Intersecting integer partitions

Peter Borg

Department of Mathematics University of Malta Malta peter.borg@um.edu.mt

Abstract

If a_1, a_2, \ldots, a_k and n are positive integers such that $n = a_1 + a_2 + \cdots + a_k$, then the sum $a_1 + a_2 + \cdots + a_k$ is said to be a *partition of* n of *length* k, and a_1, a_2, \ldots, a_k are said to be the *parts* of the partition. Two partitions that differ only in the order of their parts are considered to be the same partition. Let P_n be the set of partitions of n, and let $P_{n,k}$ be the set of partitions of n of length k. We say that two partitions t-intersect if they have at least t common parts (not necessarily distinct). We call a set Aof partitions t-intersecting if every two partitions in A that have at least t parts equal to 1. We conjecture that for $n \ge t$, $P_n(t)$ is a largest t-intersecting subset of P_n . We show that for k > t, $P_{n,k}(t)$ is a largest t-intersecting subset of $P_{n,k}$ if $n \le 2k - t + 1$ or $n \ge 3tk^5$. We also demonstrate that for every $t \ge 1$, there exist n and k such that t < k < nand $P_{n,k}(t)$ is not a largest t-intersecting subset of $P_{n,k}$.

1 Introduction

Unless stated otherwise, we shall use small letters such as x to denote positive integers or functions or elements of a set, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote *families* (that is, sets whose elements are sets themselves). The set $\{1, 2, \ldots\}$ of all positive integers is denoted by \mathbb{N} . For $n \ge 1$, [n] denotes the set $\{1, \ldots, n\}$ of the first n positive integers. We take [0] to be the empty set \emptyset . We call a set A an r-element set if its size |A| is r (that is, if it contains exactly r elements). For a set X, $\binom{X}{r}$ denotes the family of r-element subsets of X. It is to be assumed that arbitrary sets and families are finite.

In the literature, a sum $a_1 + a_2 + \cdots + a_k$ is said to be a *partition of* n of *length* k if a_1, a_2, \ldots, a_k and n are positive integers such that $n = a_1 + a_2 + \cdots + a_k$. A partition of a positive integer n is also referred to as an *integer partition* or simply as a *partition*. If $a_1 + a_2 + \cdots + a_k$ is a partition, then a_1, a_2, \ldots, a_k are said to be its *parts*. Two partitions that differ only in the order of their parts are considered to be the same partition. Thus, we can refine the definition of a partition as follows. We

call a tuple (a_1, \ldots, a_k) a partition of n of length k if a_1, \ldots, a_k and n are positive integers such that $n = \sum_{i=1}^k a_i$ and $a_1 \leq \cdots \leq a_k$. We will be using the latter definition throughout the rest of the paper.

For any tuple $\mathbf{a} = (a_1, \ldots, a_k)$ and any $i \in [k]$, a_i is said to be the *i*-th entry of \mathbf{a} , and if \mathbf{a} is a partition, then a_i is also said to be a part of \mathbf{a} .

Let P_n denote the set of partitions of n, and let $P_{n,k}$ denote the set of partitions of n of length k. Thus, $P_{n,k}$ is non-empty if and only if $1 \le k \le n$. Moreover, $P_n = \bigcup_{i=1}^n P_{n,i}$.

Let $p_n = |P_n|$ and $p_{n,k} = |P_{n,k}|$. These values are widely studied. To the best of the author's knowledge, no elementary closed-form expressions are known for p_n and $p_{n,k}$. For more about these values, we refer the reader to [2].

If at least one part of a partition \mathbf{a} is a part of a partition \mathbf{b} , then we say that \mathbf{a} and \mathbf{b} *intersect*. We call a set A of partitions *intersecting* if for every \mathbf{a} and \mathbf{b} in A, \mathbf{a} and \mathbf{b} intersect. We make the following conjecture.

Conjecture 1.1 For every positive integer n, the set of partitions of n that have 1 as a part is a largest intersecting set of partitions of n.

We also conjecture that for $2 \le k \le n$ and $(n, k) \ne (8, 3)$, $\{\mathbf{a} \in P_{n,k} : 1 \text{ is a part of } \mathbf{a}\}$ is a largest intersecting subset of $P_{n,k}$. We will show that this is true for $n \le 2k$ and for n sufficiently large depending on k.

For any set A of partitions, let A(t) denote the set of partitions in A whose first t entries are equal to 1. Thus, for $t \leq k \leq n$,

$$P_{n,k}(t) = \{(a_1, \dots, a_k) \in P_{n,k} : a_1 = \dots = a_t = 1\}$$
 and $P_n(t) = \bigcup_{i=t}^n P_{n,i}(t).$

Note that for $t < k \le n$, $|P_n(t)| = p_{n-t}$ and $|P_{n,k}(t)| = p_{n-t,k-t}$.

Generalising the definition of intersecting partitions, we say that two tuples (a_1, \ldots, a_r) and (b_1, \ldots, b_s) *t-intersect* if there are *t* distinct integers i_1, \ldots, i_t in [r] and *t* distinct integers j_1, \ldots, j_t in [s] such that $a_{i_p} = b_{j_p}$ for each $p \in [t]$. We call a set *A* of tuples *t-intersecting* if for every $\mathbf{a}, \mathbf{b} \in A$, \mathbf{a} and \mathbf{b} *t*-intersect. Thus, for any $A \subseteq P_n$, A(t) is *t*-intersecting, and *A* is intersecting if and only if *A* is 1-intersecting.

We pose the following two problems, which lie in the interface between extremal set theory and partition theory.

Problem 1.2 What is the size or the structure of a largest t-intersecting subset of P_n ?

Problem 1.3 What is the size or the structure of a largest t-intersecting subset of $P_{n,k}$?

