Intersecting integer partitions

Peter Borg
Department of Mathematics
University of Malta
Malta
peter.borg@um.edu.mt

Abstract

If $a_{1}, a_{2}, \ldots, a_{k}$ and n are positive integers such that $n=a_{1}+a_{2}+\cdots+a_{k}$, then the sum $a_{1}+a_{2}+\cdots+a_{k}$ is said to be a partition of n of length k, and $a_{1}, a_{2}, \ldots, a_{k}$ are said to be the parts of the partition. Two partitions that differ only in the order of their parts are considered to be the same partition. Let P_{n} be the set of partitions of n, and let $P_{n, k}$ be the set of partitions of n of length k. We say that two partitions t-intersect if they have at least t common parts (not necessarily distinct). We call a set A of partitions t-intersecting if every two partitions in $A t$-intersect. For a set A of partitions, let $A(t)$ be the set of partitions in A that have at least t parts equal to 1 . We conjecture that for $n \geq t, P_{n}(t)$ is a largest t-intersecting subset of P_{n}. We show that for $k>t, P_{n, k}(t)$ is a largest t-intersecting subset of $P_{n, k}$ if $n \leq 2 k-t+1$ or $n \geq 3 t k^{5}$. We also demonstrate that for every $t \geq 1$, there exist n and k such that $t<k<n$ and $P_{n, k}(t)$ is not a largest t-intersecting subset of $P_{n, k}$.

1 Introduction

Unless stated otherwise, we shall use small letters such as x to denote positive integers or functions or elements of a set, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote families (that is, sets whose elements are sets themselves). The set $\{1,2, \ldots\}$ of all positive integers is denoted by \mathbb{N}. For $n \geq 1$, [n] denotes the set $\{1, \ldots, n\}$ of the first n positive integers. We take $[0]$ to be the empty set \emptyset. We call a set A an r-element set if its size $|A|$ is r (that is, if it contains exactly r elements). For a set $X,\binom{X}{r}$ denotes the family of r-element subsets of X. It is to be assumed that arbitrary sets and families are finite.

In the literature, a sum $a_{1}+a_{2}+\cdots+a_{k}$ is said to be a partition of n of length k if $a_{1}, a_{2}, \ldots, a_{k}$ and n are positive integers such that $n=a_{1}+a_{2}+\cdots+a_{k}$. A partition of a positive integer n is also referred to as an integer partition or simply as a partition. If $a_{1}+a_{2}+\cdots+a_{k}$ is a partition, then $a_{1}, a_{2}, \ldots, a_{k}$ are said to be its parts. Two partitions that differ only in the order of their parts are considered to be the same partition. Thus, we can refine the definition of a partition as follows. We
call a tuple $\left(a_{1}, \ldots, a_{k}\right)$ a partition of n of length k if a_{1}, \ldots, a_{k} and n are positive integers such that $n=\sum_{i=1}^{k} a_{i}$ and $a_{1} \leq \cdots \leq a_{k}$. We will be using the latter definition throughout the rest of the paper.

For any tuple $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$ and any $i \in[k], a_{i}$ is said to be the i-th entry of \mathbf{a}, and if \mathbf{a} is a partition, then a_{i} is also said to be a part of \mathbf{a}.

Let P_{n} denote the set of partitions of n, and let $P_{n, k}$ denote the set of partitions of n of length k. Thus, $P_{n, k}$ is non-empty if and only if $1 \leq k \leq n$. Moreover, $P_{n}=\bigcup_{i=1}^{n} P_{n, i}$.

Let $p_{n}=\left|P_{n}\right|$ and $p_{n, k}=\left|P_{n, k}\right|$. These values are widely studied. To the best of the author's knowledge, no elementary closed-form expressions are known for p_{n} and $p_{n, k}$. For more about these values, we refer the reader to [2].

If at least one part of a partition \mathbf{a} is a part of a partition \mathbf{b}, then we say that a and \mathbf{b} intersect. We call a set A of partitions intersecting if for every \mathbf{a} and \mathbf{b} in A, \mathbf{a} and \mathbf{b} intersect. We make the following conjecture.

Conjecture 1.1 For every positive integer n, the set of partitions of n that have 1 as a part is a largest intersecting set of partitions of n.

We also conjecture that for $2 \leq k \leq n$ and $(n, k) \neq(8,3),\left\{\mathbf{a} \in P_{n, k}: 1\right.$ is a part of a $\}$ is a largest intersecting subset of $P_{n, k}$. We will show that this is true for $n \leq 2 k$ and for n sufficiently large depending on k.

