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Abstract

The generating function for the number of purely crossing partitions of
{1, . . . , n} is found in terms of the generating function for Bell numbers.
Further results about generating functions for asymptotic moments of
certain random Vandermonde matrices are derived.

1 Introduction

Let P(n) denote the lattice of all set partitions of [n] := {1, . . . , n}. The elements of
π ∈ P(n) are called blocks of the partition π; we write i

π∼ j if and only if i and j
belong to the same block of π and we write i � π∼ j otherwise.

Recall that a partition π ∈ P(n) is said to be noncrossing whenever there do not
exist i, j, k, l ∈ [n] with i < j < k < l, i

π∼ k and j
π∼ l, but i � π∼ j. We let NC(n)

denote the set of all noncrossing partitions of [n].

Definition 1.1 We say that a subset S ⊆ [n] splits a partition π ∈ P(n) if S is the
union of some of the blocks of π. In other words, S splits π if and only if B ∈ π and
B ∩ S �= ∅ implies B ⊆ S.

Definition 1.2 For n ≥ 1, a partition π ∈ P(n) is said to be purely crossing if:

(a) no proper subinterval {p+1, p+2, . . . , p+q} of [n] splits π (by proper subinterval
we mean with 0 ≤ p < p+ q ≤ n and q < n);

(b) no block of π contains neighbors, namely, k � π∼ k + 1 for all k ∈ [n− 1];

(c) 1 � π∼ n.

We let PC(n) denote the set of all purely crossing partitions of [n] and we let PC =⋃∞
n=1 PC(n).
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Note that condition (a) implies that π has no singleton blocks. Moreover, if
π ∈ PC(n), then every partition obtained from π by cyclic permutation of [n] is also
purely crossing.

After an early version of this paper, we learned (from an anonymous referee) that
Definition 1.1 and Definition 1.2(a) appear in the work of Beissinger [1] as instances
of a treatment of a more general framework. However, parts (b) and (c) of 1.2 seem
not to fit into her framework. See also [7].

The purely crossing partitions were introduced in [3] in connection with certain
random Vandermonde matrices. Is it easy to see that PC(n) is empty for n ∈
{1, 2, 3, 5} and that the only purely crossing partitions of sizes n ∈ {4, 6, 7} are those
found in Table 1 and their orbits under cyclic permutations of [n].

Table 1: Purely crossing partitions of sizes 4, 6 and 7

n picture blocks # in orbit

4 {1, 3}, {2, 4} 1

6
{1, 3, 5}, {2, 4, 6} 1

{1, 3}, {2, 5}, {4, 6} 3

{1, 4}, {2, 5}, {3, 6} 1

7
{1, 3, 6}, {2, 4}, {5, 7} 7

{1, 3, 6}, {2, 5}, {4, 7} 7

In this note, we study PC(n) and describe how arbitrary partitions can be realized
in terms of purely crossing ones and noncrossing partitions. Thereby, we find an
algebraic description of the generating function for |PC(n)| in terms of the generating
function for Bell numbers.

More generally, in Section 2 we study generating functions based on certain
weighted sums over partitions. An intermediate stage is to consider connected parti-
tions, which have been enumerated by F. Lehner [5], who proved that their cardinal-
ities form the free cumulants of a Poisson distribution and found a generating series
for them. We will make an equivalent derivation of the generating series, thereby
reproving Lehner’s result, but with an eye toward the generalization that follows.
A motivation for and a possible application of this study in random matrices are
described in Section 3. This includes more complicated results about algebra-valued
generating functions that are similar to those in Section 2.

Notation. We will refer to the elements of [n] as the atoms of the partition π ∈ P(n).
We let 1n = {[n]} be the partition of [n] into one block and 0n = {{1}, {2}, . . . , {n}}
be the partition of [n] into n blocks (all singletons).

If φ : A→ B is a bijective mapping and if π is a set partition of A, then (by abuse
of notation) we let φ(π) denote the set partition of B that results from applying φ
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to every block of π.

The usual order ≤ on P(n) is σ ≤ π if and only if every block of π splits σ.

If π is a partition of a set X, then the restriction of π to a subset Y ⊆ X is
{Y ∩B | B ∈ π}\{∅}.