This paper mainly addresses the second question. We suggest two conjectures corresponding to the two problems above and generalising the two conjectures above.

Conjecture 1.4 For $n \ge t$, $P_n(t)$ is a t-intersecting subset of P_n of maximum size.

Conjecture 1.1 is Conjecture 1.4 with t = 1.

For $2 \le k \le n$, the only case we discovered where $P_{n,k}(1)$ is not a largest intersecting subset of $P_{n,k}$ is n = 8 and k = 3.

Remark 1.5 We have $P_{8,3} = \{(1, 1, 6), (1, 2, 5), (1, 3, 4), (2, 2, 4), (2, 3, 3)\}$. Since $P_{8,3}$ is not an intersecting set, $\{(1, 2, 5), (1, 3, 4), (2, 2, 4), (2, 3, 3)\}$ is an intersecting subset of $P_{8,3}$ of maximum size $4 = |P_{8,3}(1)| + 1$. Extending this example, we have that for $t \ge 2$, $\{(1, \ldots, 1, a, b, c) \in P_{t+7,t+2} : (a, b, c) \in \{(1, 2, 5), (1, 3, 4), (2, 2, 4), (2, 3, 3)\}\}$ is a *t*-intersecting subset of $P_{t+7,t+2}$ of size $|P_{t+7,t+2}(t)| + 1$.

Conjecture 1.6 For $t + 1 \leq k \leq n$ with $(n,k) \neq (t + 7, t + 2)$, $P_{n,k}(t)$ is a t-intersecting subset of $P_{n,k}$ of maximum size.

If t = k < n, then $P_{n,k}(t) = \emptyset$, $P_{n,k} \neq \emptyset$, and the non-empty *t*-intersecting subsets of $P_{n,k}$ are the 1-element subsets. If k < t, then $P_{n,k}$ has no non-empty *t*-intersecting subsets.

For every k and t, we leave Conjecture 1.6 open only for a finite range of values of n, namely, for $2k - t + 1 < n < 3tk^5$. We first prove it for $n \leq 2k - t + 1$.

Proposition 1.7 Conjecture 1.6 is true for $n \leq 2k - t + 1$.

Proof. Suppose $n \leq 2k - t + 1$. For any $\mathbf{c} = (c_1, \ldots, c_k) \in P_{n,k}$, let $L_{\mathbf{c}} = \{i \in [k]: c_i = 1\}$ and $l_{\mathbf{c}} = |L_{\mathbf{c}}|$. We have $2k - t + 1 \geq n = \sum_{i \in L_{\mathbf{c}}} c_i + \sum_{j \in [k] \setminus L_{\mathbf{c}}} c_j \geq \sum_{i \in L_{\mathbf{c}}} 1 + \sum_{j \in [k] \setminus L_{\mathbf{c}}} 2 = l_{\mathbf{c}} + 2(k - l_{\mathbf{c}}) = 2k - l_{\mathbf{c}}$. Thus, $l_{\mathbf{c}} \geq t - 1$, and equality holds only if n = 2k - t + 1 and $c_j = 2$ for each $j \in [k] \setminus L_{\mathbf{c}}$. Since $c_1 \leq \cdots \leq c_k$, $L_{\mathbf{c}} = [l_{\mathbf{c}}]$.

Let A be a t-intersecting subset of $P_{n,k}$. If $l_{\mathbf{a}} \geq t$ for each $\mathbf{a} \in A$, then $A \subseteq P_{n,k}(t)$. Suppose $l_{\mathbf{a}} = t-1$ for some $\mathbf{a} = (a_1, \ldots, a_k) \in A$. By the above, we have n = 2k-t+1, $a_i = 1$ for each $i \in [t-1]$, $a_j = 2$ for each $j \in [k] \setminus [t-1]$, and $P_{n,k} = P_{n,k}(t) \cup \{\mathbf{a}\}$. Let **b** be the partition (b_1, \ldots, b_k) in $P_{n,k}(t)$ with $b_k = n - k + 1 = k - t + 2$ and $b_i = 1$ for each $i \in [k-1]$. Since $k \geq t+1$, **a** and **b** do not t-intersect, and hence $\mathbf{b} \notin A$. Thus, $|A| \leq |P_{n,k}| - 1 = |P_{n,k}(t)|$.

In Section 3, we show that Conjecture 1.6 is also true for n sufficiently large. More precisely, we prove the following.

Theorem 1.8 For $k \ge t+2$ and $n \ge 3tk^5$, $P_{n,k}(t)$ is a t-intersecting subset of $P_{n,k}$ of maximum size, and uniquely so if $k \ge t+3$.

We actually prove the result for $n \geq \frac{8}{7}(t+1)k^5$. For this purpose, we generalise Bollobás' proof [3, pages 48–49] of the Erdős–Ko–Rado (EKR) Theorem [9], and we make some observations regarding the values $p_{n,k}$ and the structure of *t*-intersecting subsets of $P_{n,k}$.

Remark 1.9 Conjecture 1.6 is also true for k = t + 1. Indeed, if two partitions of n of length t + 1 have t common parts a_1, \ldots, a_t , then the remaining part of each is $n - (a_1 + \cdots + a_t)$, and hence the partitions are the same. Thus, the non-empty

t-intersecting subsets of $P_{n,t+1}$ are the 1-element subsets. Hence $P_{n,t+1}(t)$ is a largest *t*-intersecting subset of $P_{n,t+1}$, but not uniquely so for $n \ge t+3$ ($\{(1,\ldots,1,2,n-t-1)\}$ is another one). Regarding the case k = t + 2, note that the size $p_{n-t,2}$ of $P_{n,t+2}(t)$ is $\lfloor (n-t)/2 \rfloor$, and that $\{\mathbf{a} \in P_{n,t+2} : t-1 \text{ parts of } \mathbf{a} \text{ are equal to } 1, 2 \text{ is a part of } \mathbf{a} \}$ is a *t*-intersecting subset of $P_{n,t+2}$ of size $p_{n-t-1,2} = \lfloor (n-t-1)/2 \rfloor$. Thus, if n-t is odd, then $P_{n,t+2}(t)$ is not the unique *t*-intersecting subset of $P_{n,t+2}$ of maximum size.

