Trees with the same global domination number as their square

D. A. Mojder*
Department of Mathematics
University of Mazandaran, Babolsar
Iran
damojdeh@umz.ac.ir
M. Alishahi
Department of Mathematics
University of Tafresh, Tafresh
Iran
M. Chellali
LAMDA-RO Laboratory, Department of Mathematics
University of Blida, BP 270, Blida
Algeria
m_chellali@yahoo.com

Abstract

A set $S \subseteq V$ is a global dominating set of a graph $G=(V, E)$ if S is a dominating set of G and \bar{G}, where \bar{G} is the complement graph of G. The global domination number $\gamma_{g}(G)$ equals the minimum cardinality of a global dominating set of G. The square graph G^{2} of a graph G is the graph with vertex set V and two vertices are adjacent in G^{2} if they are joined in G by a path of length one or two. In this paper we provide a characterization of all trees T whose global domination number equals the global domination number of the square of T.

1 Introduction and preliminary results

For terminology and notation on graph theory not given here, the reader is referred to $[5,9]$. Let $G=(V, E)$ be a graph with vertex set V and edge set E. The square

[^0]graph G^{2} of G is the graph with vertex set V and two vertices u and v are adjacent in G^{2} whenever $d_{G}(u, v) \leq 2$. The complement \bar{G} of G is the graph with vertex set V and with exactly the edges that do not belong to G. The open neighborhood of a vertex $v \in V$ is the set $N(v)=\{u \in V \mid u v \in E\}$, and its closed neighborhood is the set $N[v]=N(v) \cup\{v\}$. The degree of v, denoted by $\operatorname{deg}_{G}(v)$, is the cardinality of its open neighborhood. A set $S \subseteq V$ is a dominating set of G if every vertex of $V-S$ is adjacent to at least one vertex of S. The minimum cardinality of a dominating set of G, denoted by $\gamma(G)$, is called the domination number of G. A dominating set of cardinality $\gamma(G)$ is called a γ-set of G. A set $S \subseteq V$ is a global dominating set of G if S is a dominating set of G and \bar{G}. The minimum cardinality of a global dominating set of G, denoted by $\gamma_{g}(G)$, is called the global domination number of G. A global dominating set of cardinality $\gamma_{g}(G)$ is called a γ_{g}-set of G. Global domination is studied for example in $[1,3,8]$, and elsewhere.
One of many applications of global domination as given in chapter 11 of [4], relates to a communication network modeled by a graph G, where subnetworks are defined by some matching M_{i} of cardinality k. The necessity of these subnetworks could be due for reasons of security, redundancy or limitations of recipients for different classes of messages. For this practical case, the global domination number represents the minimum number of master stations needed such that a message issued simultaneously from all masters reaches all desired recipients after traveling over only one communication link. We note that Carrington [2] gave two other applications of global dominating sets for graph partitioning commonly used in the implementation of parallel algorithms.
A set D of vertices in a graph G is a packing if the vertices in D are pairwise at distance at least 3 apart in G, or equivalently, for every vertex $v \in V,|N[v] \cap D| \leq 1$. A set $S \subseteq V$ is a distance 2-dominating set of G if $d_{G}(u, S) \leq 2$ for every vertex $u \in V-S$. The minimum cardinality of a distance 2-dominating set of G, denoted by $\gamma^{2}(G)$, is called the distance 2-domination number of G, for more see $[4,5]$. We note that every graph G satisfies $\gamma^{2}(G)=\gamma\left(G^{2}\right)$, since every distance 2-dominating set of G is a dominating set of G^{2}, and every dominating set of G^{2} is a distance 2-dominating set of G. We also mention that a distance 2-dominating set of G and \bar{G} (that is, global distance 2-dominating set of $G, \gamma_{g}^{2}(G)$ is not necessarily a global dominating set of G^{2}, and vice versa. For example, if $G=C_{5}$, then $\gamma_{g}^{2}\left(C_{5}\right)=1$ and $\gamma_{g}\left(C_{5}^{2}\right)=5$.
A vertex that is adjacent to a leaf is called a support vertex. We denote by $L(G)$ and $S(G)$ the set of leaves and support vertices of a graph G, respectively. The eccentricity of a vertex v is $\operatorname{ecc}(v)=\max \left\{d_{G}(v, w): w \in V\right\}$. The radius of G is $\operatorname{rad}(G)=$ $\min \{\operatorname{ecc}(v): v \in V\}$ and the diameter of G is $\operatorname{diam}(G)=\max \{\operatorname{ecc}(v): v \in V\}$. It is well known that for every graph $G, \operatorname{diam}\left(G^{2}\right)=\left\lceil\frac{\operatorname{diam}(G)}{2}\right\rceil$ and $\operatorname{rad}(G) \geq \frac{\operatorname{diam}(G)}{2}$. In particular, if T is a tree, then $\operatorname{rad}(T)=\left\lceil\frac{\operatorname{diam}(T)}{2}\right\rceil$. The center $C(G)$ of a connected graph G is the set of vertices of minimum eccentricity. If T is a tree and $u_{0}, u_{1}, \ldots, u_{k}$ is a longest path in T, then $C(T)=\left\{u_{\frac{k}{2}}\right\}$, when k is even and $C(T)=\left\{u_{\frac{k-1}{2}}, u_{\frac{k+1}{2}}\right\}$, when k is odd.

For some families of graphs, the global domination number is known or at least restricted to within a fairly limited range (see [4, 5]). For instance:

- If G or \bar{G} is disconnected, then $\gamma_{g}(G)=\max \{\gamma(G), \gamma(\bar{G})\}$.
- If G is a triangle-free graph, then $\gamma(G) \leq \gamma_{g}(G) \leq \gamma(G)+1$ [4].
- $\operatorname{Max}\{\gamma(G), \gamma(\bar{G})\} \leq \gamma_{g}(G)=\gamma_{g}(\bar{G}) \leq \gamma(G)+\gamma(\bar{G})$.

Lemma 1.1 For any graph G, if $\operatorname{rad}(G) \geq 3$, then every dominating set of G is a dominating set of \bar{G}.

Proof. Let S be a dominating set for G and not be a dominating set for \bar{G}. Therefore there exists a vertex u in $V(G)$ such that u is adjacent to every vertex of S in G and so $\operatorname{rad}(G) \leq 2$, a contradiction.
Since for every graph $G, \operatorname{rad}(G) \geq \frac{\operatorname{diam}(G)}{2}$, we have the following corollary.
Corollary 1.2 If G is a graph with $\operatorname{diam}(G) \geq 5$, then $\gamma_{g}(G)=\gamma(G)$.
In [6], Raczek gave a characterization of all trees and all unicyclic graphs with equal domination and distance 2-domination numbers. Raczek defined the family τ of trees to consist of those trees T that can be obtained from sequence $T_{1}, T_{2}, \ldots, T_{j}(j \geq 1)$ of trees such that T_{1} is the path P_{2} and $T=T_{j}$, and, if $j>1$, then T_{i+1} can be obtained recursively from T_{i} by the operation τ_{1}, τ_{2} or τ_{3} :

- Operation τ_{1}. The tree T_{i+1} is obtained from T_{i} by adding a vertex x_{1} and the edge $x_{1} y$, where $y \in V\left(T_{i}\right)$ is a support vertex of T_{i}.
- Operation τ_{2}. The tree T_{i+1} is obtained from T_{i} by adding a path x_{1}, x_{2}, x_{3} and the edge $x_{1} y$, where $y \in V\left(T_{i}\right)$ is neither a leaf nor a support vertex in T_{i}.
- Operation τ_{3}. The tree T_{i+1} is obtained from T_{i} by adding a path $x_{1}, x_{2}, x_{3}, x_{4}$ and the edge $x_{1} y$, where $y \in V\left(T_{i}\right)$ is a support vertex in T_{i}.

Theorem 1.3 (Raczek [6]) If T is a tree, then $\gamma(T)=\gamma\left(T^{2}\right)$ if and only if T belongs to the family τ.

In [6], Raczek also showed that the set of support vertices of every tree $T \in \tau$ is both a packing and a γ-set of T.
In this paper, we characterize the trees T satisfying $\gamma_{g}(T)=\gamma_{g}\left(T^{2}\right)$. In Section 2, we consider graph parameters when restricted to pruned subgraphs. Using these results, in Sections 3, 4, 5, 6 and 7, we discuss trees having a fixed diameter.

2 The pruned subgraphs

Let $G=(V, E)$ be a graph. For every $u \in V$, delete all the leaves from $N(u)$ except one. The remaining graph is called the pruned subgraph (or pruned subtree, if G is a tree) of G and is denoted by G_{p}.

Proposition 2.1 If T is a tree, then $\operatorname{diam}\left(T_{p}\right)=\operatorname{diam}(T)$ if and only if $T \neq K_{1, t}$ with $t \geq 2$.

Proof. Let T be a tree different from a star $K_{1, t}$ with $t \geq 2$. Clearly, $\operatorname{diam}(T) \neq 2$. If $\operatorname{diam}(T)=0$ or $\operatorname{diam}(T)=1$, then obviously $\operatorname{diam}\left(T_{p}\right)=\operatorname{diam}(T)$. Hence assume that $\operatorname{diam}(T) \geq 3$, and let a and b be two leaves of T such that $d_{T}(a, b)=\operatorname{diam}(T)$. Let $P=a, u_{1}, u_{2}, \ldots, u_{k}, b$ be a diametral path in T. Since $\operatorname{diam}(T) \geq 3, a$ and b have distinct support vertices. Hence we can assume, without loss of generality, that $a, b \in V\left(T_{p}\right)$. Since $\operatorname{deg}_{T}\left(u_{i}\right) \geq 2$, each $u_{i} \in V\left(T_{p}\right)$ and therefore P remains a path linking a and b in T_{p}. It follows that $\operatorname{diam}(T) \leq \operatorname{diam}\left(T_{p}\right)$, and the equality is obtained from the fact that $\operatorname{diam}(T) \geq \operatorname{diam}\left(T_{p}\right)$.
Conversely, let $T=K_{1, t}$ with $t \geq 2$. Then $T_{p}=P_{2}$ and clearly $\operatorname{diam}(T)=2>$ $\operatorname{diam}\left(T_{p}\right)=1$.

