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Abstract

If a1, a2, . . . , ak and n are positive integers such that n = a1+a2+· · ·+ak,
then the sum a1 + a2 + · · ·+ ak is said to be a partition of n of length k,
and a1, a2, . . . , ak are said to be the parts of the partition. Two partitions
that differ only in the order of their parts are considered to be the same
partition. Let Pn be the set of partitions of n, and let Pn,k be the set of
partitions of n of length k. We say that two partitions t-intersect if they
have at least t common parts (not necessarily distinct). We call a set A
of partitions t-intersecting if every two partitions in A t-intersect. For
a set A of partitions, let A(t) be the set of partitions in A that have at
least t parts equal to 1. We conjecture that for n ≥ t, Pn(t) is a largest
t-intersecting subset of Pn. We show that for k > t, Pn,k(t) is a largest
t-intersecting subset of Pn,k if n ≤ 2k − t + 1 or n ≥ 3tk5. We also
demonstrate that for every t ≥ 1, there exist n and k such that t < k < n
and Pn,k(t) is not a largest t-intersecting subset of Pn,k.

1 Introduction

Unless stated otherwise, we shall use small letters such as x to denote positive inte-
gers or functions or elements of a set, capital letters such as X to denote sets, and
calligraphic letters such as F to denote families (that is, sets whose elements are sets
themselves). The set {1, 2, . . . } of all positive integers is denoted by N. For n ≥ 1,
[n] denotes the set {1, . . . , n} of the first n positive integers. We take [0] to be the
empty set ∅. We call a set A an r-element set if its size |A| is r (that is, if it contains
exactly r elements). For a set X,

(
X
r

)
denotes the family of r-element subsets of X.

It is to be assumed that arbitrary sets and families are finite.
In the literature, a sum a1 + a2 + · · ·+ ak is said to be a partition of n of length

k if a1, a2, . . . , ak and n are positive integers such that n = a1 + a2 + · · · + ak. A
partition of a positive integer n is also referred to as an integer partition or simply
as a partition. If a1+ a2+ · · ·+ ak is a partition, then a1, a2, . . . , ak are said to be its
parts. Two partitions that differ only in the order of their parts are considered to be
the same partition. Thus, we can refine the definition of a partition as follows. We
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call a tuple (a1, . . . , ak) a partition of n of length k if a1, . . . , ak and n are positive
integers such that n =

∑k
i=1 ai and a1 ≤ · · · ≤ ak. We will be using the latter

definition throughout the rest of the paper.
For any tuple a = (a1, . . . , ak) and any i ∈ [k], ai is said to be the i-th entry of

a, and if a is a partition, then ai is also said to be a part of a.
Let Pn denote the set of partitions of n, and let Pn,k denote the set of partitions

of n of length k. Thus, Pn,k is non-empty if and only if 1 ≤ k ≤ n. Moreover,
Pn =

⋃n
i=1 Pn,i.

Let pn = |Pn| and pn,k = |Pn,k|. These values are widely studied. To the best of
the author’s knowledge, no elementary closed-form expressions are known for pn and
pn,k. For more about these values, we refer the reader to [2].

If at least one part of a partition a is a part of a partition b, then we say that a
and b intersect. We call a set A of partitions intersecting if for every a and b in A,
a and b intersect. We make the following conjecture.

Conjecture 1.1 For every positive integer n, the set of partitions of n that have 1
as a part is a largest intersecting set of partitions of n.

We also conjecture that for 2 ≤ k ≤ n and (n, k) �= (8, 3), {a ∈ Pn,k : 1 is a part of a}
is a largest intersecting subset of Pn,k. We will show that this is true for n ≤ 2k and
for n sufficiently large depending on k.

For any set A of partitions, let A(t) denote the set of partitions in A whose first
t entries are equal to 1. Thus, for t ≤ k ≤ n,

Pn,k(t) = {(a1, . . . , ak) ∈ Pn,k : a1 = · · · = at = 1} and Pn(t) =

n⋃
i=t

Pn,i(t).

