 3, be a generalized theta graph. There exists a
packing 4-coloring π of Θ with π(u) = π(v) = 2 if and only if n1 = n2 = 0 and one
of the following conditions holds:

(i) n3 = 1 and n5 + n6 + n7 = 0, or

(ii) n3 = 0 and n5 + n6 + n7 ≤ 2.
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Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = π(v) = 2. We
then necessarily have d(u, v) > 2, which implies n1 = n2 = 0. Note that we can only
use colors 1, 3 and 4 for coloring the internal vertices of each path Pi with �i ≤ 5,
1 ≤ i ≤ p. Therefore, a path of length 3 can only be colored either 2342 (or 2432),
2132 (or 2312) or 2142 (or 2412), which implies n3 ≤ 2.

If n3 = 2 then, without loss of generality, the two paths of length 3 are colored
either 2132 and 2142, or 2132 and 2412. In both cases, no path of length � ≥ 4 can
be colored since only the color 1 is available for the vertices at distance 1 and 2 from
v. This implies p = 2, contradicting the assumption p ≥ 3.

If n3 = 1, as observed above, the corresponding path of length 3 is either colored
2342 (or 2432), 2132 (or 2312) or 2142 (or 2412). In the former case (assume, without
loss of generality, that the path is colored 2342), every other vertex at distance 1
or 2 must be colored 1, which implies that only one additional path of length 2 may
occur, contrary to the assumption p ≥ 3. In the second case (assume, without loss
of generality, that the path is colored 2132), every other vertex at distance at most 2
from v must be colored 1 or 4, which implies

∑
�≥4 n� ≤ 1, so that p = 2, contrary

to the assumption p ≥ 3. The corresponding path of length 3 is thus colored 2142
(or 2412), so that every other vertex at distance at most 2 from u or v must then
be colored 1 or 3. There is no such coloring for a path of length 5, only one such
coloring for a path of length 6, namely 2314132 (but this coloring is not valid since
color 4 would be used on two vertices at distance 4 from each other), and two such
colorings for a path of length 7, up to symmetry, namely 23124132 and 21324132.
Since each of these colorings uses color 3 on a neighbor of u or v we necessarily have
n5 +n6+n7 ≤ 1. If n5 +n6 +n7 = 1 then, again, no other path can be colored since
only the color 1 is available for the vertices at distance 1 and 2 from v (or u), which
implies p = 2, contradicting the assumption p ≥ 3. Therefore, n5 + n6 + n7 = 0 and
condition (i) is satisfied.

If n3 = 0 then, as observed above, every path of length 5, 6 or 7 must contain
a vertex with color 4 at distance at most 2 from u or v since p ≥ 3. Therefore, at
most two such paths can occur, that is n5 + n6 + n7 ≤ 2, and thus condition (ii) is
satisfied.

Conversely, suppose that n1 = n2 = 0. If n3 = 1 and n5 + n6 + n7 = 0, we color
the path of length 3 with 2142 and every path of length 4 with 21312. We then color
each path Pi, 1 ≤ i ≤ p, of length �i ≥ 8, using the following patterns, depending on
the value of (�i mod 4):

• 2(1312)+1312, if �i ≡ 0 (mod 4),

• 2(1312)+41312, if �i ≡ 1 (mod 4),

• 2(1312)+121312, if �i ≡ 2 (mod 4),

• 2(1312)+4121312, if �i ≡ 3 (mod 4).

If n3 = 0 and n5 + n6 + n7 ≤ 2 we first color each path Pi, 1 ≤ i ≤ p, of length
�i, 4 ≤ �i ≤ 7, as follows:
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• 21312, if �i = 4,

• 213412 or 214312, if �i = 5,

• 2131412 or 2141321, if �i = 6,

• 21321412 or 21412312, if �i = 7.