2 Generating functions and connected partitions

For each n ≥ 1 and π ∈ PC(n), let a(π) ∈ C. Consider the formal power series

A(x) =

∞∑
n=1

anx
n = a4x

4 + a6x
6 + a7x

7 + · · · , where an =
∑

π∈PC(n)

a(π).

Note that, if a(π) = 1 for all π ∈ PC(n), then

A(x) =

∞∑
n=1

|PC(n)|xn

is the generating series for |PC(n)|. This will be the principal case of interest in this
paper; however, we prove results in the greater generality of arbitrary coefficients
a(π).

Definition 2.1 Let PC+(n) be the set of all π ∈ P(n) such that (a) and (b) of
Definition 1.2 hold.

The following lemma is straightforward and we omit a proof.

Lemma 2.2 PC+(1) = {01} and, for n ≥ 2, we have the disjoint union

PC+(n) = PC(n) ∪ {σ̃ | σ ∈ PC(n− 1)},
where σ̃ is obtained from σ by adjoining n to the block of σ that contains 1.

Let b(01) = 1 and for π ∈ PC+(n), n ≥ 2, let

b(π) =

{
a(π) π ∈ PC(n),

a(σ) π = σ̃, σ ∈ PC(n− 1).

Consider the formal power series

B(x) =
∞∑
n=1

bnx
n = x+ b4x

4 + b5x
5 + · · · , where bn =

∑
π∈PC+(n)

b(π).

Thus, if a(π) = 1 for all π ∈ PC(n) and all n, then

B(x) =
∞∑
n=1

|PC+(n)|xn.
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Lemma 2.3 We have b1 = 1 and for every n ≥ 2, bn = an + an−1. Thus, we have

B(x) = x+ (1 + x)A(x).

Proof: By definition of PC+(1), b1 = 1. For n ≥ 2, by Lemma 2.2, we have

bn =
∑

π∈PC(n)

a(π) +
∑

σ∈PC(n−1)

a(σ) = an + an−1.

The desired equality follows immediately. �

Definition 2.4 For n ≥ 1, let CO(n) be the set of all connected partitions π ∈ P(n),
namely, such that (a) of Definition 1.2 holds.

Definition 2.5 Given π ∈ P(n), let π̂ denote the smallest noncrossing partition so
that π ≤ π̂, in the usual order on P(n). The is called the noncrossing closure of π.

Lemma 2.6 Let π ∈ P(n). Then π ∈ CO(n) if and only if π̂ = 1n.

Proof: If π /∈ CO(n), then there is a proper subinterval I of [n] that splits π. The
partition {I, [n]\I} of [n] is noncrossing and lies above π in the usual order on P(n).
Thus, π̂ ≤ {I, [n]\I} and π̂ �= 1n.

Now suppose π̂ �= 1n. Then at least one block of π̂ is a proper subinterval of [n], and
this block necessarily splits π. So π /∈ CO(n). �

Lemma 2.7 Let n ≥ 1. Then there is a bijection

Φn :
⋃

1≤�≤n

{
(σ, k1, . . . , k�

∣∣σ ∈ PC+(�), k1, . . . , k� ≥ 1, k1 + · · ·+ k� = n
} → CO(n),

defined by π = Φn(σ, k1, . . . , k�) is the partition obtained from σ by replacing the j-th
atom of σ with an interval of length kj. More precisely, for the intervals

Ij = {k1 + · · ·+ kj−1 + 1, k1 + · · ·+ kj−1 + 2, . . . , k1 + · · ·+ kj−1 + kj}
we have

π = {∪j∈BIj | B ∈ σ}.

Proof: Let π = Φn(σ, k1, . . . , k�). Suppose K ⊆ [n] is a nonempty interval of [n]
that splits π. Since each block of π is a union of some of the intervals (Ij)j∈[�], we
have K =

⋃
j∈X Ij for some subset X of [�]. Since K is a nonempty interval, X

must be a nonempty interval of [�]. Since K splits π, we see that X splits σ. Since
σ ∈ PC+(�) ⊆ CO(�), we have X = [�], so K = [n]. This shows that Φn maps into
CO(n).