For any set A of partitions, let $A(t)$ denote the set of partitions in A whose first t entries are equal to 1 . Thus, for $t \leq k \leq n$,

$$
P_{n, k}(t)=\left\{\left(a_{1}, \ldots, a_{k}\right) \in P_{n, k}: a_{1}=\cdots=a_{t}=1\right\} \quad \text { and } \quad P_{n}(t)=\bigcup_{i=t}^{n} P_{n, i}(t)
$$

Note that for $t<k \leq n,\left|P_{n}(t)\right|=p_{n-t}$ and $\left|P_{n, k}(t)\right|=p_{n-t, k-t}$.
Generalising the definition of intersecting partitions, we say that two tuples $\left(a_{1}, \ldots, a_{r}\right)$ and $\left(b_{1}, \ldots, b_{s}\right) t$-intersect if there are t distinct integers i_{1}, \ldots, i_{t} in $[r]$ and t distinct integers j_{1}, \ldots, j_{t} in $[s]$ such that $a_{i_{p}}=b_{j_{p}}$ for each $p \in[t]$. We call a set A of tuples t-intersecting if for every $\mathbf{a}, \mathbf{b} \in A$, \mathbf{a} and $\mathbf{b} t$-intersect. Thus, for any $A \subseteq P_{n}, A(t)$ is t-intersecting, and A is intersecting if and only if A is 1 -intersecting.

We pose the following two problems, which lie in the interface between extremal set theory and partition theory.

Problem 1.2 What is the size or the structure of a largest t-intersecting subset of P_{n} ?

Problem 1.3 What is the size or the structure of a largest t-intersecting subset of $P_{n, k}$?

This paper mainly addresses the second question. We suggest two conjectures corresponding to the two problems above and generalising the two conjectures above.

Conjecture 1.4 For $n \geq t, P_{n}(t)$ is a t-intersecting subset of P_{n} of maximum size.

Conjecture 1.1 is Conjecture 1.4 with $t=1$.
For $2 \leq k \leq n$, the only case we discovered where $P_{n, k}(1)$ is not a largest intersecting subset of $P_{n, k}$ is $n=8$ and $k=3$.

Remark 1.5 We have $P_{8,3}=\{(1,1,6),(1,2,5),(1,3,4),(2,2,4),(2,3,3)\}$. Since $P_{8,3}$ is not an intersecting set, $\{(1,2,5),(1,3,4),(2,2,4),(2,3,3)\}$ is an intersecting subset of $P_{8,3}$ of maximum size $4=\left|P_{8,3}(1)\right|+1$. Extending this example, we have that for $t \geq 2,\left\{(1, \ldots, 1, a, b, c) \in P_{t+7, t+2}:(a, b, c) \in\{(1,2,5),(1,3,4),(2,2,4),(2,3,3)\}\right\}$ is a t-intersecting subset of $P_{t+7, t+2}$ of size $\left|P_{t+7, t+2}(t)\right|+1$.

Conjecture 1.6 For $t+1 \leq k \leq n$ with $(n, k) \neq(t+7, t+2), P_{n, k}(t)$ is a t intersecting subset of $P_{n, k}$ of maximum size.

If $t=k<n$, then $P_{n, k}(t)=\emptyset, P_{n, k} \neq \emptyset$, and the non-empty t-intersecting subsets of $P_{n, k}$ are the 1-element subsets. If $k<t$, then $P_{n, k}$ has no non-empty t-intersecting subsets.

For every k and t, we leave Conjecture 1.6 open only for a finite range of values of n, namely, for $2 k-t+1<n<3 t k^{5}$. We first prove it for $n \leq 2 k-t+1$.