Proposition 2.2 If T is a tree, then $\operatorname{rad}\left(T_{p}\right)=\operatorname{rad}(T)$.
Proof. If T is a star, then $T_{p}=P_{2}$, and so $\operatorname{rad}\left(T_{p}\right)=\operatorname{rad}(T)=1$. If T is not a star, then by Proposition 2.1, $\operatorname{diam}\left(T_{p}\right)=\operatorname{diam}(T)$. Since $\operatorname{rad}(T)=\left\lceil\frac{\operatorname{diam}(T)}{2}\right\rceil$ and $\operatorname{rad}\left(T_{p}\right)=\left\lceil\frac{\operatorname{diam}\left(T_{p}\right)}{2}\right\rceil$ we obtain the desired result.

Corollary 2.3 If G is a graph, then $\gamma\left(G_{p}\right)=\gamma(G)$.
Proof. The result is valid if G has order $n=1$ or 2 . Let $n \geq 3$, and A be a γ-set of G. It is clear that $B=(A-L(G)) \cup S(T)$ is a γ-set of G, too. Since B does not include any leaves of G, B is a γ-set of G_{p}.

Let \mathfrak{F} denote the class of trees T with $n \geq 2$ vertices and either radius one (that is, stars) or radius two having a vertex u with $\operatorname{deg}_{T}(u) \geq 2$ and $\operatorname{deg}_{T}(v) \geq 3$ for all $v \in N(u)$ [1]. Let \mathfrak{F}^{\prime} denote the class of trees T with radius two having a vertex u with $\operatorname{deg}_{T}(u) \geq 2$ and $\operatorname{deg}_{T}(v) \geq 3$ for all $v \in N(u)$. Additionally, letting \mathcal{S} denote the class of stars on $n \geq 2$ vertices, let $\mathfrak{F}=\mathfrak{F}^{\prime} \cup \mathcal{S}$.

Theorem 2.4 If T is a tree, then $\gamma_{g}\left(T_{p}\right)=\gamma_{g}(T)$ if and only if $T \notin \mathfrak{F}$.
Proof. If $\operatorname{diam}(T) \in\{0,1,2\}$, then it is clear that $\gamma_{g}\left(T_{p}\right)=\gamma_{g}(T)$. Hence we may assume that $\operatorname{diam}(T) \geq 3$, and let S be the set of support vertices of T. If $\operatorname{diam}(T)=3$, then $C(T)$ is a γ-set of T and T_{p}, and so $\gamma_{g}\left(T_{p}\right)=\gamma_{g}(T)=2$. Now suppose that $\operatorname{diam}(T)=4$, and let $u_{0}, u_{1}, u_{2}, u_{3}, u_{4}$ be a path in T and also in T_{p}.

Suppose that $T \in \mathfrak{F}^{\prime}$. Then $S \cup\left\{u_{2}\right\}$ is a γ_{g}-set of T, while $\left(S-\left\{u_{3}\right\}\right) \cup\left\{u_{4}\right\}$ is a γ_{g}-set of T_{p}. Hence $\gamma_{g}\left(T_{p}\right)=\gamma_{g}(T)-1$. Suppose now that $T \notin \mathfrak{F}^{\prime}$. Then T has either a support vertex, say u_{3}, of degree two or u_{2} is a support vertex. If the first situation occurs, then $\left(S-\left\{u_{3}\right\}\right) \cup\left\{u_{4}\right\}$ is a γ_{g}-set of T and T_{p}, and if the second one occurs, then the set of support vertices is a γ_{g}-set of T and T_{p}. Finally, if $\operatorname{diam}(T) \geq 5$, then by Proposition 2.1, and Corollaries 1.2 and 2.3 we have $\gamma_{g}\left(T_{p}\right)=\gamma_{g}(T)$.

3 Trees T with $\operatorname{diam}(T) \leq 4$ or $\operatorname{diam}(T) \geq 9$

We begin by considering trees T with diameter at most four. The following result has been obtained independently by Brigham and Dutton [1] and Rall [7].

Theorem 3.1 (Brigham and Dutton [1], Rall [7]) If T is a tree, then either $T \in \mathfrak{F}$ and $\gamma_{g}(T)=\gamma(T)+1$, or $\gamma_{g}(T)=\gamma(T)$.

It is clear that if $\operatorname{diam}(T)=0$ or $\operatorname{diam}(T)=1$, then $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$.
Theorem 3.2 If $\operatorname{diam}(T)=2$ or 3 , then $\gamma_{g}\left(T^{2}\right) \neq \gamma_{g}(T)$.
Proof. If $\operatorname{diam}(T)=2$, then T is a star $K_{1, p}$ for $p \geq 2$, so $\gamma_{g}(T)=2$ and $\gamma_{g}\left(T^{2}\right)=$ $p+1 \geq 3$.
If $\operatorname{diam}(T)=3$ with $P=u_{0}, u_{1}, u_{2}, u_{3}$ as a diametral path in T, then clearly $S=$ $\left\{u_{1}, u_{2}\right\}$ is a γ_{g}-set of T, so $\gamma_{g}(T)=2$. Suppose that $\gamma_{g}\left(T^{2}\right)=2$ and let $S=\{u, v\}$ be a γ_{g}-set of T^{2}. If u and v are adjacent in T, then $d_{T}(u, a)=2$ for every $a \in N(v)-\{u\}$ and likewise $d_{T}(v, b)=2$ for every $b \in N(u)-\{v\}$. But then S is not a dominating set of the complement of T^{2}. Hence u and v are not adjacent in T^{2}, that is $d_{T}(u, v)=2$ or 3 . Then for every vertex x on the path between u and v, we have $d_{T}(x, u)=1$ or 2 and $d_{T}(x, v)=1$ or 2 . Thus x is an isolated vertex in the complement of T^{2} and cannot be dominated by $\{u, v\}$. Therefore $\gamma_{g}\left(T^{2}\right)>2$.

Lemma 3.3 Let S be the set of support vertices of a tree T. If $\operatorname{diam}(T) \in\{2,3,4,5\}$, then $\gamma(T)=|S|$.

Proof. Clearly, $\gamma(T) \geq|S|$. Since $\operatorname{diam}(T) \leq 5$, every vertex of T is either a support vertex or adjacent to a support vertex. Hence S dominates all vertices of T, implying that $\gamma(T) \leq|S|$ and the equality follows.

Lemma 3.4 If T is a tree of diameter 4 , then $\gamma_{g}\left(T^{2}\right)=3$.
Proof. Let $P=u_{0}, u_{1}, u_{2}, u_{3}, u_{4}$ be a path of length 4 in T. It is easy to see that the set $A=\left\{u_{0}, u_{2}, u_{4}\right\}$ is a global dominating set of T^{2}. We shall show that A is a γ_{g}-set of T^{2}. Suppose to the contrary that $\gamma_{g}\left(T^{2}\right)=2$. Since $\operatorname{diam}(T)=4, d_{T}\left(x, u_{2}\right) \leq 2$ for every $x \in V(T)$, so u_{2} belongs to every γ-set of the complement of T^{2} and hence
to every γ_{g}-set of T^{2}. Therefore, let $A_{1}=\left\{u_{2}, x\right\}$ be a global dominating set of T^{2}. If $x u_{2} \in E(T)$, then each of u_{1} and u_{3} is at distance at most two from u_{2} and x. But then A_{1} does not dominate at least one of u_{1} or u_{3} in the complement of T^{2}. Thus $x u_{2} \notin E(T)$. Let w be any vertex of T adjacent to both u_{2} and x. Then A_{1} does not dominate w in the complement of T^{2}, a contradiction. We deduce that $\gamma_{g}\left(T^{2}\right) \neq 2$, and so $\gamma_{g}\left(T^{2}\right)=3$.

Theorem 3.5 If T is a tree of diameter 4, then $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$ if and only if
a) $T \notin \mathfrak{F}$ and T has 3 support vertices or
b) $T \in \mathfrak{F}$ and T has 2 support vertices.

Proof. By Lemma 3.3 we have $\gamma(T)=|S(T)|$ and by Lemma $3.4 \gamma_{g}\left(T^{2}\right)=3$. Now by Theorem 3.1 and Lemma 3.4 the result holds.

We turn our attention to trees with diameter at least nine.

Proposition 3.6 If T is a tree of diameter at least 9, then $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$ if and only if $T \in \tau$.

Proof. Since $\operatorname{diam}(T) \geq 9$, we have $\operatorname{diam}\left(T^{2}\right) \geq 5$. The result follows by applying Corollary 1.2 to both T and T^{2}, and by using Theorem 1.3.

4 Trees with diameter five

In this section we characterize the trees T with diameter 5 such that $\gamma_{g}(T)=\gamma_{g}\left(T^{2}\right)$. Thoughout this section, we let $L(u)$ denote the set of leaves attached at a support vertex u.

Lemma 4.1 Let T be a tree with $\operatorname{diam}(T) \geq 5$. If T^{\prime} is a tree obtained from T by adding a new vertex attached at a support vertex of T, then $\gamma_{g}\left(T^{\prime 2}\right) \leq \gamma_{g}\left(T^{2}\right)$.