Note that if n5 + n6 + n7 = 2 the two corresponding paths must use the patterns
214 . . . 2 and 2 . . . 412 so that the distance between the two vertices with color 4 is
at least 5. We then color each path Pi, 1 ≤ i ≤ p, of length �i ≥ 8, depending on the
value of (�i mod 4) as in the previous case.

The so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

The next three lemmas characterize generalized theta graphs that admit a packing
4-coloring π with π(u), π(v) ∈ {2, 3, 4}, π(u) �= π(v).

Lemma 2.8 Let Θ = Θ�1,...,�p, p ≥ 3, be a generalized theta graph. There exists
a packing 4-coloring π of Θ with π(u) = 3 and π(v) = 4 if and only if one of the
following conditions holds:

(i) n1 ≤ 1, n3 ≤ 2 and n5 = n6 = 0, or

(ii) n1 = 0, n3 ≤ 2 and (n5 = 0 or n5 + n6 ≤ 1).

Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = 3 and π(v) = 4.
There are only two possible colorings of a path of length 3, namely 3124 and

3214, which implies that we can have at most two such paths (otherwise, we would
have two vertices with color 2 at distance 2 from each other).

Suppose first that n1 = 1. In that case, since every internal vertex of a path of
length 5 or 6 is at distance at most 3 from u and v, the only available colors for these
vertices are 1 and 2, so that n5 + n6 = 0 and condition (i) is satisfied.

Suppose now that n1 = 0. Since the only possible coloring of a path of length 5
is 312134, we necessarily have n5 ≤ 1. Consider the possible colorings of a path of
length 6. Since color 4 can only be used on the neighbor of u, the four other internal
vertices must use color 3 and thus color 3 has to be used on a vertex at distance
at most 2 from v. This implies n6 = 0 whenever n5 = 1 and thus condition (ii) is
satisfied.

We finally prove that for every generalized theta graph satisfying any of these
conditions, there exists a packing 4-coloring π with π(u) = 3 and π(v) = 4. Every
path of length 2 can be colored 314 and every path of length 4 can be colored 31214.
If n3 = 1 the path of length 3 can be colored 3124, and if n3 = 2 the paths of length
3 can be colored 3124 and 3214. If n1 = 0 and n5 = 1, the path of length 5 can be
colored 312134. If n1 = 0 and n5 = 0, the path of length 6 can be colored 3121314.

It remains to prove that every path Pi, 1 ≤ i ≤ p, of length �i ≥ 7 can be colored.
This can be done using the following patterns, depending on the value of (�i mod 4):
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• 3(1213)+1214 if �i ≡ 0 (mod 4),

• 31214312(1312)∗14 if �i ≡ 1 (mod 4),

• 31214(1312)+14 if �i ≡ 2 (mod 4),

• 3(1213)+214 if �i ≡ 3 (mod 4).

The so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

Lemma 2.9 Let Θ = Θ�1,...,�p, p ≥ 3, be a generalized theta graph. There exists
a packing 4-coloring π of Θ with π(u) = 2 and π(v) = 4 if and only if one of the
following conditions holds:

(i) n1 ≤ 1 and n3 = n7 = 0, or

(ii) n1 ≤ 1, n3 = n4 = 0, n7 ≤ 1 and n8 = 0, or

(iii) n1 ≤ 1, n3 ≤ 1 and n4 = n7 = n8 = 0, or

(iv) n1 = n2 = n3 = 0 and n7 ≤ 1, or

(v) n1 = n2 = n3 = n4 = 0, n7 = 2 and n8 = 0, or

(vi) n1 = n2 = 0, n3 ≤ 1, n4 = 0 and n7 + n8 ≤ 1, or

(vii) n1 = n3 = n7 = 0, or

(viii) n1 = n3 = n4 = 0, n7 ≤ 1 and n8 = 0, or

(ix) n1 = 0, n3 ≤ 1 and n4 = n7 = n8 = 0.

Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = 2 and π(v) = 4.
Since every path of length 3 can be colored either 2134 or 2314, we necessarily

have n3 ≤ 1 (otherwise, we would have two vertices with color 3 at distance 3 from
each other). Moreover, every path of length 4 can be colored either 23124, 21314 or
21324. If a path of length 4 is colored 23124, every other vertex at distance at most 2
from u must be colored 1 or 4, which implies that at most one additional path may
occur, contradicting our assumption p ≥ 3. If a path of length 4 is colored 21314 or
21324, therefore using color 3 at distance 2 from u and v, we necessarily have n4 = 0
whenever a path uses color 3 on a neighbor of u or v (thus, in particular if n3 = 1).

Suppose that n1 = 1 and consider the possible colorings of a path of length 7. On
its internal vertices, color 4 cannot be used, color 3 can be used only twice, color 2 can
be used only once and color 1 can be used three times. Therefore, the only possible
colorings of a path of length 7 are 21312134 and 23121314. We thus necessarily have
n7 ≤ 1, and n7 = 0 whenever n3 = 1 or n4 = 1, otherwise we would have two vertices
with color 3 at distance 2 or 3 from each other. Similarly, for the internal vertices of
a path of length 8, color 4 cannot be used, color 3 and 2 can both be used at most
twice, and color 1 can be used at most four times. Therefore, the only colorings of
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a path of length 8 are 213121314 and 231213214. We thus necessarily have n8 = 0
whenever n3 = 1 or n7 = 1, again because of vertices with color 3.

Therefore, one of the conditions (i), (ii) or (iii) is satisfied.
Suppose now that n1 = 0. We already know that n3 ≤ 1, and that n4 = 0

whenever n3 = 1. If n2 ≥ 1, the coloring 214 can be used (the other possible
coloring, namely 234, cannot give a better result). Now, the possible colorings of a
path of length 7 are 21312134 and 21431214 (using the color 3 or 4 on the neighbour
of u cannot give a better coloring than these two colorings). This implies n7 ≤ 2
(because of vertices with color 3 or 4) and both these colorings must be used when
n7 = 2. Moreover, if n3 = 1 then the coloring 21312134 cannot be used and thus
n7 ≤ 1 in that case. On the other hand, the coloring 21431214 cannot be used
whenever n2 ≥ 1. If n4 ≥ 1, the coloring 21314 can be used (the two other possible
colorings, namely 21324 and 23124 cannot give a better result) which implies that
the coloring 21312134 cannot be used and thus n7 ≤ 1.

Similarly, the possible colorings of a path of length 8 are 213121314 and 214131214
(again, using the color 3 or 4 on the neighbour of u cannot give a better coloring
than these two colorings). If n2 ≥ 1 or n7 = 2, the coloring 214131214 cannot be
used, because of vertices with color 4. On the other hand, the coloring 213121314
cannot be used whenever n3 = 1, or n2 ≥ 1 and n7 = 1, or n2 = 0 and n7 = 2,
because of vertices with color 3.

We can summarize the case n1 = 0 as follows. We necessarily have n7 ≤ 2, n3 ≤ 1,
and n4 = 0 whenever n3 = 1. If n2 ≥ 1, we must have n7 ≤ 1, and n3 = n4 = n8 = 0
whenever n7 = 1. Moreover, if n7 = 0, we must have n8 = 0 whenever n3 = 1.
Therefore, one of the conditions (vii), (viii) or (ix) must hold. Suppose now that
n2 = 0. If n3 = 1, we necessarily have n7+n8 ≤ 1 and condition (vi) holds. If n3 = 0
and n7 = 2, we necessarily have n4 = n8 = 0 and condition (v) holds. If n3 = 0 and
n7 ≤ 1 then condition (iv) holds. Therefore, one of the conditions (iv) to (ix) must
hold.