Proposition 1.7 Conjecture 1.6 is true for $n \leq 2 k-t+1$.
Proof. Suppose $n \leq 2 k-t+1$. For any $\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right) \in P_{n, k}$, let $L_{\mathbf{c}}=\{i \in$ $\left.[k]: c_{i}=1\right\}$ and $l_{\mathbf{c}}=\left|L_{\mathbf{c}}\right|$. We have $2 k-t+1 \geq n=\sum_{i \in L_{\mathbf{c}}} c_{i}+\sum_{j \in[k] \backslash L_{\mathbf{c}}} c_{j} \geq$ $\sum_{i \in L_{\mathbf{c}}} 1+\sum_{j \in[k] \backslash L_{\mathbf{c}}} 2=l_{\mathbf{c}}+2\left(k-l_{\mathbf{c}}\right)=2 k-l_{\mathbf{c}}$. Thus, $l_{\mathbf{c}} \geq t-1$, and equality holds only if $n=2 k-t+1$ and $c_{j}=2$ for each $j \in[k] \backslash L_{\mathbf{c}}$. Since $c_{1} \leq \cdots \leq c_{k}, L_{\mathbf{c}}=\left[l_{\mathbf{c}}\right]$.

Let A be a t-intersecting subset of $P_{n, k}$. If $l_{\mathbf{a}} \geq t$ for each $\mathbf{a} \in A$, then $A \subseteq P_{n, k}(t)$. Suppose $l_{\mathbf{a}}=t-1$ for some $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right) \in A$. By the above, we have $n=2 k-t+1$, $a_{i}=1$ for each $i \in[t-1], a_{j}=2$ for each $j \in[k] \backslash[t-1]$, and $P_{n, k}=P_{n, k}(t) \cup\{\mathbf{a}\}$. Let \mathbf{b} be the partition $\left(b_{1}, \ldots, b_{k}\right)$ in $P_{n, k}(t)$ with $b_{k}=n-k+1=k-t+2$ and $b_{i}=1$ for each $i \in[k-1]$. Since $k \geq t+1$, \mathbf{a} and \mathbf{b} do not t-intersect, and hence $\mathbf{b} \notin A$. Thus, $|A| \leq\left|P_{n, k}\right|-1=\left|P_{n, k}(t)\right|$.

In Section 3, we show that Conjecture 1.6 is also true for n sufficiently large. More precisely, we prove the following.

Theorem 1.8 For $k \geq t+2$ and $n \geq 3 t k^{5}, P_{n, k}(t)$ is a t-intersecting subset of $P_{n, k}$ of maximum size, and uniquely so if $k \geq t+3$.

We actually prove the result for $n \geq \frac{8}{7}(t+1) k^{5}$. For this purpose, we generalise Bollobás' proof [3, pages 48-49] of the Erdős-Ko-Rado (EKR) Theorem [9], and we make some observations regarding the values $p_{n, k}$ and the structure of t-intersecting subsets of $P_{n, k}$.

Remark 1.9 Conjecture 1.6 is also true for $k=t+1$. Indeed, if two partitions of n of length $t+1$ have t common parts a_{1}, \ldots, a_{t}, then the remaining part of each is $n-\left(a_{1}+\cdots+a_{t}\right)$, and hence the partitions are the same. Thus, the non-empty
t-intersecting subsets of $P_{n, t+1}$ are the 1-element subsets. Hence $P_{n, t+1}(t)$ is a largest t-intersecting subset of $P_{n, t+1}$, but not uniquely so for $n \geq t+3(\{(1, \ldots, 1,2, n-t-1)\}$ is another one). Regarding the case $k=t+2$, note that the size $p_{n-t, 2}$ of $P_{n, t+2}(t)$ is $\lfloor(n-t) / 2\rfloor$, and that $\left\{\mathbf{a} \in P_{n, t+2}: t-1\right.$ parts of a are equal to 1,2 is a part of $\left.\mathbf{a}\right\}$ is a t-intersecting subset of $P_{n, t+2}$ of size $p_{n-t-1,2}=\lfloor(n-t-1) / 2\rfloor$. Thus, if $n-t$ is odd, then $P_{n, t+2}(t)$ is not the unique t-intersecting subset of $P_{n, t+2}$ of maximum size.

We say that $\left(a_{1}, \ldots, a_{r}\right)$ and $\left(b_{1}, \ldots, b_{s}\right)$ strongly t-intersect if for some t-element subset T of $[\min \{r, s\}], a_{i}=b_{i}$ for each $i \in T$. Following [6], we say that a set A of tuples is strongly t-intersecting if every two tuples in A strongly t-intersect. In [6], it is conjectured that for $t+1 \leq k \leq n, P_{n, k}(t)$ is a strongly t-intersecting subset of $P_{n, k}$ of maximum size. This is verified for $t=1$ in the same paper. Note that this conjecture is weaker than Conjecture 1.6 (for $(n, k) \neq(t+7, t+2)$), and that Proposition 1.7 and Theorem 1.8 imply that it is true for $n \leq 2 k-t+1$ and for $n \geq 3 t k^{5}$.