We say that (a_1, \ldots, a_r) and (b_1, \ldots, b_s) strongly t-intersect if for some t-element subset T of $[\min\{r, s\}]$, $a_i = b_i$ for each $i \in T$. Following [6], we say that a set A of tuples is strongly t-intersecting if every two tuples in A strongly t-intersect. In [6], it is conjectured that for $t + 1 \leq k \leq n$, $P_{n,k}(t)$ is a strongly t-intersecting subset of $P_{n,k}$ of maximum size. This is verified for t = 1 in the same paper. Note that this conjecture is weaker than Conjecture 1.6 (for $(n,k) \neq (t+7,t+2)$), and that Proposition 1.7 and Theorem 1.8 imply that it is true for $n \leq 2k - t + 1$ and for $n \geq 3tk^5$.

Theorem 1.8 is an analogue of the classical EKR Theorem [9], which inspired many results in extremal set theory (see [8, 12, 10, 5, 14]). A family \mathcal{A} of sets is said to be *t*-intersecting if $|A \cap B| \geq t$ for every $A, B \in \mathcal{A}$. The EKR Theorem says that if *n* is sufficiently larger than *k*, then the size of any *t*-intersecting subfamily of $\binom{[n]}{k}$ is at most $\binom{n-t}{k-t}$. A sequence of results [9, 11, 20, 13, 1] culminated in the complete solution, conjectured in [11], for any *n*, *k* and *t*; it turns out that $\{A \in \binom{[n]}{k} : [t] \subseteq A\}$ is a largest *t*-intersecting subfamily of $\binom{[n]}{k}$ if and only if $n \geq (t+1)(k-t+1)$. The same *t*-intersection problem for the family of subsets of [*n*] was solved in [18]. These are among the most prominent results in extremal set theory.

Remark 1.10 The conjectures and results above for partitions can be rephrased in terms of *t*-intersecting subfamilies of a family. For any tuple $\mathbf{a} = (a_1, \ldots, a_k)$, let

$$S_{\mathbf{a}} = \{(a, i) \colon a \in \{a_1, \dots, a_k\}, i \in [k], |\{j \in [k] \colon a_j = a\}| \ge i\};$$

thus, $(a, 1), \ldots, (a, r) \in S_{\mathbf{a}}$ if and only if at least r of the entries of \mathbf{a} are equal to a. For example, $S_{(2,2,5,5,5,7)} = \{(2,1), (2,2), (5,1), (5,2), (5,3), (7,1)\}$. Let $\mathcal{P}_n = \{S_{\mathbf{a}} : \mathbf{a} \in P_n\}$ and $\mathcal{P}_{n,k} = \{S_{\mathbf{a}} : \mathbf{a} \in P_{n,k}\}$. Let $f : P_n \to \mathcal{P}_n$ such that $f(\mathbf{a}) = S_{\mathbf{a}}$ for each $\mathbf{a} \in P_n$. Clearly, f is a bijection. Thus, $|\mathcal{P}_n| = |P_n|$ and $|\mathcal{P}_{n,k}| = |P_{n,k}|$. Note that two partitions \mathbf{a} and \mathbf{b} *t*-intersect if and only if $|S_{\mathbf{a}} \cap S_{\mathbf{b}}| \geq t$. Thus, for any $A \subseteq P_{n,k}$, A is a *t*-intersecting subset of $P_{n,k}$ if and only if $\{S_{\mathbf{a}} : \mathbf{a} \in A\}$ is a *t*-intersecting subfamily of $\mathcal{P}_{n,k}$.

EKR-type results have been obtained in a wide variety of contexts; many of them are outlined in [8, 12, 10, 15, 16, 5, 6, 14]. Usually the objects have symmetry properties (see [7, Section 3.2] and [19]) or enable the use of *compression* (also called *shifting*) to push *t*-intersecting families towards a desired form (see [12, 17, 15]). One of the main motivating factors behind this paper is that, similarly to the case of [4], although the family $\mathcal{P}_{n,k}$ does not have any of these structures and attributes, and we do not even know its size precisely, we can still determine the largest *t*-intersecting subfamilies for *n* sufficiently large.

We now start working towards proving Theorem 1.8.

2 The values $p_{n,k}$

In this section, we provide relations among the values $p_{n,k}$. The relations will be needed in the proof of Theorem 1.8.

Lemma 2.1 If $k \leq m \leq n$, then $p_{m,k} \leq p_{n,k}$. Moreover, if $3 \leq k \leq m < n$ and $n \geq k+2$, then $p_{m,k} < p_{n,k}$.

Proof. Let $k \leq m \leq n$. If k = 1, then $p_{m,k} = 1 = p_{n,k}$. Suppose $k \geq 2$. Let $f: P_{m,k} \to P_{n,k}$ be the function that maps $(a_1, \ldots, a_k) \in P_{m,k}$ to the partition $(b_1, \ldots, b_k) \in P_{n,k}$ with $b_k = a_k + n - m$ and $b_i = a_i$ for each $i \in [k-1]$. Clearly, f is one-to-one, and hence the size of its domain $P_{m,k}$ is at most the size of its co-domain $P_{n,k}$. Therefore, $p_{m,k} \leq p_{n,k}$.