Note that for t < k ≤ n, |Pn(t)| = pn−t and |Pn,k(t)| = pn−t,k−t.
Generalising the definition of intersecting partitions, we say that two tuples

(a1, . . . , ar) and (b1, . . . , bs) t-intersect if there are t distinct integers i1, . . . , it in [r]
and t distinct integers j1, . . . , jt in [s] such that aip = bjp for each p ∈ [t]. We call a
set A of tuples t-intersecting if for every a,b ∈ A, a and b t-intersect. Thus, for any
A ⊆ Pn, A(t) is t-intersecting, and A is intersecting if and only if A is 1-intersecting.

We pose the following two problems, which lie in the interface between extremal
set theory and partition theory.

Problem 1.2 What is the size or the structure of a largest t-intersecting subset of
Pn?

Problem 1.3 What is the size or the structure of a largest t-intersecting subset of
Pn,k?

This paper mainly addresses the second question. We suggest two conjectures cor-
responding to the two problems above and generalising the two conjectures above.

Conjecture 1.4 For n ≥ t, Pn(t) is a t-intersecting subset of Pn of maximum size.
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Conjecture 1.1 is Conjecture 1.4 with t = 1.
For 2 ≤ k ≤ n, the only case we discovered where Pn,k(1) is not a largest inter-

secting subset of Pn,k is n = 8 and k = 3.

Remark 1.5 We have P8,3 = {(1, 1, 6), (1, 2, 5), (1, 3, 4), (2, 2, 4), (2, 3, 3)}. Since P8,3

is not an intersecting set, {(1, 2, 5), (1, 3, 4), (2, 2, 4), (2, 3, 3)} is an intersecting subset
of P8,3 of maximum size 4 = |P8,3(1)|+ 1. Extending this example, we have that for
t ≥ 2, {(1, . . . , 1, a, b, c) ∈ Pt+7,t+2 : (a, b, c) ∈ {(1, 2, 5), (1, 3, 4), (2, 2, 4), (2, 3, 3)}} is
a t-intersecting subset of Pt+7,t+2 of size |Pt+7,t+2(t)|+ 1.

Conjecture 1.6 For t + 1 ≤ k ≤ n with (n, k) �= (t + 7, t + 2), Pn,k(t) is a t-
intersecting subset of Pn,k of maximum size.

If t = k < n, then Pn,k(t) = ∅, Pn,k �= ∅, and the non-empty t-intersecting subsets
of Pn,k are the 1-element subsets. If k < t, then Pn,k has no non-empty t-intersecting
subsets.

For every k and t, we leave Conjecture 1.6 open only for a finite range of values
of n, namely, for 2k − t+ 1 < n < 3tk5. We first prove it for n ≤ 2k − t + 1.

Proposition 1.7 Conjecture 1.6 is true for n ≤ 2k − t+ 1.

Proof. Suppose n ≤ 2k − t + 1. For any c = (c1, . . . , ck) ∈ Pn,k, let Lc = {i ∈
[k] : ci = 1} and lc = |Lc|. We have 2k − t + 1 ≥ n =

∑
i∈Lc

ci +
∑

j∈[k]\Lc
cj ≥∑

i∈Lc
1 +

∑
j∈[k]\Lc

2 = lc + 2(k− lc) = 2k− lc. Thus, lc ≥ t− 1, and equality holds
only if n = 2k − t+ 1 and cj = 2 for each j ∈ [k]\Lc. Since c1 ≤ · · · ≤ ck, Lc = [lc].

Let A be a t-intersecting subset of Pn,k. If la ≥ t for each a ∈ A, then A ⊆ Pn,k(t).
Suppose la = t−1 for some a = (a1, . . . , ak) ∈ A. By the above, we have n = 2k−t+1,
ai = 1 for each i ∈ [t − 1], aj = 2 for each j ∈ [k]\[t − 1], and Pn,k = Pn,k(t) ∪ {a}.
Let b be the partition (b1, . . . , bk) in Pn,k(t) with bk = n − k + 1 = k − t + 2 and
bi = 1 for each i ∈ [k − 1]. Since k ≥ t + 1, a and b do not t-intersect, and hence
b /∈ A. Thus, |A| ≤ |Pn,k| − 1 = |Pn,k(t)|. �

In Section 3, we show that Conjecture 1.6 is also true for n sufficiently large.
More precisely, we prove the following.