We now describe the inverse map of Φn. Given π ∈ CO(n), consider the collection
of interval subsets of [n] that are maximal with respect to the property of being
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contained in some block of π. The collection of these is an interval partition of [n],
and we may arrange them in increasing order (Ij)1≤j≤�. Let σ be the partition of

[�] given by j1
σ∼ j2 if and only if Ij1 and Ij2 belong to the same block of π. We

have σ ∈ PC+(�) because if j
σ∼ j + 1, then Ij ∪ Ij+1 would be the subset of a single

block of π, contradicting maximality of Ij . Letting kj = |Ij|, we have
∑�

j=1 = n. Let

Φ̃n(π) = (σ, k1, . . . , k�). Then

Φ̃n : CO(n) →
⋃

1≤�≤n

{
(σ, k1, . . . , k�)

∣∣σ ∈ PC+(�), k1, . . . , k� ≥ 1, k1 + · · ·+ k� = n
}

and Φn ◦ Φ̃n is the identity map on CO(n). We easily verify that Φ̃n ◦ Φn is the
identity map on the domain of Φn. �

For π ∈ CO(n), let c(π) = b(σ), where π = Φn(σ, k1, . . . , k�), with σ ∈ PC+(�).
Let

C(x) =
∞∑
n=1

cnx
n, where cn =

∑
π∈CO(n)

c(π).

Note that, if a(π) = 1 for all π ∈ ⋃∞
n=1PC(n), then

C(x) =

∞∑
n=1

|CO(n)|xn

is the generating series for |CO(n)|.

Lemma 2.8 As formal power series, we have

C(x) = B

(
x

1− x

)
.

Proof: From the bijection described in Lemma 2.7 and the definition of c(π), we have

cnx
n =

∑
π∈CO(n)

c(π)xn =

n∑
�=1

∑
σ∈PC+(�)

b(σ)
∑

k1,...,k�≥1
k1+···+k�=n

xn =

n∑
�=1

b�
∑

k1,...,k�≥1
k1+···+k�=n

�∏
j=1

xkj ,

so

C(x) =
∞∑
n=1

cnx
n =

∞∑
�=1

b�

( ∞∑
k=1

xk
)�

= B

(
x

1− x

)
.

�

Lemma 2.9 For each n ≥ 1, there is a bijection

Ψn :
{
(τ, σ1, σ2, . . . , σ|τ |) | τ = {B1, . . . , B|τ |} ∈ NC(n), σj ∈ CO(|Bj|)

} → P(n),
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defined as follows. The idea is to replace each block Bj of τ with the corresponding
partition of Bj determined by σj. For specificity, the blocks B1, . . . , B|τ | above are
written in order of increasing minimal elements. Given B ⊆ [n], let ψB : [|B|] → B
be the unique order-preserving bijection. Given (τ, σ1, . . . , σ|τ |) in the domain of Ψn

and writing τ = {B1, . . . , B|τ |} as above, we consider the partition ψBj
(σj) of Bj for

each j. Then

Ψ(τ, σ1, . . . , σ|τ |) =
|τ |⋃
j=1

ψBj
(σj).

Proof: Given π ∈ P(n), let π̂ be as in Definition 2.5 be the noncrossing cover of
π. For each block B of π̂, the restriction of π to B yields a partition that, after
applying the order-preserving bijection of B onto {1, . . . , |B|}, yields a partition
σB ∈ P(|B|) with σ̂B = 1|B|, since otherwise B would not be a block of π̂. Thus, by
Lemma 2.6, σB ∈ CO(|B|). Consequently, if we number the blocks π̂ in conventional
order, π̂ = {B1, B2, . . . , B|π̂|}, then we immediately see π = Ψn(π̂, σB1 , . . . , σB|π̂|).
We define

Ψ̃n : P(n) → {
(τ, σ1, . . . , σ|τ |) | τ = {B1, . . . , B|τ |} ∈ NC(n), σj ∈ CO(|Bj|)

}
by Ψ̃n(π) = (π̂, σB1 , . . . , σB|π̂) as given above. Thus, the composition Ψn ◦ Ψ̃n is the

identity on P(n). Similarly, it is not difficult to see that Ψ̃n ◦ Ψn is the identity on
the domain of Ψn. �

For π = Ψn(τ, σ1, . . . , σ|τ |) ∈ P(n), let

d(π) =

|τ |∏
j=1

c(σj). (1)

Let

D(x) = 1 +

∞∑
n=1

dnx
n, where dn =

∑
π∈P(n)

d(π).