Theorem 1.8 is an analogue of the classical EKR Theorem [9], which inspired many results in extremal set theory (see $[8,12,10,5,14]$). A family \mathcal{A} of sets is said to be t-intersecting if $|A \cap B| \geq t$ for every $A, B \in \mathcal{A}$. The EKR Theorem says that if n is sufficiently larger than k, then the size of any t-intersecting subfamily of $\binom{[n]}{k}$ is at most $\binom{n-t}{k-t}$. A sequence of results $[9,11,20,13,1]$ culminated in the complete solution, conjectured in [11], for any n, k and t; it turns out that $\left\{A \in\binom{[n]}{k}:[t] \subseteq A\right\}$ is a largest t-intersecting subfamily of $\binom{[n]}{k}$ if and only if $n \geq(t+1)(k-t+1)$. The same t-intersection problem for the family of subsets of [n] was solved in [18]. These are among the most prominent results in extremal set theory.

Remark 1.10 The conjectures and results above for partitions can be rephrased in terms of t-intersecting subfamilies of a family. For any tuple $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$, let

$$
S_{\mathbf{a}}=\left\{(a, i): a \in\left\{a_{1}, \ldots, a_{k}\right\}, i \in[k],\left|\left\{j \in[k]: a_{j}=a\right\}\right| \geq i\right\} ;
$$

thus, $(a, 1), \ldots,(a, r) \in S_{\mathrm{a}}$ if and only if at least r of the entries of a are equal to a. For example, $S_{(2,2,5,5,5,7)}=\{(2,1),(2,2),(5,1),(5,2),(5,3),(7,1)\}$. Let $\mathcal{P}_{n}=$ $\left\{S_{\mathbf{a}}: \mathbf{a} \in P_{n}\right\}$ and $\mathcal{P}_{n, k}=\left\{S_{\mathbf{a}}: \mathbf{a} \in P_{n, k}\right\}$. Let $f: P_{n} \rightarrow \mathcal{P}_{n}$ such that $f(\mathbf{a})=S_{\mathbf{a}}$ for each $\mathbf{a} \in P_{n}$. Clearly, f is a bijection. Thus, $\left|\mathcal{P}_{n}\right|=\left|P_{n}\right|$ and $\left|\mathcal{P}_{n, k}\right|=\left|P_{n, k}\right|$. Note that two partitions a and $\mathbf{b} t$-intersect if and only if $\left|S_{\mathbf{a}} \cap S_{\mathbf{b}}\right| \geq t$. Thus, for any $A \subseteq P_{n, k}, A$ is a t-intersecting subset of $P_{n, k}$ if and only if $\left\{S_{\mathbf{a}}: \mathbf{a} \in A\right\}$ is a t-intersecting subfamily of $\mathcal{P}_{n, k}$.

EKR-type results have been obtained in a wide variety of contexts; many of them are outlined in $[8,12,10,15,16,5,6,14]$. Usually the objects have symmetry properties (see [7, Section 3.2] and [19]) or enable the use of compression (also called shifting) to push t-intersecting families towards a desired form (see [12, 17, 15]). One of the main motivating factors behind this paper is that, similarly to the case of [4], although the family $\mathcal{P}_{n, k}$ does not have any of these structures and attributes, and we do not even know its size precisely, we can still determine the largest t-intersecting subfamilies for n sufficiently large.

We now start working towards proving Theorem 1.8.

2 The values $p_{n, k}$

In this section, we provide relations among the values $p_{n, k}$. The relations will be needed in the proof of Theorem 1.8.

Lemma 2.1 If $k \leq m \leq n$, then $p_{m, k} \leq p_{n, k}$. Moreover, if $3 \leq k \leq m<n$ and $n \geq k+2$, then $p_{m, k}<p_{n, k}$.

Proof. Let $k \leq m \leq n$. If $k=1$, then $p_{m, k}=1=p_{n, k}$. Suppose $k \geq 2$. Let $f: P_{m, k} \rightarrow P_{n, k}$ be the function that maps $\left(a_{1}, \ldots, a_{k}\right) \in P_{m, k}$ to the partition $\left(b_{1}, \ldots, b_{k}\right) \in P_{n, k}$ with $b_{k}=a_{k}+n-m$ and $b_{i}=a_{i}$ for each $i \in[k-1]$. Clearly, f is one-to-one, and hence the size of its domain $P_{m, k}$ is at most the size of its co-domain $P_{n, k}$. Therefore, $p_{m, k} \leq p_{n, k}$.