Theorem 1.8 For k ≥ t + 2 and n ≥ 3tk5, Pn,k(t) is a t-intersecting subset of Pn,k

of maximum size, and uniquely so if k ≥ t+ 3.

We actually prove the result for n ≥ 8
7
(t + 1)k5. For this purpose, we generalise

Bollobás’ proof [3, pages 48–49] of the Erdős–Ko–Rado (EKR) Theorem [9], and we
make some observations regarding the values pn,k and the structure of t-intersecting
subsets of Pn,k.

Remark 1.9 Conjecture 1.6 is also true for k = t + 1. Indeed, if two partitions of
n of length t + 1 have t common parts a1, . . . , at, then the remaining part of each
is n − (a1 + · · ·+ at), and hence the partitions are the same. Thus, the non-empty
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t-intersecting subsets of Pn,t+1 are the 1-element subsets. Hence Pn,t+1(t) is a largest
t-intersecting subset of Pn,t+1, but not uniquely so for n ≥ t+3 ({(1, . . . , 1, 2, n−t−1)}
is another one). Regarding the case k = t + 2, note that the size pn−t,2 of Pn,t+2(t)
is 	(n− t)/2
, and that {a ∈ Pn,t+2 : t− 1 parts of a are equal to 1, 2 is a part of a}
is a t-intersecting subset of Pn,t+2 of size pn−t−1,2 = 	(n− t− 1)/2
. Thus, if n− t is
odd, then Pn,t+2(t) is not the unique t-intersecting subset of Pn,t+2 of maximum size.

We say that (a1, . . . , ar) and (b1, . . . , bs) strongly t-intersect if for some t-element
subset T of [min{r, s}], ai = bi for each i ∈ T . Following [6], we say that a set A of
tuples is strongly t-intersecting if every two tuples in A strongly t-intersect. In [6],
it is conjectured that for t + 1 ≤ k ≤ n, Pn,k(t) is a strongly t-intersecting subset
of Pn,k of maximum size. This is verified for t = 1 in the same paper. Note that
this conjecture is weaker than Conjecture 1.6 (for (n, k) �= (t + 7, t + 2)), and that
Proposition 1.7 and Theorem 1.8 imply that it is true for n ≤ 2k − t + 1 and for
n ≥ 3tk5.

Theorem 1.8 is an analogue of the classical EKR Theorem [9], which inspired
many results in extremal set theory (see [8, 12, 10, 5, 14]). A family A of sets is said
to be t-intersecting if |A ∩B| ≥ t for every A,B ∈ A. The EKR Theorem says that
if n is sufficiently larger than k, then the size of any t-intersecting subfamily of

(
[n]
k

)
is at most

(
n−t
k−t

)
. A sequence of results [9, 11, 20, 13, 1] culminated in the complete

solution, conjectured in [11], for any n, k and t; it turns out that {A ∈ (
[n]
k

)
: [t] ⊆ A}

is a largest t-intersecting subfamily of
(
[n]
k

)
if and only if n ≥ (t+ 1)(k − t+ 1). The

same t-intersection problem for the family of subsets of [n] was solved in [18]. These
are among the most prominent results in extremal set theory.

Remark 1.10 The conjectures and results above for partitions can be rephrased in
terms of t-intersecting subfamilies of a family. For any tuple a = (a1, . . . , ak), let

Sa = {(a, i) : a ∈ {a1, . . . , ak}, i ∈ [k], |{j ∈ [k] : aj = a}| ≥ i};
thus, (a, 1), . . . , (a, r) ∈ Sa if and only if at least r of the entries of a are equal
to a. For example, S(2,2,5,5,5,7) = {(2, 1), (2, 2), (5, 1), (5, 2), (5, 3), (7, 1)}. Let Pn =
{Sa : a ∈ Pn} and Pn,k = {Sa : a ∈ Pn,k}. Let f : Pn → Pn such that f(a) = Sa

for each a ∈ Pn. Clearly, f is a bijection. Thus, |Pn| = |Pn| and |Pn,k| = |Pn,k|.
Note that two partitions a and b t-intersect if and only if |Sa ∩ Sb| ≥ t. Thus, for
any A ⊆ Pn,k, A is a t-intersecting subset of Pn,k if and only if {Sa : a ∈ A} is a
t-intersecting subfamily of Pn,k.