We finally prove that for every generalized theta graph satisfying any of these
conditions, there exists a packing 4-coloring π with π(u) = 2 and π(v) = 4. We first
color all the paths Pi, 1 ≤ i ≤ p, of length �i /∈ {3, 7, 8}, if any, as follows:
• �i = 2: 214,

• �i = 4: 21314,

• �i = 5: 213214,

• �i = 6: 2131214,

• �i ≥ 9: for these paths, we use the following patterns, depending on the value
of (�i mod 4):

– 2(1312)+14131214 if �i ≡ 0 (mod 4),

– 2(1312)+13214 if �i ≡ 1 (mod 4),

– 2(1312)+14 if �i ≡ 2 (mod 4),
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– 2(1312)+1431214 if �i ≡ 3 (mod 4).

It remains to color the paths of length 3, 7 or 8. This can be done according to the
condition of the lemma that is satisfied:

(i) All the paths of length � �= 8 are already colored. The paths of length 8, if any,
can be colored 213121314.

(ii) The path of length 7 is colored 21312134 (recall that we have no path of length
3 or 4 in that case).

(iii) The path of length 3 is colored 2134 (recall that we have no path of length 4
in that case).

(iv) The path of length 7, if any, is colored 21431214 and all the paths of length 8
are colored 213121314 (recall that we have no path of length 1, 2 or 3 in that
case).

(v) The two paths of length 7 are colored 21312134 and 21431214 (recall that we
have no path of length less than 5 in that case).

(vi) The path of length 3 is colored 2134, the path of length 7, if any, is colored
21431214 and the path of length 8, if any, is colored 214131214 (recall that we
have no path of length 1, 2 or 4 and at most one path of length either 7 or 8
in that case).

(vii) All the paths of length � �= 8 are already colored. The paths of length 8, if any,
can be colored 213121314.

(viii) The path of length 7 is colored 21312134 (recall that we have no path of length
1, 3, 4 or 8 in that case).

(ix) The path of length 3 is colored 2134 (recall that we have no path of length 1,
4, 7 or 8 in that case).

In all cases, the so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

Lemma 2.10 Let Θ = Θ�1,...,�p, p ≥ 3, be a generalized theta graph. There exists
a packing 4-coloring π of Θ with π(u) = 2 and π(v) = 3 if and only if one of the
following conditions holds:

(i) n1 ≤ 1 and
∑

i≥3 ni ≤ 1, or

(ii) n1 = 0 and n3 + n4 + n5 ≤ 1.

Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = 2 and π(v) = 3.
If n1 = 1 then all the neighbors of u and v must be colored 1 or 4. In every path

of length � ≥ 3, the vertex at distance 2 from u is then necessarily colored 4 if the
neighbor of u is colored 1, or 1 if the neighbor of u is colored 4. Hence, we can have at
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most one such path (otherwise, we would have two vertices with color 4 at distance
at most 4 from each other), that is

∑
i≥3 ni ≤ 1 and condition (i) is satisfied.

Suppose now that n1 = 0. The possible colorings of a path of length 3 are 2143
or 2413, and the possible colorings of a path of length 4 are 21413, 21423 or 24123.
Moreover, the possible colorings of a path of length 5 are 214123 or 241213, or 231213
(note that 231413 cannot give a better result) whenever n2 = 0. Therefore, if n2 = 1
we necessarily have n3+n4+n5 ≤ 1, because of color 4. On the other hand, if n2 = 0
we can have n5 = 1 which still implies n3 + n4 ≤ 1. But if n3 + n4 = 1 then the
coloring of the path of length 5 must use color 3 on the neighbor of u, so that only
colors 1 or 4 can be used on vertices at distance at most 2 from u and thus only one
such path can exists (which is the assumed existing path of length 3 or 4), which
contradicts the assumption p ≥ 3. Therefore, condition (ii) is satisfied.