Suppose $3 \leq k \leq m<n$ and $n \geq k+2$. Let $\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right)$ with $c_{i}=1$ for each $i \in[k-3]$,

$$
c_{k-2}=\left\{\begin{array}{ll}
1 & \text { if } n-k \text { is even } \\
2 & \text { if } n-k \text { is odd, }
\end{array} \quad \text { and } \quad c_{k-1}=c_{k}= \begin{cases}(n-k+2) / 2 & \text { if } n-k \text { is even } \\
(n-k+1) / 2 & \text { if } n-k \text { is odd } .\end{cases}\right.
$$

Then $\mathbf{c} \in P_{n, k}$. Since $m<n, f$ maps $\left(a_{1}, \ldots, a_{k}\right) \in P_{m, k}$ to a partition $\left(b_{1}, \ldots, b_{k}\right)$ with $b_{k-1}<b_{k}$. Hence \mathbf{c} is not in the range of f. Thus, f is not onto, and hence its domain $P_{m, k}$ is smaller than its co-domain $P_{n, k}$. Therefore, $p_{m, k}<p_{n, k}$.

Lemma 2.2 If $k \geq 2, c \geq 1$, and $n \geq c k^{3}$, then

$$
p_{n, k}>c p_{n, k-1} \geq c p_{n-1, k-1}
$$

Proof. If $k=2$, then $p_{n, k-1}=1, p_{n, k}=\lfloor n / 2\rfloor \geq(n-1) / 2 \geq c k^{3} / 2-1 / 2>3 c$, and hence $p_{n, k}>c p_{n, k-1}$.

Now consider $k \geq 3$. For each $i \in\left[c k^{2}\right]$, let

$$
X_{i}=\left\{\left(i, a_{1}, \ldots, a_{k-2}, a_{k-1}-i\right):\left(a_{1}, \ldots, a_{k-1}\right) \in P_{n, k-1}\right\} .
$$

Let $X=\bigcup_{i=1}^{c k^{2}} X_{i}$.
For any k-tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ of integers, let $\overrightarrow{\mathbf{x}}$ be the k-tuple obtained by putting the entries of \mathbf{x} in increasing order; that is, $\overrightarrow{\mathbf{x}}$ is the k-tuple $\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ such that $x_{1}^{\prime} \leq \cdots \leq x_{k}^{\prime}$ and $\left|\left\{i \in[k]: x_{i}^{\prime}=x\right\}\right|=\left|\left\{i \in[k]: x_{i}=x\right\}\right|$ for each $x \in\left\{x_{1}, \ldots, x_{k}\right\}$.

Let a be a partition $\left(a_{1}, \ldots, a_{k-1}\right)$ in $P_{n, k-1}$. Since $a_{1} \leq \cdots \leq a_{k-1}$ and $a_{1}+$ $\cdots+a_{k-1}=n$, we have $a_{k-1} \geq \frac{n}{k-1}$, and hence, since $n \geq c k^{3}, a_{k-1}>c k^{2}$. Thus, $a_{k-1}-i \geq 1$ for each $i \in\left[c k^{2}\right]$, meaning that the entries of each tuple in X are positive integers that add up to n. Therefore,

$$
\begin{equation*}
\overrightarrow{\mathbf{x}} \in P_{n, k} \text { for each } \mathbf{x} \in X \tag{1}
\end{equation*}
$$

Let $Y=\left\{\mathbf{y} \in P_{n, k}: \mathbf{y}=\overrightarrow{\mathbf{x}}\right.$ for some $\left.\mathbf{x} \in X\right\}$. For each $\mathbf{y} \in Y$, let $X_{\mathbf{y}}=\{\mathbf{x} \in$ $X: \overrightarrow{\mathbf{x}}=\mathbf{y}\}$. By (1), $X=\bigcup_{\mathbf{y} \in Y} X_{\mathbf{y}}$.