EKR-type results have been obtained in a wide variety of contexts; many of
them are outlined in [8, 12, 10, 15, 16, 5, 6, 14]. Usually the objects have symmetry
properties (see [7, Section 3.2] and [19]) or enable the use of compression (also called
shifting) to push t-intersecting families towards a desired form (see [12, 17, 15]). One
of the main motivating factors behind this paper is that, similarly to the case of [4],
although the family Pn,k does not have any of these structures and attributes, and we
do not even know its size precisely, we can still determine the largest t-intersecting
subfamilies for n sufficiently large.

We now start working towards proving Theorem 1.8.
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2 The values pn,k

In this section, we provide relations among the values pn,k. The relations will be
needed in the proof of Theorem 1.8.

Lemma 2.1 If k ≤ m ≤ n, then pm,k ≤ pn,k. Moreover, if 3 ≤ k ≤ m < n and
n ≥ k + 2, then pm,k < pn,k.

Proof. Let k ≤ m ≤ n. If k = 1, then pm,k = 1 = pn,k. Suppose k ≥ 2.
Let f : Pm,k → Pn,k be the function that maps (a1, . . . , ak) ∈ Pm,k to the partition
(b1, . . . , bk) ∈ Pn,k with bk = ak +n−m and bi = ai for each i ∈ [k− 1]. Clearly, f is
one-to-one, and hence the size of its domain Pm,k is at most the size of its co-domain
Pn,k. Therefore, pm,k ≤ pn,k.

Suppose 3 ≤ k ≤ m < n and n ≥ k + 2. Let c = (c1, . . . , ck) with ci = 1 for each
i ∈ [k − 3],

ck−2 =

{
1 if n− k is even
2 if n− k is odd,

and ck−1 = ck =

{
(n− k + 2)/2 if n− k is even
(n− k + 1)/2 if n− k is odd.

Then c ∈ Pn,k. Since m < n, f maps (a1, . . . , ak) ∈ Pm,k to a partition (b1, . . . , bk)
with bk−1 < bk. Hence c is not in the range of f . Thus, f is not onto, and hence its
domain Pm,k is smaller than its co-domain Pn,k. Therefore, pm,k < pn,k. �

Lemma 2.2 If k ≥ 2, c ≥ 1, and n ≥ ck3, then

pn,k > cpn,k−1 ≥ cpn−1,k−1.

Proof. If k = 2, then pn,k−1 = 1, pn,k = 	n/2
 ≥ (n− 1)/2 ≥ ck3/2− 1/2 > 3c, and
hence pn,k > cpn,k−1.

Now consider k ≥ 3. For each i ∈ [ck2], let

Xi = {(i, a1, . . . , ak−2, ak−1 − i) : (a1, . . . , ak−1) ∈ Pn,k−1}.

Let X =
⋃ck2

i=1Xi.
For any k-tuple x = (x1, . . . , xk) of integers, let #»x be the k-tuple obtained by

putting the entries of x in increasing order; that is, #»x is the k-tuple (x′
1, . . . , x

′
k)

such that x′
1 ≤ · · · ≤ x′

k and |{i ∈ [k] : x′
i = x}| = |{i ∈ [k] : xi = x}| for each

x ∈ {x1, . . . , xk}.
Let a be a partition (a1, . . . , ak−1) in Pn,k−1. Since a1 ≤ · · · ≤ ak−1 and a1 +

· · · + ak−1 = n, we have ak−1 ≥ n
k−1

, and hence, since n ≥ ck3, ak−1 > ck2. Thus,
ak−1 − i ≥ 1 for each i ∈ [ck2], meaning that the entries of each tuple in X are
positive integers that add up to n. Therefore,