For convenience and consistency, we are using the convention P(0) = {∅} and we set
d(∅) = 1. Note that if a(π) = 1 for all π ∈ PC, then d(π) = 1 for all π ∈ ⋃

n≥1P(n).
In this case, dn = |P(n)| is the n-th Bell number and D(x) is the generating function
for the Bell numbers.

Lemma 2.10 For each n ≥ 1, there is a bijection

Θn : P(n) →
⋃

1≤�≤n
k(1),...,k(�)≥0

k(1)+···+k(�)=n−�

{(σ, π1, π2, . . . , π�) | σ ∈ CO(�), πj ∈ P(k(j))} ,

defined as follows. Given π ∈ P(n), let π̂ be as in Definition 2.5 and let B1 be
the block of π̂ containing 1. Let � = |B1| and write B1 = {s(1), s(2), . . . , s(�)} with



K.J. DYKEMA/AUSTRALAS. J. COMBIN. 66 (2) (2016), 276–287 282

s(j − 1) < s(j). Let φ be the order-preserving bijection from B1 onto [�] and let σ
be the result of φ applied to the restriction of π to B1. For 1 ≤ j ≤ � − 1, let πj be
the result of applying the mapping i �→ i− s(j) to the restriction of π to the interval
{s(j) + 1, . . . , s(j+1)− 1}. Let π� be the result of applying the mapping i �→ i− s(�)
to the interval {s(�) + 1, . . . , n}. Then Θn(π) = (σ, π1, . . . , π�).

Proof: Take k(j) = s(j + 1)− s(j)− 1 if 1 ≤ j ≤ �− 1 and let k(l) = n− s(�). We
have σ̂ = 1|B1|, so by Lemma 2.6, σ ∈ CO(|B1|) and Θn takes values in the indicated
range.

We define

Θ̃n :
⋃

1≤�≤n
k(1),...,k(�)≥0

k(1)+···+k(�)=n−�

{(σ, π1, π2, . . . , π�) | σ ∈ CO(�), πj ∈ P(k(j))} → P(n)

as follows. Given (σ, π1, . . . , π�) in the indicated domain of Θ̃n, let s(j) = k(1) +
k(2) + · · ·+ k(j − 1) + j, with s(1) = 1, and let

L = {s(1), s(2), . . . , s(�)};

let φ̃ : [�] → L be the order-preserving bijection and consider the partition φ̃(σ) of L.
For each j, let π̃j be the partition of the interval {s(j) + 1, . . . , s(j)+ k(j)} obtained
by applying the mapping i �→ i+ s(j) to πj. Let

Θn(σ, π1, . . . , π�) = φ̃(σ) ∪
�⋃

j=1

π̃j.

It it not difficult to show that Θn and Θ̃n are inverses of each other. �

Lemma 2.11 Suppose π ∈ P(n) and Θn(π) = (σ, π1, . . . , π�). Then, with d as
defined in (1), we have

d(π) = c(σ)

�∏
j=1

d(πj).

Proof: Let π = Ψn(τ, σ1, . . . , σ|τ |). Then σ = σ1 and we draw the first block B1

of τ in Figure 1, with the gaps between elements of B1 of length k(1), . . . , k(� − 1)

Figure 1: The first block of a noncrossing partition.

k(1) k(2) k(�− 1) k(�)



K.J. DYKEMA/AUSTRALAS. J. COMBIN. 66 (2) (2016), 276–287 283

and with k(�) elements of [n] to the right of B1. The other blocks of τ all lie in
the gaps depicted by the ovals, either between the adjacent elements of B1 or to the
right of B1. In particular, each πj is formed from those in the list σ2, . . . , σ|τ | whose
corresponding blocks of τ lie in the oval labeled k(j). Thus, we get

�∏
j=1

d(πj) =

|τ |∏
i=2

c(σj).