We finally prove that for every generalized theta graph satisfying any of these
conditions, there exists a packing 4-coloring π with π(u) = 2 and π(v) = 3. Every
path of length 2 can be colored 213. If there is a path of length 3 (which implies
either n1 = 1 and

∑
i≥4 ni = 0, or n1 = n4 = n5 = 0), then we color this path

with 2143. If there is a path of length 4 (which implies either n1 = 1, n3 = 0 and∑
i≥5 ni = 0, or n1 = n3 = n5 = 0), then we color this path with 21413. If there is

a path of length 5 (which implies either n1 = 1, n3 = n4 = 0 and
∑

i≥6 ni = 0, or
n1 = n3 = n4 = 0), then we color this path with 214213.

It remains to prove that every path Pi of length �i ≥ 6 can be colored. If n1 = 1
then n3 = n4 = n5 = 0 and we have only one such path. We then color this path
using one of the following patterns, depending on the value of (�i mod 4):

• 214(1312)+13 if �i ≡ 0 (mod 4),

• 2142(1312)+13 if �i ≡ 1 (mod 4),

• 21412(1312)∗13 if �i ≡ 2 (mod 4),

• 214312(1312)∗13 if �i ≡ 3 (mod 4).

If n1 = 0, we color any such path using the following patterns, depending on the
value of (�i mod 4):

• 2(1312)∗13141213 if �i ≡ 0 (mod 4),

• 2(1312)+41213 if �i ≡ 1 (mod 4),

• 2(1312)+13 if �i ≡ 2 (mod 4),

• 2(1312)∗1341213 if �i ≡ 3 (mod 4).

The so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

Using Lemmas 2.5 to 2.10 we get a complete characterization of generalized theta
graphs admitting a packing 4-coloring that does not use color 1 on vertex u nor on
vertex v:
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Theorem 2.11 Let Θ = Θ�1,...,�p, p ≥ 3, be a generalized theta graph. There exists
a packing 4-coloring π of Θ with π(u) �= 1 and π(v) �= 1 if and only if one of the
following conditions holds:

(A) n1 = n2 = n3 = n4 = 0,

(B) n1 = n2 = n3 = 0, n5 ≤ 2 and n5 + n6 ≤ 4,

(C) n1 = n2 = n3 = 0 and n7 ≤ 1,

(D) n1 = n2 = n3 = 0 and n5 + n6 + n7 ≤ 2,

(E) n1 = n2 = 0, n3 ≤ 1 and n5 = n6 = n7 = 0,

(F) n1 = n2 = 0, n3 ≤ 1, n4 = 0 and n7 + n8 ≤ 1,

(G) n1 = n3 = n4 = 0, n7 ≤ 1 and n8 = 0,

(H) n1 = 0, n3 ≤ 2 and (n5 = 0 or n5 + n6 ≤ 1),

(I) n1 = 0 and n3 + n4 + n5 ≤ 1,

(J) n1 ≤ 1, n3 ≤ 2 and n5 = n6 = 0,

(K) n1 ≤ 1, and n3 = n7 = 0,

(L) n1 ≤ 1, n3 = n4 = 0, n7 ≤ 1 and n8 = 0,

(M) n1 ≤ 1, n3 ≤ 1 and n4 = n7 = n8 = 0,

(N) n1 ≤ 1, and
∑

i≥3 ni ≤ 1.

Proof. This theorem simply summarizes the results of Lemmas 2.5 to 2.10:

• Item (A) follows from Lemma 2.5 and contains case (v) of Lemma 2.9.

• Item (B) follows from Lemma 2.6.

• Item (C) follows from case (iv) of Lemma 2.9.

• Item (D) follows from case (ii) of Lemma 2.7.

• Item (E) follows from case (i) of Lemma 2.7.

• Item (F) follows from case (vi) of Lemma 2.9.

• Item (G) follows from case (viii) of Lemma 2.9.

• Item (H) follows from case (ii) of Lemma 2.8.

• Item (I) follows from case (ii) of Lemma 2.10.
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• Item (J) follows from case (i) of Lemma 2.8.