#»x ∈ Pn,k for each x ∈ X. (1)

Let Y = {y ∈ Pn,k : y = #»x for some x ∈ X}. For each y ∈ Y , let Xy = {x ∈
X : #»x = y}. By (1), X =

⋃
y∈Y Xy.
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Consider any partition y = (y1, . . . , yk) in Y . Clearly, each element of Xy is in one
of Xy1 , . . . , Xyk ; that is, Xy ⊆ ⋃k

i=1Xyi. Thus, Xy =
⋃k

i=1 (Xy ∩Xyi). Let i ∈ [k]
such that Xy ∩ Xyi �= ∅. Let x be a tuple (x1, . . . , xk) in Xy ∩ Xyi. By definition,
x1 = yi and x2 ≤ · · · ≤ xk−1. Thus, since y1 ≤ · · · ≤ yk and y = #»x , x is one of the
k − 1 k-tuples satisfying the following: the first entry is yi, the k-th entry is yj for
some j ∈ [k]\{i}, and the middle k − 2 entries form the (k − 2)-tuple obtained by
deleting the i-th entry and the j-th entry of y. Hence |Xy ∩Xyi| ≤ k − 1.

Therefore, we have

|X| =

∣∣∣∣∣
⋃
y∈Y

Xy

∣∣∣∣∣ ≤
∑
y∈Y

|Xy|

≤
∑
y∈Y

k∑
i=1

|Xy ∩Xyi | ≤
∑
y∈Y

k∑
i=1

(k − 1)

= k(k − 1)|Y | < k2|Pn,k|,
and hence pn,k >

|X|
k2

. Now X1, . . . , Xck2 are pairwise disjoint sets, each of size pn,k−1.
Thus, |X| = ck2pn,k−1, and hence pn,k > cpn,k−1. By Lemma 2.1, pn,k−1 ≥ pn−1,k−1.
Hence the result. �

In view of the result above, we pose the following problem.

Problem 2.3 For k ≥ 2 and c ≥ 1, let ρ(k, c) be the smallest integer m such that
pn,k ≥ cpn,k−1 for every n ≥ m. What is the value of ρ(k, c)?

Lemma 2.2 tells us that ρ(k, c) ≤ ck3. As can be seen from the proof of Theorem 1.8,
an improvement of this inequality automatically yields an improved condition for n
in the theorem.

3 Proof of Theorem 1.8

We now prove Theorem 1.8.
For a family F and a set T , let F〈T 〉 denote the family {F ∈ F : T ⊆ F}. If

|T | = t, then F〈T 〉 is called a t-star of F . We denote the size of a largest t-star of
F by τ(F , t). A t-intersecting family A is said to be trivial if |⋂A∈AA| ≥ t (that is,
if the sets in A have at least t common elements); otherwise, A is said to be a non-
trivial t-intersecting family. Note that a non-empty t-star is a trivial t-intersecting
family.

We call a family F k-uniform if |F | = k for each F ∈ F .
Generalising a theorem in [3, page 48], we obtain the following lemma.

Lemma 3.1 If k ≥ t, A is a non-trivial t-intersecting subfamily of a k-uniform
family F , and A is not a (t+ 1)-intersecting family, then

|A| ≤ kτ(F , t+ 1) +

t∑
i=1

(
t

i

)(
k − t

i

)2

τ(F , t+ i).
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Proof. Since A is t-intersecting and not (t+ 1)-intersecting, there exist A1, A2 ∈ A
such that |A1 ∩ A2| = t. Let B = A1 ∩ A2. Since A is not a trivial t-intersecting
family, there exists A3 ∈ A such that B � A3. For each i ∈ {0} ∪ [t], let Ai = {A ∈
A : |A ∩ B| = t− i}.