Proof. Let u be a support vertex of T and a be the new vertex attached at u. Let M be a γ_{g}-set of T^{2}. We will show that $T^{\prime 2}$ has a global dominating set of cardinality $|M|$. Assume first that $M-N_{T}[u] \neq \emptyset$. Then vertex a is dominated in $T^{\prime 2}$ by M as well as any vertex of $L(u)$ in T^{2}. Also, since $M-N_{T}[u] \neq \emptyset$, vertex a is at distance at least three from some vertices of $M-N_{T}[u]$, and so vertex a remains dominated by $M-N_{T}[u]$ in $\overline{T^{\prime 2}}$. Therefore for that case, M is a global dominating set of $T^{\prime 2}$. Now assume that $M-N_{T}[u]=\emptyset$. It is clear that $M=N_{T}[u]$. Since $\operatorname{diam}(T) \geq 5$, we have $\operatorname{rad}(T) \geq 3$. Thus there is a vertex $t \in V(T)$ such that $d_{T}(u, t)=3$. It follows that $M_{1}=(M-\{u\}) \cup\{t\}$ is a γ_{g}-set of T^{2}, too. Now since $M_{1}-N_{T}[u] \neq \emptyset$, we deduce, as previously seen, that M_{1} is a global dominating set of $T^{\prime 2}$. Therefore $\gamma_{g}\left(T^{\prime 2}\right) \leq \gamma_{g}\left(T^{2}\right)$.

Lemma 4.2 Let T be a tree and $M a \gamma_{g}$-set of T^{2}. If $\operatorname{diam}(T) \geq 4$, then $|L(u) \cap M| \leq$ 1 for every $u \in S(T)$.

Proof. To the contrary, suppose there is a support vertex $u \in S(T)$ such that $|L(u) \cap M| \geq 2$. Let $a, b \in M \cap L(u)$. If $M-N_{T}[u] \neq \emptyset$, then it is clear that $M-\{a\}$ is a global dominating set of T^{2}, a contradiction. Thus $M \subseteq N[u]$. Observe that since $d_{T}(z, M) \leq 2$ for every $z \in N_{T}[u]$, we have $M=N_{T}[u]$. It follows that $\operatorname{diam}(T) \leq 6$. At first let $\operatorname{diam}(T)=4$ and $P=u_{0}, u_{1}, u_{2}, u_{3}, u_{4}$ be a longest path in T. The set $\left\{u_{0}, u_{2}, u_{4}\right\}$ is a global dominating set of T^{2}, hence $\gamma_{g}\left(T^{2}\right) \leq 3$, but $|N[u]| \geq 4$, that is a contradiction. Now suppose that $\operatorname{diam}(T)=5$ and let $P=u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ be a longest path in T. Note that since $\left\{u_{0}, u_{2}, u_{3}, u_{5}\right\}$ is a global dominating set of T^{2}, we have $\gamma_{g}\left(T^{2}\right) \leq 4$. Clearly, if $u \notin C(T)$, then either $d_{T}\left(u, u_{0}\right)=4$ or $d_{T}\left(u, u_{5}\right)=4$. Hence $d_{T}\left(u_{0}, M\right)=3$ or $d_{T}\left(u_{5}, M\right)=3$, a contradiction. Thus $u \in C(T)$. But, then $|N[u]| \geq 5$, contradicting the fact that $|M|=\left|N_{T}[u]\right| \leq 4$. Hence we may assume that $\operatorname{diam}(T)=6$. Let $P=u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$ be a longest path in T. If $u \in C(T)$, then $\left(N_{T}[u]-L(u)\right) \cup\left\{u_{0}\right\}$ is a global dominating set of T^{2} smaller than M, a contradiction. Hence $u \notin C(T)$. But then either $d\left(u_{0}, N_{T}[u]\right) \geq 3$ or $d\left(u_{6}, N_{T}[u]\right) \geq 3$, a contradiction.

Theorem 4.3 If T is a tree, then $\gamma_{g}\left(T_{p}^{2}\right) \neq \gamma_{g}\left(T^{2}\right)$ if and only if
a) T is a star or
b) $\operatorname{diam}(T)=3$ and $\operatorname{deg}_{T}(u) \geq 3$ for every $u \in S(T)$.

Proof. Let T be a tree of order n. If $\operatorname{diam}(T) \in\{0,1\}$, then $T=T_{p}$ and so $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T^{2}\right)$. If $\operatorname{diam}(T)=2$, then T is a star, T_{p} is K_{2} and so $\gamma_{g}\left(T_{p}^{2}\right)=2$ while $\gamma_{g}\left(T^{2}\right)=n>2$. If $\operatorname{diam}(T)=3$, then T_{p} is P_{4}. Without loss of generality let $P=u_{0}, u_{1}, u_{2}, u_{3}$ be a longest path in T and in T_{p}. Then $\left\{u_{0}, u_{1}, u_{2}\right\}$ is a γ_{g}-set of T_{p}^{2}, and so $\gamma_{g}\left(T_{p}^{2}\right)=3$. If $\operatorname{deg}_{T}(u) \geq 3$ for every $u \in S(T)$, then $\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$ is a γ_{g}-set of T^{2} and so $\gamma_{g}\left(T^{2}\right)=4$. If $\operatorname{deg}_{T}(u)=2$ for some $u \in S(T)$, for example u_{1}, then the set $\left\{u_{0}, u_{1}, u_{2}\right\}$ is a γ_{g}-set of T^{2} and so $\gamma_{g}\left(T^{2}\right)=3$. Now if $\operatorname{diam}(T)=4$, then by Proposition 2.1 and Lemma 3.4, $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T^{2}\right)=3$. Now let $\operatorname{diam}(T) \geq 5$. Since T can be obtained from T_{p} by adding a new vertex at each time attached at a support vertex of T_{P}, Lemma 4.1 inductively implies that $\gamma_{g}\left(T^{2}\right) \leq \gamma_{g}\left(T_{p}^{2}\right)$. Now if M is a γ_{g}-set of T^{2}, then by Lemma 4.2 we have $|L(u) \cap M| \leq 1$ for every $u \in S(T)$. Thus, without loss of generality, we can assume that vertices of M belong to $V\left(T_{p}\right)$. Therefore M is a global dominating set of T_{p}^{2}. Hence $\gamma_{g}\left(T_{p}^{2}\right) \leq|M|=\gamma_{g}\left(T^{2}\right)$, and the desired equality follows.

Theorem 4.4 If T is a tree of diameter 5 , then $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$ if and only if T_{p} is one of the trees in Figure 1.

Figure 1
Proof. In each of the figures given in Figure 2, the set of black vertices represent a γ_{g}-set of T while the squared vertices represent a γ_{g}-set of T^{2}. Let $P=$ $u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ be a longest path in T. Since $\left\{u_{0}, u_{2}, u_{3}, u_{5}\right\}$ is a global dominating set of T^{2}, we have $\gamma_{g}\left(T^{2}\right) \leq 4$ and by Theorem 4.3 we have $\gamma_{g}\left(T_{p}^{2}\right) \leq 4$, too. By Proposition 2.1 we have $\operatorname{diam}\left(T_{p}\right)=5$ and by Lemma 3.3 and Corollary 1.2, if T_{p} has more than four support vertices, then $\gamma_{g}\left(T_{p}^{2}\right) \neq \gamma_{g}\left(T_{p}\right)$. Now the only pruned subtrees of diameter 5 with at most four support vertices are given in Figures 1 and 2. However, for every tree in Figure 1 we have $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)$, and for every tree in Figure 2, $\gamma_{g}\left(T_{p}^{2}\right) \neq \gamma_{g}\left(T_{p}\right)$. Now our result follows easily from Theorems 2.4 and 4.3.

Figure 2

5 Trees with diameter six

In this section we characterize all trees T with diameter 6 such that $\gamma_{g}(T)=\gamma_{g}\left(T^{2}\right)$.
Lemma 5.1 Let T be a tree with diameter 6 and center $C(T)=\{u\}$. If $\gamma_{g}\left(T^{2}\right)=$ $\gamma_{g}(T)$, then $\operatorname{deg}_{T_{p}}(x)<3$ for every $x \in N_{T_{p}}(u)$.

Proof. Let T be a tree with diameter 6 such that $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$. By Theorems 2.4 and 4.3, $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)$. Clearly, $N_{T_{p}}[u]$ is a global dominating set of T_{p}^{2}, and so $\gamma_{g}\left(T_{p}^{2}\right) \leq\left|N_{T_{p}}[u]\right|=d_{T_{p}}(u)+1$. On the other hand, since $\operatorname{diam}(T) \geq 5$, we have $\gamma_{g}(T)=\gamma(T) \geq|S(T)|=\left|S\left(T_{p}\right)\right|$. For every $w \in N_{T_{p}}(u)$, the component of $T_{p}-\left(N_{T_{p}}(u)-\{w\}\right)$ which includes w is named a branch of T_{p} containing edge wu. One can easily see that each branch attached at u in T_{p} is one of the trees in Figure 3.

Family of figures $Q=\{(A),(B),(C),(D),(E),(F),(G),(H)\}$
Figure 3

Note that since each support vertex in T_{p} has exactly one leaf, there is at most one branch (A) attached at u in T_{P}. Now let us define $n(X)$ as the number of branches (X) attached at u in T_{p}, where $X \in\{A, B, C, D, E, F, G, H\}$. Hence $\operatorname{deg}_{T_{p}}(u)=$ $\sum_{X \in\{A, B, C, D, E, F, G, H\}} n(X)$. Observe that each of the branches (A), (B) and (C) attached at u in T_{p} contains one vertex of $N_{T_{p}}(u)$ and one vertex of $S\left(T_{p}\right)$. Also, each of the branches (D), (E), (F), (G) and (H) attached at u in T_{p} contains one vertex of $N_{T_{p}}(u)$ and at least two vertices of $S\left(T_{p}\right)$. We will show that the only branches attached at u in T_{p} are among branches (A), (B) and (C). Now let us consider the following cases.