Suppose $3 \le k \le m < n$ and $n \ge k + 2$. Let $\mathbf{c} = (c_1, \ldots, c_k)$ with $c_i = 1$ for each $i \in [k-3]$,

$$c_{k-2} = \begin{cases} 1 & \text{if } n-k \text{ is even} \\ 2 & \text{if } n-k \text{ is odd,} \end{cases} \text{ and } c_{k-1} = c_k = \begin{cases} (n-k+2)/2 & \text{if } n-k \text{ is even} \\ (n-k+1)/2 & \text{if } n-k \text{ is odd.} \end{cases}$$

Then $\mathbf{c} \in P_{n,k}$. Since m < n, f maps $(a_1, \ldots, a_k) \in P_{m,k}$ to a partition (b_1, \ldots, b_k) with $b_{k-1} < b_k$. Hence \mathbf{c} is not in the range of f. Thus, f is not onto, and hence its domain $P_{m,k}$ is smaller than its co-domain $P_{n,k}$. Therefore, $p_{m,k} < p_{n,k}$.

Lemma 2.2 If $k \ge 2$, $c \ge 1$, and $n \ge ck^3$, then

$$p_{n,k} > cp_{n,k-1} \ge cp_{n-1,k-1}$$

Proof. If k = 2, then $p_{n,k-1} = 1$, $p_{n,k} = \lfloor n/2 \rfloor \ge (n-1)/2 \ge ck^3/2 - 1/2 > 3c$, and hence $p_{n,k} > cp_{n,k-1}$.

Now consider $k \geq 3$. For each $i \in [ck^2]$, let

$$X_i = \{(i, a_1, \dots, a_{k-2}, a_{k-1} - i) \colon (a_1, \dots, a_{k-1}) \in P_{n,k-1}\}.$$

Let $X = \bigcup_{i=1}^{ck^2} X_i$.

For any k-tuple $\mathbf{x} = (x_1, \ldots, x_k)$ of integers, let $\mathbf{\vec{x}}$ be the k-tuple obtained by putting the entries of \mathbf{x} in increasing order; that is, $\mathbf{\vec{x}}$ is the k-tuple (x'_1, \ldots, x'_k) such that $x'_1 \leq \cdots \leq x'_k$ and $|\{i \in [k] : x'_i = x\}| = |\{i \in [k] : x_i = x\}|$ for each $x \in \{x_1, \ldots, x_k\}$.

Let **a** be a partition (a_1, \ldots, a_{k-1}) in $P_{n,k-1}$. Since $a_1 \leq \cdots \leq a_{k-1}$ and $a_1 + \cdots + a_{k-1} = n$, we have $a_{k-1} \geq \frac{n}{k-1}$, and hence, since $n \geq ck^3$, $a_{k-1} > ck^2$. Thus, $a_{k-1} - i \geq 1$ for each $i \in [ck^2]$, meaning that the entries of each tuple in X are positive integers that add up to n. Therefore,

$$\vec{\mathbf{x}} \in P_{n,k}$$
 for each $\mathbf{x} \in X$. (1)

Let $Y = \{ \mathbf{y} \in P_{n,k} : \mathbf{y} = \mathbf{\vec{x}} \text{ for some } \mathbf{x} \in X \}$. For each $\mathbf{y} \in Y$, let $X_{\mathbf{y}} = \{ \mathbf{x} \in X : \mathbf{\vec{x}} = \mathbf{y} \}$. By (1), $X = \bigcup_{\mathbf{y} \in Y} X_{\mathbf{y}}$.

Consider any partition $\mathbf{y} = (y_1, \ldots, y_k)$ in Y. Clearly, each element of $X_{\mathbf{y}}$ is in one of X_{y_1}, \ldots, X_{y_k} ; that is, $X_{\mathbf{y}} \subseteq \bigcup_{i=1}^k X_{y_i}$. Thus, $X_{\mathbf{y}} = \bigcup_{i=1}^k (X_{\mathbf{y}} \cap X_{y_i})$. Let $i \in [k]$ such that $X_{\mathbf{y}} \cap X_{y_i} \neq \emptyset$. Let \mathbf{x} be a tuple (x_1, \ldots, x_k) in $X_{\mathbf{y}} \cap X_{y_i}$. By definition, $x_1 = y_i$ and $x_2 \leq \cdots \leq x_{k-1}$. Thus, since $y_1 \leq \cdots \leq y_k$ and $\mathbf{y} = \mathbf{x}$, \mathbf{x} is one of the k - 1 k-tuples satisfying the following: the first entry is y_i , the k-th entry is y_j for some $j \in [k] \setminus \{i\}$, and the middle k - 2 entries form the (k - 2)-tuple obtained by deleting the *i*-th entry and the *j*-th entry of \mathbf{y} . Hence $|X_{\mathbf{y}} \cap X_{y_i}| \leq k - 1$.

Therefore, we have

$$|X| = \left| \bigcup_{\mathbf{y} \in Y} X_{\mathbf{y}} \right| \leq \sum_{\mathbf{y} \in Y} |X_{\mathbf{y}}|$$
$$\leq \sum_{\mathbf{y} \in Y} \sum_{i=1}^{k} |X_{\mathbf{y}} \cap X_{y_i}| \leq \sum_{\mathbf{y} \in Y} \sum_{i=1}^{k} (k-1)$$
$$= k(k-1)|Y| < k^2 |P_{n,k}|,$$

and hence $p_{n,k} > \frac{|X|}{k^2}$. Now X_1, \ldots, X_{ck^2} are pairwise disjoint sets, each of size $p_{n,k-1}$. Thus, $|X| = ck^2 p_{n,k-1}$, and hence $p_{n,k} > cp_{n,k-1}$. By Lemma 2.1, $p_{n,k-1} \ge p_{n-1,k-1}$. Hence the result.