Consider any i ∈ [t]. For each A ∈ Ai, we have t ≤ |A ∩ A1| = |A ∩ B| + |A ∩
(A1\B)| = t− i+ |A∩ (A1\B)|, so |A∩ (A1\B)| ≥ i. Similarly, |A∩ (A2\B)| ≥ i for
each A ∈ Ai. Thus,

Ai ⊆ {F ∈ F : |F ∩B| = t− i, |F ∩ (A1\B)| ≥ i, |F ∩ (A2\B)| ≥ i}
=

⋃
X∈( B

t−i)

⋃
Y ∈(A1\B

i )

⋃
Z∈(A2\B

i )

F〈X ∪ Y ∪ Z〉,

and hence

|Ai| ≤
∑

X∈( B
t−i)

∑
Y ∈(A1\B

i )

∑
Z∈(A2\B

i )

|F〈X ∪ Y ∪ Z〉|

≤
( |B|
t− i

)(|A1\B|
i

)(|A2\B|
i

)
τ(F , t+ i) =

(
t

i

)(
k − t

i

)2

τ(F , t+ i).

For each A ∈ A0, we have |A ∩B| = t and t ≤ |A ∩A3| = |A ∩ (A3 ∩ B)|+ |A ∩
(A3\B)| ≤ |A3 ∩ B| + |A ∩ (A3\B)| ≤ t − 1 + |A ∩ (A3\B)|, and hence B ⊆ A and
|A ∩ (A3\B)| ≥ 1. Thus,

A0 ⊆ {F ∈ F : B ⊆ F, |F ∩ (A3\B)| ≥ 1} =
⋃

X∈(A3\B
1 )

F〈B ∪X〉,

and hence

|A0| ≤
∑

X∈(A3\B
1 )

|F〈B ∪X〉| ≤ |A3\B|τ(F , t+ 1) ≤ kτ(F , t+ 1).

Since A =
⋃t

i=0Ai, the result follows. �

Define Pn,k and f as in Remark 1.10. Let Tt = {(1, i) : i ∈ [t]}. Note that
{f(a) : a ∈ Pn,k(t)} = Pn,k〈Tt〉. Since f is a bijection, it follows that |Pn,k〈Tt〉| =
|Pn,k(t)|. Therefore, |Pn,k〈Tt〉| = pn−t,k−t if t < k ≤ n.

Lemma 3.2 If t+ 1 ≤ k ≤ n, then Pn,k〈Tt〉 is a largest t-star of Pn,k, and uniquely
so if k ≥ t + 3 and n ≥ k + 2.

Proof. Let A be a t-star of Pn,k, so A = Pn,k〈T ∗〉 for some t-element set T ∗. Let
A = {a ∈ Pn,k : f(a) = E for some E ∈ A}. Since f is a bijection, |A| = |A|. Let
(e1, i1), . . . , (et, it) be the elements of T ∗. By definition of A, t of the entries of each
partition in A are e1, . . . , et. Thus, |A| ≤ pn−q,k−t, where q =

∑t
j=1 ej ≥ t. By

Lemma 2.1, we have |A| ≤ pn−t,k−t, and hence |A| ≤ |Pn,k〈Tt〉|.
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Suppose k ≥ t+3 and n ≥ k+2. If q > t, then, by Lemma 2.1, we have pn−q,k−t <
pn−t,k−t, and hence |A| < |Pn,k〈Tt〉|. Suppose q = t. Then e1 = · · · = et = 1, and
hence A ⊆ Pn,k(t). Therefore, A ⊆ Pn,k〈Tt〉. �

A t-intersecting subset A of Pn,k is maximal if there is no t-intersecting subset B
of Pn,k such that A is a proper subset of B.

Lemma 3.3 If k ≥ t, n > 2k2, and A is a maximal t-intersecting subset of Pn,k,
then A is not (t + 2)-intersecting.

Proof. Clearly, A �= ∅, so there exists l ∈ [k] such that A is l-intersecting and not
(l + 1)-intersecting. Thus, there exist a = (a1, . . . , ak) and b = (b1, . . . , bk) in A
such that a l-intersects b and does not (l + 1)-intersect b. Suppose l ≥ t + 2. Let
X = {a1, . . . , ak} and Y = {b1, . . . , bk}. Then X ∩ Y �= ∅. Let z ∈ X ∩ Y . Then
z = aj for some j ∈ [k].