Case 1. T_{p} has at least one branch among branches (E), (G) and (H) attached at u. Each of the branches (E), (G) and (H) has at least three support vertices, and so

$$
\begin{aligned}
\gamma_{g}\left(T_{p}\right)= & \gamma\left(T_{p}\right) \geq\left|S\left(T_{p}\right)\right| \\
\geq & n(A)+n(B)+n(C)+n(D)+n(F)+3(n(E)+n(G)+n(H)) \\
= & n(A)+n(B)+n(C)+n(D)+n(E)+n(F)+n(G)+n(H)+2(n(E) \\
& \quad+n(G)+n(H)) \\
\geq & \operatorname{deg}_{T_{p}}(u)+2 \geq \gamma_{g}\left(T_{p}^{2}\right)+1 .
\end{aligned}
$$

Hence $\gamma_{g}\left(T_{p}^{2}\right)<\gamma_{g}\left(T_{p}\right)$, a contradiction. From now on we may assume that T_{p} has no branches (E), (G) and (H) attached at u.

Case 2. T_{p} has at least two branches among branches (D) and (F) attached at u. Each of the branches (D) and (F) has two support vertices. It follows that

$$
\begin{aligned}
\gamma_{g}\left(T_{p}\right) & =\gamma\left(T_{p}\right) \geq\left|S\left(T_{p}\right)\right|=n(A)+n(B)+n(C)+2(n(D)+n(F)) \\
& =n(A)+n(B)+n(C)+n(D)+n(F)+(n(D)+n(F)) \\
& \geq \operatorname{deg}_{T_{p}}(u)+2 \geq \gamma_{g}\left(T_{p}^{2}\right)+1
\end{aligned}
$$

and so $\gamma_{g}\left(T_{p}^{2}\right)<\gamma_{g}\left(T_{p}\right)$, a contradiction. Thus T_{p} has at most one branch among branches (D) and (F) attached at u.

In cases 3 and 4, we will show that T_{p} has no branches (D) and (F) attached at u.
Case 3. T_{p} has one branch (D) attached at u. Clearly since diam $\left(T_{p}\right)=6$, there is at least one branch (C) attached at u. Let M be the set containing all vertices c of branches (C) plus vertex b of (D). The following situations can occur.
a) If there is no branch (A) or (B) attached at u, then M is a γ_{g}-set of T_{p}^{2} and $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p}. Therefore $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-1$, a contradiction.
b) If there exist branches (A) or (B) attached at u, then $M \cup\{u\}$ is a global dominating set of T_{p}^{2} and $S\left(T_{p}\right)$ is γ_{g}-set of T_{p}. Therefore $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-1$, a contradiction.
Case 4. T_{p} has one branch (F) attached at u. Since $\operatorname{diam}\left(T_{p}\right)=6, T_{p}$ has at least one branch (C) attached at u. We observe the following situations.
a) T_{p} has exactly one branch (C) attached at u. If there are no branches (A) and (B) attached at u, then $S\left(T_{p}\right) \cup\{u\}$ is a γ_{g}-set of T_{p} and vertices a of branches (F) and (C) plus u form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-1$, a contradiction. Now if there is one branch (A) and no branch (B) attached at u, then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and vertices a and c of branch (C) and vertex a of branch (F) form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-1$, a contradiction.
If there is one branch (B) and no branch (A) attached at u, then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and vertices c of branch (C) and a of branch (F) plus b of branch (B) form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-1$, a contradiction.
If there are at least two branches (B) and no branch (A) attached at u, then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and vertices c of branch (C) and a of branch (F) and b of one of the branches (B) plus vertex u form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-1$, a contradiction.
If there is one branch (A) and at least one branch (B) attached at u, then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and vertices c of branch (C) and a of branch (F) plus vertex u form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-2$, a contradiction.
b) T_{p} has at least two branches (C) attached at u. If there is no branch (B) attached at u, then $S\left(T_{p}\right) \cup\{u\}$ is a γ_{g}-set of T_{p} and vertices c of branches (C) plus vertex a of branch (F) form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-2$, a contradiction. Now if T_{p} has at least one branch (B) attached at u, then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p}, and vertices c of branches (C) plus u and vertex a of branch (F) form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-1$.

So the only branches that are attached to u are (A), (B) and (C) and the vertex a in each of them has degree one or two.

Theorem 5.2 If T is a tree with diameter 6 and $C(T)=\{u\}$, then $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$ if and only if one of the following conditions holds:
a) T_{p} has one branch (A), two branches (C) and no other branches are attached at u, b) T_{p} has one branch (B), at least two branches (C) and no other branches are attached at u.

Proof. If T satisfies the conditions (a) and (b), then for T_{p}, the vertices c of branches (C) plus vertex u form a γ_{g}-set of T_{p}^{2} and the set $S\left(T_{p}\right)$ forms a γ_{g}-set of T_{p}, so $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)$ and by Theorems 2.4 and 4.3, we obtain $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$.
Now let $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$ and suppose that T does not satisfy conditions (a) or (b). By Theorems 2.4 and 4.3, $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)$. Also by Lemma 5.1, $\operatorname{deg}_{T_{p}}(x)<3$ for every $x \in N_{T_{p}}(u)$. Hence the only branches attached at u in T_{p} are among branches (A), (B) and (C). Moreover, since $\operatorname{diam}(T)=6, T_{p}$ contains at least two branches (C) attached at u. We now consider the following cases.

Case 1. One branch (A), at least one branch (B) and at least two branches (C) are attached at u in T_{p}. In this case, $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p}. Also vertices c of branches (C) plus vertex u form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-1$, a contradiction.

Case 2. One branch (A), at least three branches (C) and no branch (B) are attached at u in T_{p}. In this case, $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p}. Also vertex a of one branch (C) plus vertices c of the remaining branches (C) form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-1$, a contradiction.

Case 3. At least two branches (B) and at least two branches (C) and no branch (A) are attached at u in T_{p}. In this case $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p}. Also vertices c of branches (C) plus vertex u form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-1$, a contradiction.

6 Trees with diameter seven

In this section we characterize all trees T of diameter 7 such that $\gamma_{g}(T)=\gamma_{g}\left(T^{2}\right)$.
Lemma 6.1 Let T be a tree with diameter 7 and center $C(T)=\{u, v\}$. If $\gamma_{g}\left(T^{2}\right)=$ $\gamma_{g}(T)$, then $\operatorname{deg}_{T_{p}}(x)<3$ for every $x \in N_{T_{p}}(u) \cup N_{T_{p}}(v)-\{u, v\}$.

Proof. Let $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$. By Theorems 2.4 and 4.3 we have $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)$. Clearly, $N_{T_{p}}(u) \cap N_{T_{p}}(v)$ is a global dominating set of T_{p}^{2} and so $\gamma_{g}\left(T_{p}^{2}\right) \leq \operatorname{deg}_{T_{p}}(u)+$ $\operatorname{deg}_{T_{p}}(v)$. Let Q^{\prime} be the family of all possible branches of T_{p} attached at u or v. We note that vertex w in different branches is u or v.

Family of figures $Q^{\prime}=\left\{\left(A^{\prime}\right),\left(B^{\prime}\right),\left(C^{\prime}\right),\left(D^{\prime}\right),\left(E^{\prime}\right),\left(F^{\prime}\right),\left(G^{\prime}\right),\left(H^{\prime}\right),\left(I^{\prime}\right)\right\}$
Figure 4

Note that since each support vertex in T_{p} has exactly one leaf, there is at most one branch $\left(A^{\prime}\right)$ attached at u and at most one branch $\left(A^{\prime}\right)$ attached at v in T_{P}. Let $n(X)$ be the number of branches (X) that are attached at u or v in T_{p}, where $X \in\left\{A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}, G^{\prime}, H^{\prime}, I^{\prime}\right\}$. Hence

$$
d_{T_{p}}(u)+d_{T_{p}}(v)=\sum_{X \in\left\{A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}, G^{\prime}, H^{\prime}, I^{\prime}\right\}} n(X)+2 .
$$

Observe that each branch (X) attached at u or v in T_{p} contains one vertex of $N_{T_{p}}(u) \cup$ $N_{T_{p}}(v)-\{u, v\}$ and at least one vertex of $S\left(T_{p}\right)$. More precisely, if $X \in\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}$, then branch (X) contains one vertex of $S\left(T_{p}\right)$. If $X \in\left\{D^{\prime}, G^{\prime}\right\}$, then branch (X) contains two vertices of $S\left(T_{p}\right)$. If $X \in\left\{E^{\prime}, H^{\prime}\right\}$, then branch (X) contains three vertices of $S\left(T_{p}\right)$. If $X \in\left\{F^{\prime}, I^{\prime}\right\}$, then branch (X) contains at least four vertices of $S\left(T_{p}\right)$. It is sufficient to show that the only branches that are attached at u or v in T_{p} are among branches $\left(\mathrm{A}^{\prime}\right),\left(\mathrm{B}^{\prime}\right)$ and $\left(\mathrm{C}^{\prime}\right)$. Now if there exists a vertex $x \in N_{T_{p}}(u) \cup N_{T_{p}}(v)-\{u, v\}$ such that $\operatorname{deg}_{T_{p}}(x) \geq 3$, then we are in one of the following cases.

Case 1. T_{p} has at least one branch among branches (F^{\prime}) and ($\left.\mathrm{I}^{\prime}\right)$ attached at u or v. Since each of the branches $\left(\mathrm{F}^{\prime}\right)$ and ($\left.\mathrm{I}^{\prime}\right)$ has at least four support vertices, we obtain

$$
\begin{aligned}
\gamma_{g}\left(T_{p}\right)= & \gamma\left(T_{p}\right) \geq\left|S\left(T_{p}\right)\right| \\
\geq & n\left(A^{\prime}\right)+n\left(B^{\prime}\right)+n\left(C^{\prime}\right)+n\left(D^{\prime}\right)+n\left(E^{\prime}\right)+n\left(G^{\prime}\right)+n\left(H^{\prime}\right)+4\left(n\left(F^{\prime}\right)+n\left(I^{\prime}\right)\right) \\
= & n\left(A^{\prime}\right)+n\left(B^{\prime}\right)+n\left(C^{\prime}\right)+n\left(D^{\prime}\right)+n\left(E^{\prime}\right)+n\left(F^{\prime}\right)+n\left(G^{\prime}\right)+n\left(H^{\prime}\right)+n\left(I^{\prime}\right) \\
\quad & \quad+3\left(n\left(F^{\prime}\right)+n\left(I^{\prime}\right)\right) \\
\geq & \operatorname{deg}_{T_{p}}(u)+d_{T_{p}}(v)-2+3=\operatorname{deg}_{T_{p}}(u)+d_{T_{p}}(v)+1 \geq \gamma_{g}\left(T_{p}^{2}\right)+1 .
\end{aligned}
$$

Hence $\gamma_{g}\left(T_{p}^{2}\right)<\gamma_{g}\left(T_{p}\right)$, a contradiction. Thus, for the next cases T_{p} has no branch (F^{\prime}) nor (I^{\prime}).