• Item (K) follows from case (i) of Lemma 2.9 and contains (vii) of Lemma 2.9.

• Item (L) follows from case (ii) of Lemma 2.9.

• Item (M) follows from case (iii) Lemma 2.9 and contains case (ix) of Lemma 2.9.

• Item (N) follows from case (i) of Lemma 2.10.

Hence, all the cases have been considered, this concludes the proof. �

If a generalized theta graph Θ satisfies none of the conditions (A) to (N) of
Theorem 2.11, then every packing 4-coloring of Θ must use color 1 on u or v. The
following observation will be useful:

Observation 2.12 If a generalized theta graph Θ = Θ�1,...,�p, p ≥ 3, admits a packing
4-coloring π with π(u) = 1 then we necessarily have p = 3.

To see that, it suffices to note that no two neighbors of u can be assigned the
same color and that none of them can be colored 1.

The next lemma will show that no generalized theta graph satisfying none of the
conditions (A) to (N) admits a packing 4-coloring. By Observation 2.12, it suffices
to consider generalized theta graphs of the form Θ�1,�2,�3 . Moreover, by symmetry, it
suffices to consider packing 4-colorings that assign the color 1 to u.

Lemma 2.13 If Θ = Θ�1,�2,�3 is a generalized theta graph and π a packing 4-coloring
of Θ with π(u) = 1, then Θ satisfies at least one of the conditions (A) to (N).

Proof. We consider two cases, according to the value of n1.

1. n1 = 0.
If n2 = n3 = n4 = 0 then Θ satisfies condition (A).

Observe that we cannot have n3 = 3 since, by Lemma 2.2, we would have
χρ(Θ) = 5, a contradiction.

If n3 = 2 then we necessarily have n5 + n6 ≤ 1 and therefore Θ satisfies
condition (H).

If n3 = 1 and n5 = 0 then Θ satisfies condition (H). If n3 = 1, n5 = 1 and
n6 = 0 then, again, Θ satisfies condition (H). If n3 = 1, n5 = 1 and n6 = 1 then,
since we necessarily have n2 = n4 = n7 = n8 = 0, Θ satisfies condition (F). If
n3 = 1 and n5 = 2 then Θ also satisfies condition (F).

Suppose that n3 = 0. If n4 ≥ 1 and n2 = 0 then we necessarily have n5 ≤ 2
and n5 + n6 ≤ 4 and Θ satisfies condition (B). If n4 ≥ 1 and n2 ≥ 1 then we
necessarily have n5+n6 ≤ 1 and Θ satisfies condition (H). If n4 = 0 and n5 ≤ 1
then Θ satisfies condition (I). If n4 = 0 and n5 ≥ 2 then Θ satisfies condition (F)
if n7 = 0 or condition (G) if n7 = 1 (since we then have n7 + n8 ≤ 1).
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2. n1 = 1.
In that case, we necessarily have n3 ≤ 2. If n3 = 2 then we necessarily have
n5 = n6 = 0 and Θ satisfies condition (J).

If n3 = 1 and n5 = n6 = 0 then Θ satisfies condition (J). If n3 = 1 and
n5 + n6 = 1 then we necessarily have n4 = n7 = n8 = 0 and Θ satisfies
condition (M).

Suppose that n3 = 0. If n7 = 0 then Θ satisfies condition (K). If n7 = 1 and
n4 = n8 = 0 then Θ satisfies condition (L). If n7 = n4 + n8 = 1 or n7 = 2 then
we necessarily have n5 = n6 = 0 and Θ satisfies condition (J).

This completes the proof. �

We are now able to characterize generalized theta graphs with packing chromatic
number 4:

Theorem 2.14 Let Θ = Θ�1,...,�p, p ≥ 2, be a generalized theta graph. We then have
χρ(Θ) = 4 if and only if either

(1) p = 2, �1 + �2 �= 3 and �1 + �2 �≡ 0 (mod 4), or

(2) p ≥ 3, n2 �= p, there exist i1, i2, 1 ≤ i1 < i2 ≤ p, such that �i1 + �i2 �≡ 0
(mod 4), and Θ satisfies one of the conditions (A) to (N).