For any k-tuple x = (x1, . . . , xk) of integers, #»x denotes the k-tuple obtained by
putting the entries of x in increasing order, as in the proof of Lemma 2.2.

Suppose aj > 2k. We have k ≥ l ≥ t + 2 ≥ 3. Let h ∈ [k]\{j}. Let H =
{i ∈ N : aj − i ∈ Y \{aj} or ah + i ∈ Y }, I = {i ∈ N : aj − i ∈ Y \{aj}}, and
J = {i ∈ N : ah+ i ∈ Y }. Since H = I ∪J , |H| ≤ |I|+ |J | ≤ |Y \{aj}|+ |Y | ≤ 2k−1.
Thus, there exists i ∈ [2k] such that i /∈ H , meaning that aj − i /∈ Y \{aj} (so
aj − i /∈ Y ) and ah + i /∈ Y . Let cj = aj − i, ch = ah + i, and cr = ar for each
r ∈ [k]\{j, h}. Let c = (c1, . . . , ck). Since cj > 0 and

∑k
r=1 cr =

∑k
r=1 ar = n, we

have #»c ∈ Pn,k. Let B = A∪{ #»c }. Since A is (t+2)-intersecting, B is a t-intersecting
subset of Pn,k. Since aj ∈ Y , cj , ch /∈ Y , and a does not (l + 1)-intersect b, #»c does
not l-intersect b. Thus, #»c /∈ A as A is l-intersecting. Thus, we have A � B, which
contradicts the assumption that A is a maximal t-intersecting subset of Pn,k.

Therefore, aj ≤ 2k. Since n > 2k2, aj < n/k. Since
∑k

r=1 ar = n, there exists
h ∈ [k]\{j} such that ah ≥ n/k. Thus, ah > 2k. Let H = {i ∈ N : aj + i ∈
Y \{aj} or ah − i ∈ Y }, I = {i ∈ N : aj + i ∈ Y \{aj}}, and J = {i ∈ N : ah − i ∈ Y }.
Since H = I ∪ J , |H| ≤ |I| + |J | ≤ 2k − 1. Thus, there exists i ∈ [2k] such that
aj + i /∈ Y \{aj} (so aj + i /∈ Y ) and ah − i /∈ Y . Let cj = aj + i, ch = ah − i, and
cr = ar for each r ∈ [k]\{j, h}. Let c = (c1, . . . , ck). Let B = A ∪ { #»c }. As above,
we obtain that B is a t-intersecting subset of Pn,k with A � B, a contradiction.

Therefore, l < t+ 2, and hence the result. �

A closer attention to detail could improve the condition on n in the lemma above,
but this alone would not strengthen Theorem 1.8. We now have all the tools needed
for the proof of the theorem.

Proof of Theorem 1.8. Let k ≥ t + 2 and n ≥ 3tk5. Let ct =
8
7
(t + 1). Then

n ≥ ctk
5.

Let A be a largest t-intersecting subset of Pn,k. Clearly, A �= ∅, so there exists
l ∈ [k]\[t− 1] such that A is l-intersecting and not (l+ 1)-intersecting. Thus, A is a
largest l-intersecting subset of Pn,k. Let A = {f(a) : a ∈ A}. Clearly, |A| = |A| (since
f is a bijection) and A is k-uniform. By Remark 1.10, A is a largest l-intersecting
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subfamily of Pn,k, and A is not (l + 1)-intersecting. By Lemma 3.3, l ∈ {t, t + 1}.
By Lemma 3.2, τ(Pn,k, i) = |Pn,k〈Ti〉| = pn−i,k−i for each i ∈ [k − 1].

Suppose that A is a non-trivial l-intersecting family. Then |A| > 1. As explained
in Remark 1.9, the non-empty l-intersecting subsets of Pn,l+1 are the 1-element sub-
sets, and hence the non-empty l-intersecting subfamilies of Pn,l+1 are the subfami-
lies of size 1. Trivially, the same holds for l-intersecting subfamilies of Pn,l. Since
A ⊆ Pn,k and |A| > 1, it follows that k ≥ l + 2.