Consider any partition $\mathbf{y}=\left(y_{1}, \ldots, y_{k}\right)$ in Y. Clearly, each element of $X_{\mathbf{y}}$ is in one of $X_{y_{1}}, \ldots, X_{y_{k}}$; that is, $X_{\mathbf{y}} \subseteq \bigcup_{i=1}^{k} X_{y_{i}}$. Thus, $X_{\mathbf{y}}=\bigcup_{i=1}^{k}\left(X_{\mathbf{y}} \cap X_{y_{i}}\right)$. Let $i \in[k]$ such that $X_{\mathbf{y}} \cap X_{y_{i}} \neq \emptyset$. Let \mathbf{x} be a tuple $\left(x_{1}, \ldots, x_{k}\right)$ in $X_{\mathbf{y}} \cap X_{y_{i}}$. By definition, $x_{1}=y_{i}$ and $x_{2} \leq \cdots \leq x_{k-1}$. Thus, since $y_{1} \leq \cdots \leq y_{k}$ and $\mathbf{y}=\overrightarrow{\mathbf{x}}, \mathbf{x}$ is one of the $k-1 k$-tuples satisfying the following: the first entry is y_{i}, the k-th entry is y_{j} for some $j \in[k] \backslash\{i\}$, and the middle $k-2$ entries form the ($k-2$)-tuple obtained by deleting the i-th entry and the j-th entry of \mathbf{y}. Hence $\left|X_{\mathbf{y}} \cap X_{y_{i}}\right| \leq k-1$.

Therefore, we have

$$
\begin{aligned}
|X| & =\left|\bigcup_{\mathbf{y} \in Y} X_{\mathbf{y}}\right| \leq \sum_{\mathbf{y} \in Y}\left|X_{\mathbf{y}}\right| \\
& \leq \sum_{\mathbf{y} \in Y} \sum_{i=1}^{k}\left|X_{\mathbf{y}} \cap X_{y_{i}}\right| \leq \sum_{\mathbf{y} \in Y} \sum_{i=1}^{k}(k-1) \\
& =k(k-1)|Y|<k^{2}\left|P_{n, k}\right|
\end{aligned}
$$

and hence $p_{n, k}>\frac{|X|}{k^{2}}$. Now $X_{1}, \ldots, X_{c k^{2}}$ are pairwise disjoint sets, each of size $p_{n, k-1}$. Thus, $|X|=c k^{2} p_{n, k-1}$, and hence $p_{n, k}>c p_{n, k-1}$. By Lemma 2.1, $p_{n, k-1} \geq p_{n-1, k-1}$. Hence the result.

In view of the result above, we pose the following problem.
Problem 2.3 For $k \geq 2$ and $c \geq 1$, let $\rho(k, c)$ be the smallest integer m such that $p_{n, k} \geq c p_{n, k-1}$ for every $n \geq m$. What is the value of $\rho(k, c)$?

Lemma 2.2 tells us that $\rho(k, c) \leq c k^{3}$. As can be seen from the proof of Theorem 1.8, an improvement of this inequality automatically yields an improved condition for n in the theorem.

3 Proof of Theorem 1.8

We now prove Theorem 1.8.
For a family \mathcal{F} and a set T, let $\mathcal{F}\langle T\rangle$ denote the family $\{F \in \mathcal{F}: T \subseteq F\}$. If $|T|=t$, then $\mathcal{F}\langle T\rangle$ is called a t-star of \mathcal{F}. We denote the size of a largest t-star of \mathcal{F} by $\tau(\mathcal{F}, t)$. A t-intersecting family \mathcal{A} is said to be trivial if $\left|\bigcap_{A \in \mathcal{A}} A\right| \geq t$ (that is, if the sets in \mathcal{A} have at least t common elements); otherwise, \mathcal{A} is said to be a nontrivial t-intersecting family. Note that a non-empty t-star is a trivial t-intersecting family.

We call a family $\mathcal{F} k$-uniform if $|F|=k$ for each $F \in \mathcal{F}$.
Generalising a theorem in [3, page 48], we obtain the following lemma.
Lemma 3.1 If $k \geq t$, \mathcal{A} is a non-trivial t-intersecting subfamily of a k-uniform family \mathcal{F}, and \mathcal{A} is not a $(t+1)$-intersecting family, then

$$
|\mathcal{A}| \leq k \tau(\mathcal{F}, t+1)+\sum_{i=1}^{t}\binom{t}{i}\binom{k-t}{i}^{2} \tau(\mathcal{F}, t+i)
$$

Proof. Since \mathcal{A} is t-intersecting and not $(t+1)$-intersecting, there exist $A_{1}, A_{2} \in \mathcal{A}$ such that $\left|A_{1} \cap A_{2}\right|=t$. Let $B=A_{1} \cap A_{2}$. Since \mathcal{A} is not a trivial t-intersecting family, there exists $A_{3} \in \mathcal{A}$ such that $B \nsubseteq A_{3}$. For each $i \in\{0\} \cup[t]$, let $\mathcal{A}_{i}=\{A \in$ $\mathcal{A}:|A \cap B|=t-i\}$.