By the definition (1) of d(π), this proves the lemma. �

Lemma 2.12 As formal power series, we have

D(x) = 1 + C(xD(x)). (2)

Letting F (x) = xD(x) and letting F 〈−1〉 denote the inverse with respect to composition
of F , we have

F 〈−1〉(w) =
w

1 + C(w).
(3)

Proof: Using the bijection from Lemma 2.10 and using Lemma 2.11, we have

D(x) = 1 +
∞∑
�=1

⎛⎝ ∑
σ∈CO(�)

c(σ)x�

⎞⎠ ∑
k(1),...,k(�)≥0

∑
π1∈P(k(1)),...

π�∈P(k(�))

�∏
q=1

d(πq)x
k(q)

= 1 +

∞∑
�=1

c�x
�

( ∞∑
k=0

dkx
k

)�

= 1 + C(xD(x)).

Multiplying both sides of (2) by x, we get F (x) = x(1 + C(F (x))), and letting
w = F (x) we get w = F 〈−1〉(w)(1 + C(w)), from which (3) follows. �

Taking now a(π) = 1 for all π, as we observed:

• D(x) is the generating function for the Bell numbers, |P(n)|.
• C(x) is the generating function for |CO(n)|, and can be found from D using
Lemma 2.12.

• B(x) is the generating function for |PC+(n)|, and can be found from C using
Lemma 2.8.

• A(x) is the generating function for |PC(n)|, and can be found from B using
Lemma 2.3.

The Bell numbers |P(n)| are well known. Using Mathematica [8], we calculated the
first several terms of each generating series and we obtained the values displayed in
Table 2.
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Table 2: Cardinalities of sets of partitions.

n |PC(n)| |PC+(n)| |CO(n)| |P(n)|
1 0 1 1 1
2 0 0 1 2
3 0 0 1 5
4 1 1 2 15
5 0 1 6 52
6 5 5 21 203
7 14 19 85 877
8 62 76 385 4 140
9 298 360 1 907 21 147
10 1 494 1 792 10 205 115 975
11 8 140 9 634 58 455 678 570
12 47 146 55 286 355 884 4 213 597
13 289 250 336 396 2 290 536 27 644 437
14 1 873 304 2 162 554 15 518 391 190 899 322
15 12 756 416 14 629 720 110 283 179 1 382 958 545

3 Connection with random Vandermonde matrices

Purely crossing partitions arose in [3], appearing in the study of asymptotic moments
of certain random Vandermonde matrices XN . In particular, by Theorem 3.28 of [3],
for the n-th asymptotic ∗-moment, we have

mn := lim
N→∞

E ◦ tr ((XNX
∗
N)

n) =
∑

π∈P(n)

wπ (4)

with weight
wπ = τ

(
Λπ(1, 1, . . . , 1︸ ︷︷ ︸

n−1 times

)
)
,

where Λπ is the multilinear function from n−1 copies of C[0, 1] into C[0, 1] described
in Section 2 of [3] and where τ is the trace on C[0, 1] obtained by integrating with
respect to Lebesgue measure. These wπ are precisely the volumes of certain polytopes
first described by Ryan and Debbah in [6], who had also obtained the formula (4).
In Section 4 of [3], we show how, for arbitrary π ∈ P(n), Λπ and, thus wπ, can be
computed via a reduction procedure in terms of the Λσ for σ ∈ ⋃n

k=1PC(k). This
procedure is akin to that used in Section 2, but more complicated, involving nested
evaluations of various Λρ. In this section, we carry out this analysis. Let us also
mention that noncrossing C[0, 1]-valued cumulants for the asymptotic ∗-moments of
XN are expressed in terms of purely crossing partitions, at least for shorter lengths.
See Proposition 4.14 of [3].
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Let τ be the trace on C[0, 1] given by integration with respect to Lebesgue mea-
sure. Consider the following formal power series in variable g ∈ C[0, 1], with each
n-th term being an n-fold C-multilinear map of C[0, 1] × · · · × C[0, 1] into C[0, 1]
evaluated in the variable repeated n times:

A(g) =
∞∑
n=1

an(g), an(g) =
∑

π∈PC(n)

Λπ(g, . . . , g)g

B(g) =
∞∑
n=1

bn(g), bn(g) =
∑

π∈PC+(n)

Λπ(g, . . . , g)g

C(g) =
∞∑
n=1

cn(g), cn(g) =
∑

π∈CO(n)

Λπ(g, . . . , g)g

D(g) = 1 +
∞∑
n=1

dn(g), dn(g) =
∑

π∈P(n)

Λπ(g, . . . , g)g.