Case 2. T_{p} has at least two branches among branches $\left(\mathrm{E}^{\prime}\right)$ and $\left(\mathrm{H}^{\prime}\right)$ attached at u or v. Since each of the branches $\left(\mathrm{E}^{\prime}\right)$ and $\left(\mathrm{H}^{\prime}\right)$ has three support vertices, we obtain that

$$
\begin{aligned}
\gamma_{g}\left(T_{p}\right) & =\gamma\left(T_{p}\right) \geq\left|S\left(T_{p}\right)\right| \\
& \geq n\left(A^{\prime}\right)+n\left(B^{\prime}\right)+n\left(C^{\prime}\right)+n\left(D^{\prime}\right)+n\left(G^{\prime}\right)+3\left(n\left(E^{\prime}\right)+n\left(H^{\prime}\right)\right) \\
& =n\left(A^{\prime}\right)+n\left(B^{\prime}\right)+n\left(C^{\prime}\right)+n\left(D^{\prime}\right)+n\left(E^{\prime}\right)+n\left(G^{\prime}\right)+n\left(H^{\prime}\right)+2\left(n\left(E^{\prime}\right)+n\left(H^{\prime}\right)\right) \\
& \geq \operatorname{deg}_{T_{p}}(u)+d_{T_{p}}(v)-2+4=\operatorname{deg}_{T_{p}}(u)+d_{T_{p}}(v)+2 \geq \gamma_{g}\left(T_{p}^{2}\right)+2 .
\end{aligned}
$$

Hence $\gamma_{g}\left(T_{p}^{2}\right)<\gamma_{g}\left(T_{p}\right)$, a contradiction.
Case 3. T_{p} has at least one branch (E^{\prime}) and at least one branch among branches $\left(D^{\prime}\right),\left(G^{\prime}\right) \operatorname{and}\left(H^{\prime}\right)$ attached at u or v. In this case, we have

$$
\begin{aligned}
\gamma_{g}\left(T_{p}\right)= & \gamma\left(T_{p}\right) \geq\left|S\left(T_{p}\right)\right| \\
\geq & n\left(A^{\prime}\right)+n\left(B^{\prime}\right)+n\left(C^{\prime}\right)+2\left(n\left(D^{\prime}\right)+n\left(G^{\prime}\right)+n\left(H^{\prime}\right)\right)+3 n\left(E^{\prime}\right) \\
= & n\left(A^{\prime}\right)+n\left(B^{\prime}\right)+n\left(C^{\prime}\right)+n\left(D^{\prime}\right)+n\left(E^{\prime}\right)+n\left(G^{\prime}\right) \\
& \quad+n\left(H^{\prime}\right)+\left(n\left(D^{\prime}\right)+n\left(G^{\prime}\right)+n\left(H^{\prime}\right)\right)+2 n\left(E^{\prime}\right) \\
\geq & \operatorname{deg}_{T_{p}}(u)+d_{T_{p}}(v)-2+1+2=\operatorname{deg}_{T_{p}}(u)+d_{T_{p}}(v)+1 \geq \gamma_{g}\left(T_{p}^{2}\right)+1 .
\end{aligned}
$$

Hence $\gamma_{g}\left(T_{p}^{2}\right)<\gamma_{g}\left(T_{p}\right)$, a contradiction.
Case 4. T_{p} has at least one branch $\left(\mathrm{H}^{\prime}\right)$ and at least one branch among branches $\left(\mathrm{D}^{\prime}\right),\left(\mathrm{E}^{\prime}\right)$ and $\left(\mathrm{G}^{\prime}\right)$ attached at u or v. In this case, we have

$$
\begin{aligned}
\gamma_{g}\left(T_{p}\right)= & \gamma\left(T_{p}\right) \geq\left|S\left(T_{p}\right)\right| \\
\geq & n\left(A^{\prime}\right)+n\left(B^{\prime}\right)+n\left(C^{\prime}\right)+2\left(n\left(D^{\prime}\right)+n\left(E^{\prime}\right)+n\left(G^{\prime}\right)\right)+3 n\left(H^{\prime}\right) \\
= & n\left(A^{\prime}\right)+n\left(B^{\prime}\right)+n\left(C^{\prime}\right)+n\left(D^{\prime}\right)+n\left(E^{\prime}\right) \\
& \quad+n\left(G^{\prime}\right)+n\left(H^{\prime}\right)+\left(n\left(D^{\prime}\right)+n\left(E^{\prime}\right)+n\left(G^{\prime}\right)\right)+2 n\left(H^{\prime}\right) \\
\geq & \operatorname{deg}_{T_{p}}(u)+d_{T_{p}}(v)-2+1+2=\operatorname{deg}_{T_{p}}(u)+d_{T_{p}}(v)+1 \geq \gamma_{g}\left(T_{p}^{2}\right)+1 .
\end{aligned}
$$

Hence $\gamma_{g}\left(T_{p}^{2}\right)<\gamma_{g}\left(T_{p}\right)$, a contradiction.

Case 5. T_{p} has one branch (E^{\prime}) and no branch among branches $\left(\mathrm{D}^{\prime}\right)$, ($\left.\mathrm{G}^{\prime}\right)$ and $\left(\mathrm{H}^{\prime}\right)$ attached at u or v. Without loss of generality, we assume that (E^{\prime}) is attached at v. Since $\operatorname{diam}(G)=7, T_{p}$ has at least one branch $\left(\mathrm{C}^{\prime}\right)$ attached at u. We consider the following two situations.
a) No branch $\left(\mathrm{A}^{\prime}\right)$ or $\left(\mathrm{B}^{\prime}\right)$ is attached at u or v in T_{p}. Then $S\left(T_{p}\right) \cup\{u\}$ is γ_{g}-set of T_{p}, and vertices c of branches $\left(\mathrm{C}^{\prime}\right)$ plus vertex a of $\left(\mathrm{E}^{\prime}\right)$ form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-3$, that is a contradiction.
b) T_{p} contains some branches (A^{\prime}) or (B^{\prime}) attached at u or v. Then the set M formed by vertices a of branches $\left(\mathrm{C}^{\prime}\right)$ and $\left(\mathrm{E}^{\prime}\right)$ plus u, v is a global dominating set of T_{p}^{2}, implying that $|M| \leq\left|S\left(T_{p}\right)\right|-1$. Hence $\gamma_{g}\left(T_{p}^{2}\right) \leq|M|<\left|S\left(T_{p}\right)\right| \leq \gamma\left(T_{p}\right)=\gamma_{g}\left(T_{p}\right)$, a contradiction.

Case 6. T_{p} has one branch $\left(\mathrm{H}^{\prime}\right)$ and no branch among branches $\left(\mathrm{D}^{\prime}\right)$, $\left(\mathrm{E}^{\prime}\right)$ and $\left(\mathrm{G}^{\prime}\right)$ attached at u or v. Without loss of generality we assume that $\left(\mathrm{H}^{\prime}\right)$ is attached at v. Since $\operatorname{diam}(G)=7, T_{p}$ has at least one branch $\left(\mathrm{C}^{\prime}\right)$ attached at u. We consider the following two situations.
a) No branch $\left(\mathrm{A}^{\prime}\right)$ or $\left(\mathrm{B}^{\prime}\right)$ is attached at u or v in T_{p}. Then $S\left(T_{p}\right) \cup\{u\}$ is γ_{g}-set of T_{p}, and vertices c of $\left(\mathrm{C}^{\prime}\right)$ plus vertex a of $\left(\mathrm{H}^{\prime}\right)$ form a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-3$, a contradiction.
b) T_{p} contains some branches $\left(\mathrm{A}^{\prime}\right)$ or $\left(\mathrm{B}^{\prime}\right)$ attached at u or v. Then the set M formed by vertices a of branches $\left(\mathrm{C}^{\prime}\right)$ and $\left(\mathrm{H}^{\prime}\right)$ plus u, v is a global dominating set of T_{p}^{2}, implying that $|M| \leq\left|S\left(T_{p}\right)\right|-1$. Therefore $\gamma_{g}\left(T_{p}^{2}\right) \leq|M|<\left|S\left(T_{p}\right)\right| \leq \gamma\left(T_{p}\right)=\gamma_{g}\left(T_{p}\right)$, a contradiction.