Proof. If p = 2 the result follows from Theorem 1.2(2). If p ≥ 3, the result follows
from Theorem 2.11 and Lemma 2.13. �

Using Lemma 2.3, Lemma 2.4 and Theorem 2.14, we get that the packing chro-
matic number of any generalized theta graph Θ = Θ�1,...,�p can be computed in time
O(p).

3 Oriented generalized theta graphs

In this section, we study the packing chromatic number of oriented generalized theta

graphs
−→
Θ �1,...,�p. Recall that we denote by n�, � ≥ 1, the number of paths of length �,

that is
n� = |{i / 1 ≤ i ≤ p, �i = �}|.

We prove the following:

Theorem 3.1 For every oriented generalized theta graph
−→
Θ =

−→
Θ �1,...,�p, p ≥ 2,

2 ≤ χρ(
−→
Θ) ≤ 5 and these two bounds are tight.

Proof. It follows from Proposition 1.4 that 2 is a tight lower bound for χρ(
−→
Θ). By

Proposition 1.3 and Theorem 2.1, we know that χρ(
−→
Θ) ≤ 5 whenever n3 ≤ 3.

Assume thus that n3 > 3. Let us denote by
−→
Pi the orientation of the path Pi for

every i, 1 ≤ i ≤ p, and let ϕ : V (
−→
Θ) −→ {1, . . . , 5} be the mapping defined as in the



D. LAÏCHE ET AL. /AUSTRALAS. J. COMBIN. 66 (2) (2016), 310–329 326

4 −→ 1 −→ 2 −→ 5 4 ←− 1 −→ 2 −→ 5
4 −→ 3 −→ 1 ←− 5 4 ←− 2 −→ 1 ←− 5
4 −→ 1 ←− 2 −→ 5 4 ←− 1 ←− 2 −→ 5
4 −→ 3 ←− 1 ←− 5 4 ←− 2 ←− 1 ←− 5

Figure 1: Coloring of oriented paths of length 3 (proof of Theorem 3.1)

proof of Theorem 2.1, except for the internal vertices of the paths
−→
Pi with �i = 3,

which are colored as shown in Figure 1, according to their orientation.

We claim that ϕ is a packing 5-coloring of
−→
Θ. Again, the restriction of ϕ to any

path
−→
Pi is a packing coloring of

−→
Pi. Moreover, from the proof of Theorem 2.1, we

know that the restriction of ϕ to
⋃{−→Pi : �i �= 3} is a packing 5-coloring. Hence, we

just need to prove that for any two distinct vertices x and y with x ∈ −→Pi , �i = 3,
ϕ(x) = ϕ(y) = c, c ∈ {2, 3} and {x, y} ∩ {u, v} = ∅, we have d−→

Θ
(x, y) > c.

Suppose first that c = 2. Since every vertex y in
−→
Pj , �j �= 3, with ϕ(y) = 2 is at

weak directed distance at least 2 from u and v, no conflict can occur between x and

y. If y belongs to some
−→
Pj with �j = 3 then the possible arcs are only −→xu, −→yu, −→xv and−→yv (see Figure 1), and no conflict can occur between x and y.

Suppose now that c = 3. In that case, x = x1
i and −→ux is an arc (see Figure 1).

Since every vertex y in
−→
Pj , �j �= 3, with ϕ(y) = 3 is at weak directed distance at

least 3 from u and at least 2 from v, no conflict can occur between x and such a y.

If y belongs to some
−→
Pj with �j = 3 then y = y1i and −→uy is an arc, so that there is no

conflict between x and y.

We thus get χρ(
−→
Θ) ≤ 5.