In view of the result above, we pose the following problem.

Problem 2.3 For $k \ge 2$ and $c \ge 1$, let $\rho(k, c)$ be the smallest integer m such that $p_{n,k} \ge cp_{n,k-1}$ for every $n \ge m$. What is the value of $\rho(k, c)$?

Lemma 2.2 tells us that $\rho(k, c) \leq ck^3$. As can be seen from the proof of Theorem 1.8, an improvement of this inequality automatically yields an improved condition for n in the theorem.

3 Proof of Theorem 1.8

We now prove Theorem 1.8.

For a family \mathcal{F} and a set T, let $\mathcal{F}\langle T \rangle$ denote the family $\{F \in \mathcal{F} : T \subseteq F\}$. If |T| = t, then $\mathcal{F}\langle T \rangle$ is called a *t*-star of \mathcal{F} . We denote the size of a largest *t*-star of \mathcal{F} by $\tau(\mathcal{F}, t)$. A *t*-intersecting family \mathcal{A} is said to be *trivial* if $|\bigcap_{A \in \mathcal{A}} A| \geq t$ (that is, if the sets in \mathcal{A} have at least *t* common elements); otherwise, \mathcal{A} is said to be a *non-trivial t*-intersecting family. Note that a non-empty *t*-star is a trivial *t*-intersecting family.

We call a family \mathcal{F} k-uniform if |F| = k for each $F \in \mathcal{F}$.

Generalising a theorem in [3, page 48], we obtain the following lemma.

Lemma 3.1 If $k \ge t$, \mathcal{A} is a non-trivial t-intersecting subfamily of a k-uniform family \mathcal{F} , and \mathcal{A} is not a (t+1)-intersecting family, then

$$|\mathcal{A}| \le k\tau(\mathcal{F}, t+1) + \sum_{i=1}^{t} {t \choose i} {k-t \choose i}^2 \tau(\mathcal{F}, t+i).$$

Proof. Since \mathcal{A} is *t*-intersecting and not (t + 1)-intersecting, there exist $A_1, A_2 \in \mathcal{A}$ such that $|A_1 \cap A_2| = t$. Let $B = A_1 \cap A_2$. Since \mathcal{A} is not a trivial *t*-intersecting family, there exists $A_3 \in \mathcal{A}$ such that $B \nsubseteq A_3$. For each $i \in \{0\} \cup [t]$, let $\mathcal{A}_i = \{A \in \mathcal{A} : |A \cap B| = t - i\}$.

Consider any $i \in [t]$. For each $A \in \mathcal{A}_i$, we have $t \leq |A \cap A_1| = |A \cap B| + |A \cap (A_1 \setminus B)| = t - i + |A \cap (A_1 \setminus B)|$, so $|A \cap (A_1 \setminus B)| \geq i$. Similarly, $|A \cap (A_2 \setminus B)| \geq i$ for each $A \in \mathcal{A}_i$. Thus,

$$\mathcal{A}_{i} \subseteq \{F \in \mathcal{F} \colon |F \cap B| = t - i, |F \cap (A_{1} \setminus B)| \ge i, |F \cap (A_{2} \setminus B)| \ge i\}$$
$$= \bigcup_{X \in \binom{B}{t-i}} \bigcup_{Y \in \binom{A_{1} \setminus B}{i}} \bigcup_{Z \in \binom{A_{2} \setminus B}{i}} \mathcal{F}\langle X \cup Y \cup Z \rangle,$$

and hence

$$\begin{aligned} |\mathcal{A}_{i}| &\leq \sum_{X \in \binom{B}{t-i}} \sum_{Y \in \binom{A_{1} \setminus B}{i}} \sum_{Z \in \binom{A_{2} \setminus B}{i}} |\mathcal{F}\langle X \cup Y \cup Z \rangle| \\ &\leq \binom{|B|}{t-i} \binom{|A_{1} \setminus B|}{i} \binom{|A_{2} \setminus B|}{i} \tau(\mathcal{F}, t+i) = \binom{t}{i} \binom{k-t}{i}^{2} \tau(\mathcal{F}, t+i). \end{aligned}$$

For each $A \in \mathcal{A}_0$, we have $|A \cap B| = t$ and $t \leq |A \cap A_3| = |A \cap (A_3 \cap B)| + |A \cap (A_3 \setminus B)| \leq |A_3 \cap B| + |A \cap (A_3 \setminus B)| \leq t - 1 + |A \cap (A_3 \setminus B)|$, and hence $B \subseteq A$ and $|A \cap (A_3 \setminus B)| \geq 1$. Thus,

$$\mathcal{A}_0 \subseteq \{F \in \mathcal{F} \colon B \subseteq F, |F \cap (A_3 \setminus B)| \ge 1\} = \bigcup_{X \in \binom{A_3 \setminus B}{1}} \mathcal{F} \langle B \cup X \rangle,$$

and hence

$$|\mathcal{A}_0| \leq \sum_{X \in \binom{A_3 \setminus B}{1}} |\mathcal{F} \langle B \cup X \rangle| \leq |A_3 \setminus B| \tau(\mathcal{F}, t+1) \leq k \tau(\mathcal{F}, t+1).$$

Since $\mathcal{A} = \bigcup_{i=0}^{t} \mathcal{A}_i$, the result follows.

Define $\mathcal{P}_{n,k}$ and f as in Remark 1.10. Let $T_t = \{(1,i): i \in [t]\}$. Note that $\{f(\mathbf{a}): \mathbf{a} \in P_{n,k}(t)\} = \mathcal{P}_{n,k}\langle T_t \rangle$. Since f is a bijection, it follows that $|\mathcal{P}_{n,k}\langle T_t \rangle| = |P_{n,k}(t)|$. Therefore, $|\mathcal{P}_{n,k}\langle T_t \rangle| = p_{n-t,k-t}$ if $t < k \leq n$.