Hence for the remaining cases we consider T_{p} has no branch $\left(\mathrm{E}^{\prime}\right)$ nor $\left(\mathrm{H}^{\prime}\right)$.
Case 7. T_{p} has at least three branches among branches (D^{\prime}) and (G^{\prime}) attached at u or v. Since each of the branches $\left(\mathrm{D}^{\prime}\right)$ and $\left(\mathrm{G}^{\prime}\right)$ has two support vertices, we obtain that

$$
\begin{aligned}
\gamma_{g}\left(T_{p}\right) & =\gamma\left(T_{p}\right) \geq\left|S\left(T_{p}\right)\right| \geq n\left(A^{\prime}\right)+n\left(B^{\prime}\right)+n\left(C^{\prime}\right)+2\left(n\left(D^{\prime}\right)+n\left(G^{\prime}\right)\right) \\
& =n\left(A^{\prime}\right)+n\left(B^{\prime}\right)+n\left(C^{\prime}\right)+n\left(D^{\prime}\right)+n\left(G^{\prime}\right)+\left(n\left(D^{\prime}\right)+n\left(D^{\prime}\right)\right) \\
& \geq \operatorname{deg}_{T_{p}}(u)+d_{T_{p}}(v)-2+3=\operatorname{deg}_{T_{p}}(u)+d_{T_{p}}(v)+1 \geq \gamma_{g}\left(T_{p}^{2}\right)+1 .
\end{aligned}
$$

Hence $\gamma_{g}\left(T_{p}^{2}\right)<\gamma_{g}\left(T_{p}\right)$, a contradiction.
Case 8. T_{p} has one or two branches among branches $\left(\mathrm{D}^{\prime}\right)$ and $\left(\mathrm{G}^{\prime}\right)$ attached at u or v. Note that in this case, T_{p} may also contain some branches among branches (A^{\prime}), $\left(\mathrm{B}^{\prime}\right)$ and $\left(\mathrm{C}^{\prime}\right)$ attached at u or v. It is clear that for every tree T with diameter 7 and center $\{u, v\}$, by adding every branch $\left(\mathrm{C}^{\prime}\right)$ to u or v, the amounts $\gamma_{g}\left(T_{p}\right)$ and $\gamma_{g}\left(T_{p}^{2}\right)$ increase exactly by 1 . We consider the trees in Figure 5.

Figure 5

The tree T_{p} can be obtained by adding some branches among branches $\left(A^{\prime}\right),\left(B^{\prime}\right),\left(C^{\prime}\right)$ to vertices u or v of one of the trees $T_{i}, i=1,2, \ldots, 8$. Note that T_{p} has at most one branch $\left(A^{\prime}\right)$ attached at u or at v. In this case, for each tree T_{i} in Figures 6,7,8 a γ_{g}-set, named M_{i}, by black vertices and a global dominating set of T_{i}^{2}, named N_{i}, by square shapes is determined. So for trees $T_{i}, i=1,2,5,6,7,8$ we have $\gamma_{g}\left(T_{i}^{2}\right) \leq$ $\left|N_{i}\right|<\left|M_{i}\right|=\gamma_{g}\left(T_{i}\right)$ and for $T_{i}, i=3,4$, we have $\gamma_{g}\left(T_{i}^{2}\right) \leq\left|N_{i}\right|=\left|M_{i}\right|=\gamma_{g}\left(T_{i}\right)$. By adding some branches among branches $\left(A^{\prime}\right)$ and $\left(B^{\prime}\right)$ to u or v in $T_{i}, i=3,4$, the amount $\left|M_{i}\right|$ increases at least by 1 but $\left|N_{i}\right|$ does not change. By adding some branches among branches $\left(A^{\prime}\right)$ and $\left(B^{\prime}\right)$ to u or v in $T_{i}, i=5,6,7,8$, the amount $\left|M_{i}\right|$ does not change or increases by at least one, but $\left|N_{i}\right|$ does not change. Hence, if T_{p} is made by adding some branches among branches $\left(\mathrm{A}^{\prime}\right),\left(\mathrm{B}^{\prime}\right)$ and $\left(\mathrm{C}^{\prime}\right)$ to T_{i}, $i=3,4, \ldots, 8$, then we have $\gamma_{g}\left(T_{p}^{2}\right)<\gamma_{g}\left(T_{p}\right)$, that is a contradiction.
Now we consider the trees in Figure 6 that are obtained from the trees T_{1} or T_{2} by attaching a branch (A^{\prime}) to one of the vertices u and v.

Figure 6

For trees $T_{i}, i=9,10,11,12$ we have $\gamma_{g}\left(T_{i}^{2}\right) \leq\left|N_{i}\right|<\left|M_{i}\right|=\gamma_{g}\left(T_{i}\right)$. Now consider the trees in Figure $\mathbf{7}$ which are the trees $T_{i}, i=1,2,9,10,11,12$, with new a global dominating set of T_{i}^{2}.

Figure 7

By adding every branch among branches $\left(A^{\prime}\right)$ and $\left(B^{\prime}\right)$ to u or v in $T_{i}, i=15,16,17,18$ the amount $\left|M_{i}\right|$ increases at least by 1 , but $\left|N_{i}\right|$ doesn't change, and by adding every branch (B^{\prime}) to u or v in $T_{i}, i=13,14$, then $\left|M_{i}\right|$ increases by one but $\left|N_{i}\right|$ does not change.
Consequently if T_{p} is obtained from T_{1} or T_{2} by attaching some branches among branches $\left(\mathrm{A}^{\prime}\right)$, $\left(\mathrm{B}^{\prime}\right)$ and $\left(\mathrm{C}^{\prime}\right)$ at u or v we have $\gamma_{g}\left(T^{2}\right)<\gamma_{g}(T)$, a contradiction. Hence T_{p} has no branches among branches $\left(\mathrm{D}^{\prime}\right)$ and $\left(\mathrm{G}^{\prime}\right)$ and the only branches attached at u and v in T_{p} are among branches $\left(\mathrm{A}^{\prime}\right),\left(\mathrm{B}^{\prime}\right)$ and $\left(\mathrm{C}^{\prime}\right)$.

Theorem 6.2 If T is a tree with diameter 7 and center $C(T)=\{u, v\}$, then $\gamma_{g}\left(T^{2}\right)$ $=\gamma_{g}(T)$ if and only if at least one branch $\left(C^{\prime}\right)$ and just one branch $\left(B^{\prime}\right)$ are attached at u, also at v in T_{p} and T_{p} has no other branches attached at u and v.

Proof. Let $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$. Then by Lemma 6.1, $\operatorname{deg}_{T_{p}}(x)<3$ for every $x \in$ $N_{T_{p}}(u) \cup N_{T_{p}}(v)-\{u, v\}$. So there are attached only branches among branches (A^{\prime}), (B^{\prime}) and $\left(\mathrm{C}^{\prime}\right)$ at u and v in T_{p}. Since $\operatorname{diam}(T)=7, T_{p}$ must have at least one branch (C^{\prime}) attached at u and at least one branch $\left(\mathrm{C}^{\prime}\right)$ attached at v. If T_{p} has no branch (A^{\prime}) or $\left(\mathrm{B}^{\prime}\right)$ attached at u and v, then $S\left(T_{p}\right) \cup\{v\}$ is a γ_{g}-set of T_{p}, and the set formed
by vertex a of one branch $\left(\mathrm{C}^{\prime}\right)$ attached at u plus vertices c of the other branches (C^{\prime}) attached at u or v is a γ_{g}-set of T_{p}^{2}. It follows that $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-1$, a contradiction. From now on we may assume that T_{p} has at least one branch $\left(\mathrm{C}^{\prime}\right)$ attached at u and at least one branch $\left(\mathrm{C}^{\prime}\right)$ attached at v and at least one branch among branches (A^{\prime}) and $\left(\mathrm{B}^{\prime}\right)$ attached at u or v. Therefore, without loss of generality, we distinguish between the following cases.

Case 1. T_{p} has one branch (A^{\prime}) attached at u and no branch $\left(\mathrm{B}^{\prime}\right)$ attached at u. In this case, we are in one of the following situations.
a) No branch $\left(\mathrm{A}^{\prime}\right)$ or $\left(\mathrm{B}^{\prime}\right)$ is attached at v. Then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p}, and the set formed by vertex a of one branch ($\left.\mathrm{C}^{\prime}\right)$ attached at u plus vertices c of the other branches $\left(\mathrm{C}^{\prime}\right)$ attached at u or v, is a γ_{g}-set of T_{p}^{2}. Hence $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-1$, a contradiction.
b) One branch $\left(\mathrm{A}^{\prime}\right)$ and no branch $\left(\mathrm{B}^{\prime}\right)$ are attached at v. If T_{p} has exactly two branches $\left(\mathrm{C}^{\prime}\right)$, then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and the set formed by u plus vertex c of branch $\left(\mathrm{C}^{\prime}\right)$ attached at u and vertex a of branch $\left(\mathrm{C}^{\prime}\right)$ attached at v is a γ_{g}-set of T_{p}^{2}. It follows that $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-1$, a contradiction. Thus we assume that T_{p} has at least three branches $\left(\mathrm{C}^{\prime}\right)$. Without loss of generality, we assume that at least two branches ($\left.\mathrm{C}^{\prime}\right)$ are attached at u. Then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and the set formed by vertex c of one of the branches $\left(\mathrm{C}^{\prime}\right)$ attached at u plus vertices a of the remaining branches $\left(\mathrm{C}^{\prime}\right)$ is a γ_{g}-set of T_{p}^{2}. It follows that $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)-2$, a contradiction.
c) At least one branch (B^{\prime}) and no branch (A^{\prime}) are attached at v. Then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and the set formed by vertices c of branches (C^{\prime}) plus vertex v is a γ_{g}-set of T_{p}^{2}. Hence $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-1$, a contradiction.
d) One branch (A^{\prime}) and at least one branch (B^{\prime}) are attached at v. Then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and the set formed by vertices c of all branches $\left(\mathrm{C}^{\prime}\right)$ plus vertex v is a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-2$, a contradiction.
Case 2. T_{p} has one branch (A^{\prime}) and at least one branch (B^{\prime}) attached at u. In this case, we are in one of the following situations.
a) No branch $\left(\mathrm{A}^{\prime}\right)$ or $\left(\mathrm{B}^{\prime}\right)$ is attached at v. Then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and the set formed by vertices c of all branches $\left(\mathrm{C}^{\prime}\right)$ plus vertex u is a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-1$, a contradiction.
b) No branch $\left(\mathrm{A}^{\prime}\right)$ and at least one branch $\left(\mathrm{B}^{\prime}\right)$ are attached at v. Then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and the set formed by vertices c of all branches $\left(\mathrm{C}^{\prime}\right)$ plus u and v is a γ_{g}-set of T_{p}^{2}. Hence $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-1$, a contradiction.
c) One branch $\left(\mathrm{A}^{\prime}\right)$ and at least one branch $\left(\mathrm{B}^{\prime}\right)$ are attached at v. Then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and the set formed by vertices c of all branches $\left(\mathrm{C}^{\prime}\right)$ plus u and v is a γ_{g}-set of T_{p}^{2}. Hence $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-2$, a contradiction.
Up to now by cases 1 and 2 we found that no branch (A^{\prime}) is attached at u and v. From now on we may assume that no branch (A^{\prime}) is attached to u and v.