(A more general and formal treatment of such formal power series, in terms of the
multilinear function series of [4], can be found in Section 4 of [2].) From the remarks
above (see [3] and [6]) if follows that if mn is the asymptotic moment found in (4),
then the moment generating function of mn is, for variable x ∈ C,

∞∑
n=0

mnx
n = τ(D(x1)),

where x1 ∈ C[0, 1] is the constant function x.

The next result is analogous to the combination of Lemmas 2.3, 2.8 and 2.12.

Proposition 3.1 We have

B(g) = g + τ(A(g))g + A(g) (5)

C(g) = B(g/(1− τ(g))) (6)

D(g) = 1 + C(gD(g)) (7)

Thus, letting F (g) = gD(g) and letting F 〈−1〉 be its inverse with respect to composi-
tion, we have

F 〈−1〉(h) = h
(
1 + C(h)

)−1
. (8)

Proof: For the partition 01 ∈ PC(1), we have Λ01() = 1, so b1(g) = g. If a partition
π = σ̃ ∈ PC+(n) for σ ∈ PC(n − 1) as in Lemma 2.2, then by Lemma 4.5 of [3] we
have

Λπ(g, . . . , g︸ ︷︷ ︸
n−1 times

) = τ
(
Λσ(g, . . . , g︸ ︷︷ ︸

n−2 times

)g
)
.

Thus, using Lemma 2.2, for n ≥ 2 we get

bn(g) = τ(an−1(g))g + an(g),
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which yields (5).

If π = Φn(σ, k1, . . . , k�) ∈ CO(n) for σ ∈ PC+(�) and kj ≥ 1, k1 + · · ·+ k� = n as in
Lemma 2.7, then by Lemma 4.4 of [3], we have

Λπ(g, . . . , g︸ ︷︷ ︸
n−1 times

) = Λσ(g, . . . , g︸ ︷︷ ︸
�−1 times

)τ(g)n−�.

Thus, using Lemma 2.7,

cn(g) =
n∑

�=1

b�(g)
∑

k1,...,k�≥1
k1+···+k�=n

�∏
j=1

τ(g)kj−1

and we get

C(g) =
∞∑
�=1

b�(g)

( ∞∑
k=1

τ(g)k−1

)�

=
∞∑
�=1

b�(g)/(1− τ(g))�.

By multilinearity, we have b�(gx) = b�(g)x
� for all scalars x. Thus, we get (6).

Keep in mind we use the convention PC(0) = {∅}. Suppose n ≥ 1, π ∈ P(n)
and π = Θn(σ, π1, . . . , π�) for σ ∈ CO(�) and πj ∈ P(k(j)) where k(j) ≥ 0 and
k(1)+ · · ·+k(�) = n− �, as in Lemma 2.10. Using Lemmas 4.2 and 4.3 of [3], we get

Λπ(g, . . . , g︸ ︷︷ ︸
n−1 times

) = Λσ(e1g, . . . , e�−1g)e�,

where

ej =

⎧⎪⎨⎪⎩
gΛπj

( g, . . . , g︸ ︷︷ ︸
k(j)−1 times

), k(j) > 0

1, k(j) = 0.

Thus, using the convention d0(g) = 1, using Lemma 2.10 and using multilinearity of
Λσ, we have

D(g) = 1 +
∞∑
�=1

∑
σ∈CO(�)

∑
k(1),...,k(�)≥0

Λσ

(
gdk(1)(g), . . . , gdk(�−1)(g)

)
gdk(�)(g)

= 1 +
∞∑
�=1

∑
σ∈CO(�)

Λσ(gD(g), . . . , gD(g))gD(g) = 1 + C(gD(g)).

This proves (7). The final equality (8) follows as in the proof of Lemma 2.12. �
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