Lemma 3.2 If $t + 1 \le k \le n$, then $\mathcal{P}_{n,k}\langle T_t \rangle$ is a largest t-star of $\mathcal{P}_{n,k}$, and uniquely so if $k \ge t + 3$ and $n \ge k + 2$.

Proof. Let \mathcal{A} be a *t*-star of $\mathcal{P}_{n,k}$, so $\mathcal{A} = \mathcal{P}_{n,k}\langle T^* \rangle$ for some *t*-element set T^* . Let $A = \{\mathbf{a} \in P_{n,k} : f(\mathbf{a}) = E \text{ for some } E \in \mathcal{A}\}$. Since *f* is a bijection, $|\mathcal{A}| = |\mathcal{A}|$. Let $(e_1, i_1), \ldots, (e_t, i_t)$ be the elements of T^* . By definition of *A*, *t* of the entries of each partition in *A* are e_1, \ldots, e_t . Thus, $|\mathcal{A}| \leq p_{n-q,k-t}$, where $q = \sum_{j=1}^t e_j \geq t$. By Lemma 2.1, we have $|\mathcal{A}| \leq p_{n-t,k-t}$, and hence $|\mathcal{A}| \leq |\mathcal{P}_{n,k}\langle T_t \rangle|$.

Suppose $k \ge t+3$ and $n \ge k+2$. If q > t, then, by Lemma 2.1, we have $p_{n-q,k-t} < p_{n-t,k-t}$, and hence $|\mathcal{A}| < |\mathcal{P}_{n,k}\langle T_t \rangle|$. Suppose q = t. Then $e_1 = \cdots = e_t = 1$, and hence $A \subseteq P_{n,k}(t)$. Therefore, $\mathcal{A} \subseteq \mathcal{P}_{n,k}\langle T_t \rangle$.

A *t*-intersecting subset A of $P_{n,k}$ is maximal if there is no *t*-intersecting subset B of $P_{n,k}$ such that A is a proper subset of B.

Lemma 3.3 If $k \ge t$, $n > 2k^2$, and A is a maximal t-intersecting subset of $P_{n,k}$, then A is not (t+2)-intersecting.

Proof. Clearly, $A \neq \emptyset$, so there exists $l \in [k]$ such that A is *l*-intersecting and not (l+1)-intersecting. Thus, there exist $\mathbf{a} = (a_1, \ldots, a_k)$ and $\mathbf{b} = (b_1, \ldots, b_k)$ in A such that \mathbf{a} *l*-intersects \mathbf{b} and does not (l+1)-intersect \mathbf{b} . Suppose $l \geq t+2$. Let $X = \{a_1, \ldots, a_k\}$ and $Y = \{b_1, \ldots, b_k\}$. Then $X \cap Y \neq \emptyset$. Let $z \in X \cap Y$. Then $z = a_j$ for some $j \in [k]$.

For any k-tuple $\mathbf{x} = (x_1, \ldots, x_k)$ of integers, $\mathbf{\vec{x}}$ denotes the k-tuple obtained by putting the entries of \mathbf{x} in increasing order, as in the proof of Lemma 2.2.

Suppose $a_j > 2k$. We have $k \ge l \ge t + 2 \ge 3$. Let $h \in [k] \setminus \{j\}$. Let $H = \{i \in \mathbb{N}: a_j - i \in Y \setminus \{a_j\} \text{ or } a_h + i \in Y\}$, $I = \{i \in \mathbb{N}: a_j - i \in Y \setminus \{a_j\}\}$, and $J = \{i \in \mathbb{N}: a_h + i \in Y\}$. Since $H = I \cup J$, $|H| \le |I| + |J| \le |Y \setminus \{a_j\}| + |Y| \le 2k - 1$. Thus, there exists $i \in [2k]$ such that $i \notin H$, meaning that $a_j - i \notin Y \setminus \{a_j\}$ (so $a_j - i \notin Y$) and $a_h + i \notin Y$. Let $c_j = a_j - i$, $c_h = a_h + i$, and $c_r = a_r$ for each $r \in [k] \setminus \{j, h\}$. Let $\mathbf{c} = (c_1, \ldots, c_k)$. Since $c_j > 0$ and $\sum_{r=1}^k c_r = \sum_{r=1}^k a_r = n$, we have $\mathbf{\vec{c}} \in P_{n,k}$. Let $B = A \cup \{\mathbf{\vec{c}}\}$. Since A is (t+2)-intersecting, B is a t-intersecting subset of $P_{n,k}$. Since $a_j \in Y$, $c_j, c_h \notin Y$, and \mathbf{a} does not (l+1)-intersect \mathbf{b} , $\mathbf{\vec{c}}$ does not l-intersect \mathbf{b} . Thus, $\mathbf{\vec{c}} \notin A$ as A is l-intersecting. Thus, we have $A \subsetneq B$, which contradicts the assumption that A is a maximal t-intersecting subset of $P_{n,k}$.