Case 3. At least one branch $\left(\mathrm{B}^{\prime}\right)$ is attached at u. In this case, we are in one of the following situations.
a) No branch $\left(\mathrm{B}^{\prime}\right)$ is attached at v. Then $S\left(T_{p}\right) \cup\{v\}$ is a γ_{g}-set of T_{p} and the set formed by vertices c of all branches (C^{\prime}) plus vertex u is a γ_{g}-set of T_{p}^{2}. Therefore $\gamma_{g}\left(T_{p}^{2}\right) \leq \gamma_{g}\left(T_{p}\right)-1$, a contradiction.
b) At least one branch $\left(\mathrm{B}^{\prime}\right)$ is attached at v. Then $S\left(T_{p}\right)$ is a γ_{g}-set of T_{p} and the set formed by vertices a of all branches (C^{\prime}) plus u and v is a γ_{g}-set of T_{p}^{2}. It follows that if more than one branch ($\left.\mathrm{B}^{\prime}\right)$ is attached at each of u or v, then $\gamma_{g}\left(T_{p}^{2}\right)<\gamma_{g}\left(T_{p}\right)$. Equality between $\gamma_{g}\left(T_{p}^{2}\right)$ and $\gamma_{g}\left(T_{p}\right)$ holds when there is attached exactly one branch $\left(\mathrm{B}^{\prime}\right)$ at u, and one at v.

7 Trees with diameter eight

For this section, consider the branches of Figure 8.

Family of figures $Q^{\prime \prime}=\left\{\left(A^{\prime \prime}\right),\left(B^{\prime \prime}\right),\left(C^{\prime \prime}\right),\left(D^{\prime \prime}\right),\left(E^{\prime \prime}\right),\left(F^{\prime \prime}\right),\left(G^{\prime \prime}\right),\left(H^{\prime \prime}\right),\left(I^{\prime \prime}\right)\right\}$
Figure 8
According to the definition of family τ, if $T \in \tau$ and $\operatorname{diam}(T)=8$, then T_{p} can be a tree of Figure $\mathbf{9}$ or 10 with u as a center vertex.

Figure 9

Figure 10

Figure 9 consist of one branch $\left(A^{\prime \prime}\right)$ and at least two branches among branches $\left(D^{\prime \prime}\right)$ and $\left(F^{\prime \prime}\right)$ attached at u, while Figure 10 consist of one branch $\left(B^{\prime \prime}\right)$ and some branches among branches $\left(C^{\prime \prime}\right)$ and $\left(H^{\prime \prime}\right)$ attached at u. Note that in Figure 10, since $\operatorname{diam}(T)=8$, so at least two branches $\left(H^{\prime \prime}\right)$ are attached at u.

Theorem 7.1 If T is a tree of diameter 8 , then $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$ if and only if $T \in \tau$.
Proof. If $T \in \tau$, then $S(T)$ is both a γ_{g}-set of T and γ_{g}-set of T^{2}, and therefore $\gamma_{g}\left(T^{2}\right)=\gamma_{g}(T)$.
Conversely, let T be a tree of diameter 8 and center vertex u such that $\gamma_{g}\left(T^{2}\right)=$ $\gamma_{g}(T)$. By Theorems 2.4 and 4.3, we have $\gamma_{g}\left(T_{p}^{2}\right)=\gamma_{g}\left(T_{p}\right)$ and since diam $\left(T_{p}\right) \geq 5$ we have $\gamma_{g}\left(T_{p}\right)=\gamma\left(T_{p}\right)$. Let $B_{1}, B_{2}, \ldots, B_{k}$ denote the branches of T_{p} attached at u. Note that since $\operatorname{diam}(T)=8$, so the branches attached at u in T or T_{p} are at most in diameter four. Let S_{i} be the set of support vertices of branch B_{i}. Note that if $B_{i}=\left(A^{\prime \prime}\right)$, then $\left|S_{i}\right|=0$. Let W_{i} be the set of vertex labeled b if $B_{i}=\left(B^{\prime \prime}\right)$ and $W_{i}=\left\{v \in V\left(B_{i}\right) \mid d_{T_{p}}(v, u)=2, d_{T_{p}}(v)>1\right\}$ if $B_{i} \neq\left(B^{\prime \prime}\right)$, $i \in\{1,2, \ldots, k\}$. Let $W=\bigcup_{i=1}^{k} W_{i}$. Clearly, $\left|W_{i}\right| \leq\left|S_{i}\right|, i \in\{1,2, \ldots, k\}$ and $\sum_{i=1}^{k}\left|S_{i}\right| \leq\left|S\left(T_{p}\right)\right| \leq \gamma\left(T_{p}\right)=\gamma_{g}\left(T_{p}\right)$. Since $W \cup\{u\}$ is a global dominating set of T_{p}^{2} we obtain that $\gamma_{g}\left(T_{p}^{2}\right) \leq|W|+1$. We note that if $B_{i} \in Q^{\prime \prime}$, then $\left|W_{i}\right|=\left|S_{i}\right|$. However, T_{p} may contain some branch $B_{j} \notin Q^{\prime \prime}$ and for which we have $\left|S_{j}\right|>\left|W_{j}\right|$. Now let us examine the different situations.

Case 1. Either $\left|S_{j}\right| \geq\left|W_{j}\right|+2$ for some $j \in\{1,2, \ldots, k\}$ or $\left|S_{r}\right|=\left|W_{r}\right|+1$ and $\left|S_{t}\right|=\left|W_{t}\right|+1$ for some $r, t \in\{1,2, \ldots, k\}$ with $r \neq t$. In this case, we have $\gamma_{g}\left(T_{p}^{2}\right) \leq|W|+1=\left(\sum_{i=1}^{k}\left|W_{i}\right|\right)+1 \leq\left(\sum_{i=1}^{k}\left|S_{i}\right|\right)-2+1 \leq \gamma_{g}\left(T_{p}\right)-1$, a contradiction.
Case 2. $\left|S_{j}\right|=\left|W_{j}\right|+1$ for just one $j \in\{1,2, \ldots, k\}$ and $B_{i} \in Q^{\prime \prime}$, for $i \in$ $\{1,2, \ldots, k\}-\{j\}$. Without loss of generality, assume that $j=1$. Clearly, since $\operatorname{diam}(T)=8$, at least one of the branches $\left(D^{\prime \prime}\right),\left(F^{\prime \prime}\right),\left(G^{\prime \prime}\right),\left(H^{\prime \prime}\right)$ and $\left(I^{\prime \prime}\right)$ is attached at u. First suppose that there is a branch $\left(A^{\prime \prime}\right)$ attached at u in T_{p}, then $S(T)=$
$\left(\bigcup_{i=1}^{k} S_{i}\right) \cup\{u\}$ and so $|S(T)|=\sum_{i=1}^{k}\left|S_{i}\right|+1$, implying that

$$
\begin{aligned}
\gamma_{g}\left(T_{p}^{2}\right) & \leq|W|+1=\left(\sum_{i=1}^{k}\left|W_{i}\right|\right)+1=\left|w_{1}\right|+\left(\sum_{i=2}^{k}\left|W_{i}\right|\right)+1 \\
& =\left(\left|S_{1}\right|-1\right)+\left(\sum_{i=2}^{k}\left|S_{i}\right|\right)+1=\sum_{i=1}^{k}\left|S_{i}\right|=\left|S\left(T_{p}\right)\right|-1 \leq \gamma_{g}\left(T_{p}\right)-1
\end{aligned}
$$

a contradiction. Suppose now that no branch $\left(A^{\prime \prime}\right)$ is attached at u. Then the set M consists of W_{1} and the vertices labeled b of branches $B_{2}, B_{3}, \ldots, B_{k}$ is a global dominating set of T^{2}. The number of such vertices labeled b in each B_{i}, with $i \neq 1$, equals to $\left|W_{i}\right|$. Therefore we obtain

$$
\begin{aligned}
\gamma_{g}\left(T_{p}^{2}\right) & \leq|M|=|W|=\sum_{i=1}^{k}\left|W_{i}\right|=\left|W_{1}\right|+\sum_{i=2}^{k}\left|W_{i}\right| \\
& =\left(\left|S_{1}\right|-1\right)+\sum_{i=2}^{k}\left|S_{i}\right|=\left(\sum_{i=1}^{k}\left|S_{i}\right|\right)-1 \leq \gamma_{g}\left(T_{p}\right)-1,
\end{aligned}
$$

a contradiction.
Hence from now on we will assume that each branch B_{i} belongs to $Q^{\prime \prime}, i=1,2, \ldots, k$.
Note that according to the definition of pruned subgraph, at most one branch ($A^{\prime \prime}$) is attached at u in T_{p}, and since $\operatorname{diam}(T)=8$, at least two branches among branches $\left(D^{\prime \prime}\right),\left(F^{\prime \prime}\right),\left(G^{\prime \prime}\right),\left(H^{\prime \prime}\right)$ and $\left(I^{\prime \prime}\right)$ are attached at u.