Let m = max{l, k − l}. For each i ∈ [m], let

si =

(
l

i

)(
k − l

i

)2

τ(Pn,k, l + i).

By Lemma 3.1, |A| ≤ kτ(Pn,k, l+1)+
∑l

i=1 si. Clearly, τ(Pn,k, l+ i) �= 0 if and only
if i ≤ k − l. Thus,

|A| ≤ kτ(Pn,k, l + 1) +
k−l∑
i=1

si = kpn−l−1,k−l−1 + sk−l +
k−l−1∑
i=1

si. (2)

Consider any i ∈ [k − l − 1]. Suppose i ≤ k − l − 2. If i ≥ l, then si+1 = 0.
Suppose i < l. We have

si+1 =
(l − i)(k − l − i)2pn−l−i−1,k−l−i−1

(i+ 1)3pn−l−i,k−l−i

si.

Since n − l − i ≥ ctk
5 − l − i > ctk

2(k − l − i)3 > (l − i)(k − l − i)2(k − l − i)3, we
have pn−l−i,k−l−i > (l − i)(k − l − i)2pn−l−i−1,k−l−i−1 by Lemma 2.2. Thus, si+1 <
si/(i + 1)3. Now suppose i = k − l − 1. Then τ(Pn,k, l + i + 1) = τ(Pn,k, k) = 1
and τ(Pn,k, l + i) = τ(Pn,k, k − 1) = pn−(k−1),k−(k−1) = pn−k+1,1 = 1. If i ≥ l, then
si+1 = 0. If i < l, then

si+1 = sk−l =
l − (k − l − 1)

(k − l)3
sk−l−1 <

l

(k − l)3
sk−l−1.

We have therefore shown that si+1 ≤ si/(i+ 1)3 for any i ∈ [k − l − 2], and that
sk−l ≤ (l/(k − l)3)sk−l−1. It follows that si ≤ s1/(i!)

3 for any i ∈ [k − l − 1]. Thus,

sk−l ≤ l

(k − l)3
s1

((k − l − 1)!)3
=

l2(k − l)2pn−l−1,k−l−1

(k − l)3((k − l − 1)!)3

=
l2pn−l−1,k−l−1

(k − l)((k − l − 1)!)3
≤ l2

2
pn−l−1,k−l−1,

and si ≤ s1/(2
i−1)3 = s1/8

i−1 for any i ∈ [k − l − 1]. We have

k−l−1∑
i=1

si ≤ s1

k−l−1∑
i=1

(
1

8

)i−1

< s1

∞∑
i=0

(
1

8

)i

=
8

7
s1 =

8

7
l(k − l)2pn−l−1,k−l−1.
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Thus, by (2), |A| <
(
k + l2

2
+ 8

7
l(k − l)2

)
pn−l−1,k−l−1. Since l ∈ {t, t + 1} and

k ≥ l + 2, we have

k +
l2

2
+

8

7
l(k − l)2 = k +

8

7
lk2 − 8

7
l2
(
2k − l − 7

16

)
< k + ctk

2 − 8

7
l2k < ctk

2.

By Lemma 2.2, pn−l,k−l > ctk
2pn−l−1,k−l−1 as n − l ≥ ctk

5 − l > ctk
2(k − l)3. Thus,

we have |A| < pn−l,k−l = τ(Pn,k, l), which is a contradiction as A is a largest l-
intersecting subfamily of Pn,k.

Therefore, A is a trivial l-intersecting family. Consequently, A is a largest l-star
of Pn,k. By Lemma 3.2, |A| = |Pn,k〈Tl〉|. Since n− t ≥ ctk

5− t > (k− t)3, pn−t,k−t >
pn−(t+1),k−(t+1) by Lemma 2.2. Since l ∈ {t, t + 1} and |A| = |A| = |Pn,k〈Tl〉| =
pn−l,k−l ≤ pn−t,k−t = |Pn,k(t)| ≤ |A|, it follows that l = t and |A| = |Pn,k(t)|. By
Lemma 3.2, A = Pn,k(t) if k ≥ t+ 3. �
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