Therefore, $a_j \leq 2k$. Since $n > 2k^2$, $a_j < n/k$. Since $\sum_{r=1}^k a_r = n$, there exists $h \in [k] \setminus \{j\}$ such that $a_h \geq n/k$. Thus, $a_h > 2k$. Let $H = \{i \in \mathbb{N} : a_j + i \in Y \setminus \{a_j\} \text{ or } a_h - i \in Y\}$, $I = \{i \in \mathbb{N} : a_j + i \in Y \setminus \{a_j\}\}$, and $J = \{i \in \mathbb{N} : a_h - i \in Y\}$. Since $H = I \cup J$, $|H| \leq |I| + |J| \leq 2k - 1$. Thus, there exists $i \in [2k]$ such that $a_j + i \notin Y \setminus \{a_j\}$ (so $a_j + i \notin Y$) and $a_h - i \notin Y$. Let $c_j = a_j + i$, $c_h = a_h - i$, and $c_r = a_r$ for each $r \in [k] \setminus \{j, h\}$. Let $\mathbf{c} = (c_1, \ldots, c_k)$. Let $B = A \cup \{\vec{\mathbf{c}}\}$. As above, we obtain that B is a t-intersecting subset of $P_{n,k}$ with $A \subsetneq B$, a contradiction.

Therefore, l < t + 2, and hence the result.

A closer attention to detail could improve the condition on n in the lemma above, but this alone would not strengthen Theorem 1.8. We now have all the tools needed for the proof of the theorem.

Proof of Theorem 1.8. Let $k \ge t+2$ and $n \ge 3tk^5$. Let $c_t = \frac{8}{7}(t+1)$. Then $n \ge c_t k^5$.

Let A be a largest t-intersecting subset of $P_{n,k}$. Clearly, $A \neq \emptyset$, so there exists $l \in [k] \setminus [t-1]$ such that A is l-intersecting and not (l+1)-intersecting. Thus, A is a largest l-intersecting subset of $P_{n,k}$. Let $\mathcal{A} = \{f(\mathbf{a}) : \mathbf{a} \in A\}$. Clearly, $|\mathcal{A}| = |A|$ (since f is a bijection) and \mathcal{A} is k-uniform. By Remark 1.10, \mathcal{A} is a largest l-intersecting

subfamily of $\mathcal{P}_{n,k}$, and \mathcal{A} is not (l+1)-intersecting. By Lemma 3.3, $l \in \{t, t+1\}$. By Lemma 3.2, $\tau(\mathcal{P}_{n,k}, i) = |\mathcal{P}_{n,k}\langle T_i \rangle| = p_{n-i,k-i}$ for each $i \in [k-1]$.

Suppose that \mathcal{A} is a non-trivial *l*-intersecting family. Then $|\mathcal{A}| > 1$. As explained in Remark 1.9, the non-empty *l*-intersecting subsets of $\mathcal{P}_{n,l+1}$ are the 1-element subsets, and hence the non-empty *l*-intersecting subfamilies of $\mathcal{P}_{n,l+1}$ are the subfamilies of size 1. Trivially, the same holds for *l*-intersecting subfamilies of $\mathcal{P}_{n,l}$. Since $\mathcal{A} \subseteq \mathcal{P}_{n,k}$ and $|\mathcal{A}| > 1$, it follows that $k \geq l+2$.

Let $m = \max\{l, k - l\}$. For each $i \in [m]$, let

$$s_i = \binom{l}{i} \binom{k-l}{i}^2 \tau(\mathcal{P}_{n,k}, l+i)$$

By Lemma 3.1, $|\mathcal{A}| \leq k\tau(\mathcal{P}_{n,k}, l+1) + \sum_{i=1}^{l} s_i$. Clearly, $\tau(\mathcal{P}_{n,k}, l+i) \neq 0$ if and only if $i \leq k-l$. Thus,

$$|\mathcal{A}| \le k\tau(\mathcal{P}_{n,k}, l+1) + \sum_{i=1}^{k-l} s_i = kp_{n-l-1,k-l-1} + s_{k-l} + \sum_{i=1}^{k-l-1} s_i.$$
 (2)

Consider any $i \in [k - l - 1]$. Suppose $i \leq k - l - 2$. If $i \geq l$, then $s_{i+1} = 0$. Suppose i < l. We have

$$s_{i+1} = \frac{(l-i)(k-l-i)^2 p_{n-l-i-1,k-l-i-1}}{(i+1)^3 p_{n-l-i,k-l-i}} s_i$$

Since $n - l - i \ge c_t k^5 - l - i > c_t k^2 (k - l - i)^3 > (l - i)(k - l - i)^2 (k - l - i)^3$, we have $p_{n-l-i,k-l-i} > (l - i)(k - l - i)^2 p_{n-l-i-1,k-l-i-1}$ by Lemma 2.2. Thus, $s_{i+1} < s_i/(i + 1)^3$. Now suppose i = k - l - 1. Then $\tau(\mathcal{P}_{n,k}, l + i + 1) = \tau(\mathcal{P}_{n,k}, k) = 1$ and $\tau(\mathcal{P}_{n,k}, l + i) = \tau(\mathcal{P}_{n,k}, k - 1) = p_{n-(k-1),k-(k-1)} = p_{n-k+1,1} = 1$. If $i \ge l$, then $s_{i+1} = 0$. If i < l, then

$$s_{i+1} = s_{k-l} = \frac{l - (k - l - 1)}{(k - l)^3} s_{k-l-1} < \frac{l}{(k - l)^3} s_{k-l-1}.$$

We have therefore shown that $s_{i+1} \leq s_i/(i+1)^3$ for any $i \in [k-l-2]$, and that $s_{k-l} \leq (l/(k-l)^3)s_{k-l-1}$. It follows that $s_i \leq s_1/(i!)^3$ for any $i \in [k-l-1]$. Thus,

$$s_{k-l} \leq \frac{l}{(k-l)^3} \frac{s_1}{((k-l-1)!)^3} = \frac{l^2(k-l)^2 p_{n-l-1,k-l-1}}{(k-l)^3 ((k-l-1)!)^3}$$
$$= \frac{l^2 p_{n-l-1,k-l-1}}{(k-l)((k-l-1)!)^3} \leq \frac{l^2}{2} p_{n-l-1,k-l-1},$$

and $s_i \leq s_1/(2^{i-1})^3 = s_1/8^{i-1}$ for any $i \in [k-l-1]$. We have

$$\sum_{i=1}^{k-l-1} s_i \le s_1 \sum_{i=1}^{k-l-1} \left(\frac{1}{8}\right)^{i-1} < s_1 \sum_{i=0}^{\infty} \left(\frac{1}{8}\right)^i = \frac{8}{7} s_1 = \frac{8}{7} l(k-l)^2 p_{n-l-1,k-l-1}.$$