Case 3. There is a branch among $\left(E^{\prime \prime}\right),\left(G^{\prime \prime}\right)$ or $\left(I^{\prime \prime}\right)$ attached at u in T_{p}. In this case, the set M consisting of vertices labeled c in branches of $\left\{\left(E^{\prime \prime}\right),\left(G^{\prime \prime}\right),\left(I^{\prime \prime}\right)\right\}$ plus vertices of W_{i} not in branches of $\left\{\left(E^{\prime \prime}\right),\left(G^{\prime \prime}\right),\left(I^{\prime \prime}\right)\right\}$ is a global dominating set of T^{2}. Using the fact that the number of vertices labeled c in branch $B_{j} \in\left\{\left(E^{\prime \prime}\right),\left(G^{\prime \prime}\right),\left(I^{\prime \prime}\right)\right\}$ is less than $\left|W_{j}\right|$, we deduce that

$$
\gamma_{g}\left(T_{p}^{2}\right) \leq|M|<\sum_{i=1}^{k}\left|W_{i}\right|=\sum_{i=1}^{k}\left|S_{i}\right| \leq\left|S\left(T_{p}\right)\right| \leq \gamma\left(T_{p}\right)=\gamma_{g}\left(T_{p}\right)
$$

a contradiction. In the next case, we may consider that each B_{i} belongs to $\left\{\left(A^{\prime \prime}\right)\right.$, $\left.\left(B^{\prime \prime}\right),\left(C^{\prime \prime}\right),\left(D^{\prime \prime}\right),\left(F^{\prime \prime}\right),\left(H^{\prime \prime}\right)\right\}$.

Case 4. $B_{i} \in\left\{\left(C^{\prime \prime}\right),\left(D^{\prime \prime}\right),\left(F^{\prime \prime}\right),\left(H^{\prime \prime}\right)\right\}$ for every $i \in\{1,2, \ldots, k\}$. Clearly $\bigcup_{i=1}^{k} S_{i}$ does not dominate u in T_{p} and $\left(\bigcup_{i=1}^{k} S_{i}\right) \cup\{u\}$ is a dominating set of T. Hence $\gamma\left(T_{p}\right)=1+\sum_{i=1}^{k}\left|S_{i}\right|$. Now consider the following two subcases. Suppose that at least one branch among $\left(F^{\prime \prime}\right)$ and $\left(H^{\prime \prime}\right)$ is attached at u. In this case, the set M consists of the vertices labeled c in all branches attached at u is a global dominating set of T_{p}^{2}. Since the number of vertices labeled c in each branch attached at u equals to the number of support vertices of that branch, we obtain:

$$
\gamma_{g}\left(T_{p}^{2}\right) \leq|M|=\sum_{i=1}^{k}\left|S_{i}\right|=\gamma\left(T_{p}\right)-1=\gamma_{g}\left(T_{p}\right)-1,
$$

a contradiction. Now suppose that no branch among branches $\left(F^{\prime \prime}\right)$ and $\left(H^{\prime \prime}\right)$ is attached at u. Hence each B_{i} belongs to $\left\{\left(C^{\prime \prime}\right),\left(D^{\prime \prime}\right)\right\}$. Since $\operatorname{diam}(T)=8$, at least two branches of $\left(D^{\prime \prime}\right)$ are attached at u in T_{p}. It follows that the set M that consists of the vertex labeled d in one branch $\left(D^{\prime \prime}\right)$ plus vertices labeled b of the other branches attached at u is a global dominating set of T_{p}^{2}. Hence we obtain:

$$
\gamma_{g}\left(T_{p}^{2}\right) \leq|M|=\sum_{i=1}^{k}\left|S_{i}\right|=\gamma\left(T_{p}\right)-1=\gamma_{g}\left(T_{p}\right)-1,
$$

a contradiction. Therefore there is at least one branch among $\left(A^{\prime \prime}\right)$ and $\left(B^{\prime \prime}\right)$ attached at u in T_{p}.

Case 5. $B_{i}=\left(A^{\prime \prime}\right)$ for one $i \in\{1,2, \ldots, k\}$. Without loss of generality let $i=1$. Suppose there are some branches among branches $\left(B^{\prime \prime}\right),\left(C^{\prime \prime}\right)$ and $\left(H^{\prime \prime}\right)$ attached at u in T_{p}. Then $S\left(T_{p}\right)=\left(\bigcup_{i=2}^{k} S_{i}\right) \cup\{u\}$ and so $|S(T)|=1+\left(\sum_{i=2}^{k}\left|S_{i}\right|\right)$. Also since $\operatorname{diam}(T)=8$, there exist at least two branches among branches $\left(D^{\prime \prime}\right),\left(F^{\prime \prime}\right)$ and $\left(H^{\prime \prime}\right)$ attached at u in T_{p}. Hence the set M that consists of the vertices labeled c in all branches attached at u is a global dominating set of T^{2}. Now since the number of vertices labeled c in each branch $B_{i} \in\left\{\left(B^{\prime \prime}\right),\left(C^{\prime \prime}\right),\left(D^{\prime \prime}\right),\left(F^{\prime \prime}\right),\left(H^{\prime \prime}\right)\right\}$ equals $\left|S_{i}\right|$, we obtain:

$$
\gamma_{g}\left(T_{p}^{2}\right) \leq|M|=\sum_{i=2}^{k}\left|S_{i}\right|=\left|S\left(T_{p}\right)\right|-1 \leq \gamma\left(T_{p}\right)-1=\gamma_{g}\left(T_{p}\right)-1,
$$

a contradiction. Hence every B_{i} belongs to $\left\{\left(A^{\prime \prime}\right),\left(D^{\prime \prime}\right),\left(F^{\prime \prime}\right)\right\}$. Note that a tree with such branches is a tree of the family τ (see Figure 9).

Case 6. There are some branches $\left(B^{\prime \prime}\right)$ attached at u in T_{p}. By case 5, there is no branch $\left(A^{\prime \prime}\right)$ attached at u in T_{p}. If there are some branches among $\left(D^{\prime \prime}\right)$ and $\left(F^{\prime \prime}\right)$ attached at u in T_{p}, then the set $\bigcup_{i=1}^{k} S_{i}$ does not dominate the vertices of $N_{T_{p}}(u)$ in branches $\left(D^{\prime \prime}\right)$ and $\left(F^{\prime \prime}\right)$ but $\left(\bigcup_{i=1}^{k} S_{i}\right) \cup\{u\}$ is a dominating set of T_{p}. It follows that $\gamma(T)=1+\sum_{i=1}^{k}\left|S_{i}\right|$. On the other hand, the set M that consists of the vertices labeled b of branches $\left(D^{\prime \prime}\right)$ and $\left(F^{\prime \prime}\right)$ plus vertices of W_{i} of branches $B_{i} \notin\left\{\left(D^{\prime \prime}\right),\left(F^{\prime \prime}\right)\right\}$ attached at u in T_{p}, is a global dominating set of T_{p}^{2}. Now since the number of vertices labeled b in branch $B_{i} \in\left\{\left(D^{\prime \prime}\right),\left(F^{\prime \prime}\right)\right\}$ equals $\left|W_{i}\right|$ we have:

$$
\gamma_{g}\left(T_{p}^{2}\right) \leq|M|=\sum_{i=1}^{k}\left|W_{i}\right|=\sum_{i=1}^{k}\left|S_{i}\right|=\gamma\left(T_{p}\right)-1=\gamma_{g}\left(T_{p}\right)-1,
$$

a contradiction. Hence all the branches attached at u in T_{p} are among $\left(B^{\prime \prime}\right),\left(C^{\prime \prime}\right)$ and $\left(H^{\prime \prime}\right)$. We will show that T has exactly one branch $\left(B^{\prime \prime}\right)$ attached at u. Suppose to the contrary, at least two branches $\left(B^{\prime \prime}\right)$ are attached at u. In this case the set M that consists of the vertices W_{i} of each branch $B_{i} \in\left\{\left(C^{\prime \prime}\right),\left(H^{\prime \prime}\right)\right\}$ plus vertex u is a global dominating set of T^{2}. Hence

$$
\gamma_{g}\left(T_{p}^{2}\right) \leq|M| \leq \sum_{i=1}^{k}\left|S_{i}\right|-1 \leq \gamma\left(T_{p}\right)-1=\gamma_{g}\left(T_{p}\right)-1,
$$

a contradiction. Consequently, T has one branch $\left(B^{\prime \prime}\right)$ attached at u and all the other branches are among $\left(C^{\prime \prime}\right)$ and $\left(H^{\prime \prime}\right)$. Now since $\operatorname{diam}(T)=8$, at least two branches of $\left(H^{\prime \prime}\right)$ are attached at u in T_{p}. It is clear then such a tree T belongs to family τ (see Figure 10).

We conclude this paper by mentioning that the problem of characterizing all graphs G such that $\gamma_{g}(G)=\gamma_{g}\left(G^{2}\right)$ remains open. Although the case of trees was solved in this paper, it is still interesting to see the case of the unicyclic graphs or more generally the cactus graphs.

Acknowledgments

The authors are grateful to the anonymous referees for their comments that helped improve the manuscript.

References

[1] R. C. Brigham and R. D. Dutton, Factor domination in graphs, Discrete Math. 86 (1990), 127-136.
[2] J. R. Carrington, Global Domination of Factors of a Graph, Ph.D. Thesis, University of Central Florida, (1992).
[3] R. D. Dutton and R. C. Brigham, On global domination critical graphs, Discrete Math. 309 (2009), 5894-5897.
[4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, NewYork, 1998.
[5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[6] J. Raczek, Graphs with equal domination and 2-distance domination numbers, Discuss. Math. Graph Theory 31 (2011), 375-385.
[7] D.F. Rall, Dominating a graph and its complement, Congr. Numer. 80 (1991), 89-95.
[8] E. Sampathkumar, The global domination number of a graph, J. Math. Phy. Sci. 23 (5) 1989, 377-385.
[9] D. B. West, Introduction to Graph Theory, Second Ed., Prentice-Hall, Upper Saddle River, NJ, 2001.

[^0]: * Corresponding author