Let us now prove that this bound is tight. For that, consider the oriented gener-

alized theta graph
−→
Θ0 obtained by identifying (according to their name, either u or

v) the end-vertices of the six following directed paths:

ux1x2x3x4v, uy1y2v, uz1v, vx′
1x

′
2x

′
3x

′
4u, vy′1y

′
2u, vz′1u.

We claim that χρ(
−→
Θ0) = 5. To see that, suppose that there exists a packing 4-coloring

π of
−→
Θ0. We consider five cases, according to the values of π(u) and π(v) (up to

symmetry). Note that since d−→
Θ0
(u, v) = 2, we necessarily have π(u) = π(v) = 1

whenever π(u) = π(v).

1. π(u) = π(v) = 1.
In that case, no vertex in {y1, y2, y′1, y′2, z1, z′1} can be colored 1. Moreover,
since any two vertices in {y1, y2, y′1, y′2} are linked by a directed path (in either
direction) of length at most 3, we necessarily have either π(y1) = π(y′1) = 2
and {π(y2), π(y′2)} = {3, 4} or π(y2) = π(y′2) = 2 and {π(y1), π(y′1)} = {3, 4}.
In both cases, one vertex in {z1, z′1} cannot be colored.

2. π(u) = 1, π(v) ∈ {2, 3}.
If π(v) = 2 (respectively π(v) = 3), we necessarily have {π(z1), π(z′1)} = {3, 4}
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(respectively {π(z1), π(z′1)} = {2, 4}). If π(z1) = 4 (respectively π(z′1) = 4),
then {π(y′1), π(y′2)} = {3} (respectively {π(y1), π(y2)} = {3}), a contradiction.

3. π(u) = 1, π(v) = 4.
In that case, we necessarily have {π(z1), π(z′1)} = {2, 3}, which implies
{π(y1), π(y′2)} = {2, 3} and π(y2) = π(y′1) = 1. If π(z1) = 2 then π(x1) = 2
and π(x2) = 1, so that x3 cannot be colored. If π(z′1) = 2 then π(x′

1) = 2 and
π(x′

2) = 1, so that x′
3 cannot be colored.

4. π(u) = 2, π(v) ∈ {3, 4}.
If π(v) = 3 (respectively π(v) = 4), we necessarily have {π(y1), π(y2), π(y′1),
π(y′2)} = {1, 4} (respectively {π(y1), π(y2), π(y′1), π(y′2)} = {1, 3}), a contradic-
tion since any two vertices in {y1, y2, y′1, y′2} are linked by a directed path (in
either direction) of length at most 3.

5. π(u) = 3, π(v) = 4.
Since each vertex xi, 1 ≤ i ≤ 4, is linked by a directed path (in either direction)
of length at most 3 to u and by a directed path (in either direction) of length
at most 4 to v, we necessarily have {π(x1), π(x2), π(x3), π(x4)} = {1, 2}, a
contradiction.

Therefore, every packing coloring of an oriented generalized theta graph contain-

ing
−→
Θ0 as a subgraph must use 5 colors. �

By Proposition 1.4, we know that for every oriented generalized theta graph
−→
Θ,

χρ(
−→
Θ) = 2 if and only if

−→
Θ is bipartite and one part of the bipartition contains only

sources or sinks. However, characterizing oriented generalized theta graphs with
packing chromatic number 3, 4 or 5 seems to be not so easy and we leave it as an
open question.

From Lemma 2.5, we get that χρ(
−→
Θ) ≤ 4 whenever Θ does not contain any path

of length less than 5. However, we believe that this value 5 cannot be decreased to 4.
In other words, we conjecture that there exist oriented generalized theta graphs with
packing chromatic number 5 containing no path of length less than 4.
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of the square lattice is at least 12, March 12, 2010, arXiv:1003.2291v1 [cs.DM].

[6] J. Ekstein, P. Holub and B. Lidický, Packing chromatic number of distance
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