Thus, by (2), $|\mathcal{A}| < \left(k + \frac{l^2}{2} + \frac{8}{7}l(k-l)^2\right)p_{n-l-1,k-l-1}$. Since $l \in \{t, t+1\}$ and $k \ge l+2$, we have

$$k + \frac{l^2}{2} + \frac{8}{7}l(k-l)^2 = k + \frac{8}{7}lk^2 - \frac{8}{7}l^2\left(2k - l - \frac{7}{16}\right) < k + c_tk^2 - \frac{8}{7}l^2k < c_tk^2.$$

By Lemma 2.2, $p_{n-l,k-l} > c_t k^2 p_{n-l-1,k-l-1}$ as $n-l \ge c_t k^5 - l > c_t k^2 (k-l)^3$. Thus, we have $|\mathcal{A}| < p_{n-l,k-l} = \tau(\mathcal{P}_{n,k}, l)$, which is a contradiction as \mathcal{A} is a largest *l*-intersecting subfamily of $\mathcal{P}_{n,k}$.

Therefore, \mathcal{A} is a trivial *l*-intersecting family. Consequently, \mathcal{A} is a largest *l*-star of $\mathcal{P}_{n,k}$. By Lemma 3.2, $|\mathcal{A}| = |\mathcal{P}_{n,k}\langle T_l \rangle|$. Since $n-t \ge c_t k^5 - t > (k-t)^3$, $p_{n-t,k-t} > p_{n-(t+1),k-(t+1)}$ by Lemma 2.2. Since $l \in \{t, t+1\}$ and $|\mathcal{A}| = |\mathcal{A}| = |\mathcal{P}_{n,k}\langle T_l \rangle| = p_{n-l,k-l} \le p_{n-t,k-t} = |\mathcal{P}_{n,k}(t)| \le |\mathcal{A}|$, it follows that l = t and $|\mathcal{A}| = |\mathcal{P}_{n,k}(t)|$. By Lemma 3.2, $\mathcal{A} = \mathcal{P}_{n,k}(t)$ if $k \ge t+3$.

Acknowledgements

The author wishes to thank the anonymous referees for checking the paper carefully and providing remarks that led to an improvement in the presentation.

References

- R. Ahlswede and L.H. Khachatrian, The complete intersection theorem for systems of finite sets, *European J. Combin.* 18 (1997), 125–136.
- [2] G.E. Andrews and K. Eriksson, *Integer partitions*, Cambridge Univ. Press, Cambridge, 2004.
- [3] B. Bollobás, *Combinatorics*, Cambridge Univ. Press, Cambridge, 1986.
- [4] P. Borg, Extremal t-intersecting sub-families of hereditary families, J. London Math. Soc. 79 (2009), 167–185.
- [5] P. Borg, Intersecting families of sets and permutations: a survey, in: A.R. Baswell (Ed.), Advances in Mathematics Research, Vol. 16, Nova Science Publishers, Inc., 2011, pp. 283–299.
- [6] P. Borg, Strongly intersecting integer partitions, Discrete Math. 336 (2014), 80–84.
- [7] P. Borg, The maximum sum and the maximum product of sizes of crossintersecting families, *European J. Combin.* 35 (2014), 117–130.
- [8] M. Deza and P. Frankl, The Erdős–Ko–Rado theorem—22 years later, SIAM J. Algebraic Discrete Methods 4 (1983), 419–431.

- [9] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961), 313–320.
- [10] P. Frankl, Extremal set systems, in: R.L. Graham, M. Grötschel and L. Lovász (Eds.), *Handbook of Combinatorics*, Vol. 2, Elsevier, Amsterdam, 1995, pp. 1293–1329.
- [11] P. Frankl, The Erdős–Ko–Rado Theorem is true for n = ckt, in: Proc. Fifth Hung. Comb. Coll., Coll. Math. Soc. J. Bolyai, Vol. 18, North-Holland, Amsterdam, 1978, pp. 365–375.
- [12] P. Frankl, The shifting technique in extremal set theory, in: C. Whitehead (Ed.), *Combinatorial Surveys*, Cambridge Univ. Press, London/New York, 1987, pp. 81–110.
- [13] P. Frankl and Z. Füredi, Beyond the Erdős–Ko–Rado theorem, J. Combin. Theory Ser. A 56 (1991), 182–194.
- [14] P. Frankl and N. Tokushige, Invitation to intersection problems for finite sets, J. Combin. Theory Ser. A 144 (2016), 157–211.
- [15] F. Holroyd, C. Spencer and J. Talbot, Compression and Erdős–Ko–Rado graphs, Discrete Math. 293 (2005), 155–164.
- [16] F. Holroyd and J. Talbot, Graphs with the Erdős–Ko–Rado property, Discrete Math. 293 (2005), 165–176.
- [17] G. Kalai, Algebraic shifting, in: T. Hibi (Ed.), Adv. Stud. Pure Math., Vol. 33, Math. Soc. Japan, Tokyo, 2002, pp. 121–163.
- [18] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329–337.
- [19] J. Wang and H. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory Ser. A 118 (2011), 455–462.
- [20] R.M. Wilson, The exact bound in the Erdős–Ko–Rado theorem, Combinatorica 4 (1984), 247–257.

(Received 25 Feb 2016)