Consider any $i \in[t]$. For each $A \in \mathcal{A}_{i}$, we have $t \leq\left|A \cap A_{1}\right|=|A \cap B|+\mid A \cap$ $\left(A_{1} \backslash B\right)\left|=t-i+\left|A \cap\left(A_{1} \backslash B\right)\right|\right.$, so $| A \cap\left(A_{1} \backslash B\right) \mid \geq i$. Similarly, $\left|A \cap\left(A_{2} \backslash B\right)\right| \geq i$ for each $A \in \mathcal{A}_{i}$. Thus,

$$
\begin{aligned}
\mathcal{A}_{i} & \subseteq\left\{F \in \mathcal{F}:|F \cap B|=t-i,\left|F \cap\left(A_{1} \backslash B\right)\right| \geq i,\left|F \cap\left(A_{2} \backslash B\right)\right| \geq i\right\} \\
& =\bigcup_{X \in\binom{B}{t-i}} \bigcup_{Y \in\binom{A_{1} \backslash B}{i}} \bigcup_{Z \in\binom{A_{i} \backslash B}{i}} \mathcal{F}\langle X \cup Y \cup Z\rangle,
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left|\mathcal{A}_{i}\right| & \leq \sum_{X \in\binom{B}{t-i}} \sum_{Y \in\left(\begin{array}{c}
A_{i} \backslash B
\end{array}\right)} \sum_{Z \in\binom{A_{2} \backslash B}{i}}|\mathcal{F}\langle X \cup Y \cup Z\rangle| \\
& \leq\binom{|B|}{t-i}\binom{\left|A_{1} \backslash B\right|}{i}\binom{\left|A_{2} \backslash B\right|}{i} \tau(\mathcal{F}, t+i)=\binom{t}{i}\binom{k-t}{i}^{2} \tau(\mathcal{F}, t+i) .
\end{aligned}
$$

For each $A \in \mathcal{A}_{0}$, we have $|A \cap B|=t$ and $t \leq\left|A \cap A_{3}\right|=\left|A \cap\left(A_{3} \cap B\right)\right|+\mid A \cap$ $\left(A_{3} \backslash B\right)\left|\leq\left|A_{3} \cap B\right|+\left|A \cap\left(A_{3} \backslash B\right)\right| \leq t-1+\left|A \cap\left(A_{3} \backslash B\right)\right|\right.$, and hence $B \subseteq A$ and $\left|A \cap\left(A_{3} \backslash B\right)\right| \geq 1$. Thus,

$$
\mathcal{A}_{0} \subseteq\left\{F \in \mathcal{F}: B \subseteq F,\left|F \cap\left(A_{3} \backslash B\right)\right| \geq 1\right\}=\bigcup_{X \in\binom{A_{3} \backslash B}{1}} \mathcal{F}\langle B \cup X\rangle
$$

and hence

$$
\left|\mathcal{A}_{0}\right| \leq \sum_{X \in\left(A_{3} \backslash B\right)}|\mathcal{F}\langle B \cup X\rangle| \leq\left|A_{3} \backslash B\right| \tau(\mathcal{F}, t+1) \leq k \tau(\mathcal{F}, t+1)
$$

Since $\mathcal{A}=\bigcup_{i=0}^{t} \mathcal{A}_{i}$, the result follows.
Define $\mathcal{P}_{n, k}$ and f as in Remark 1.10. Let $T_{t}=\{(1, i): i \in[t]\}$. Note that $\left\{f(\mathbf{a}): \mathbf{a} \in P_{n, k}(t)\right\}=\mathcal{P}_{n, k}\left\langle T_{t}\right\rangle$. Since f is a bijection, it follows that $\left|\mathcal{P}_{n, k}\left\langle T_{t}\right\rangle\right|=$ $\left|P_{n, k}(t)\right|$. Therefore, $\left|\mathcal{P}_{n, k}\left\langle T_{t}\right\rangle\right|=p_{n-t, k-t}$ if $t<k \leq n$.

Lemma 3.2 If $t+1 \leq k \leq n$, then $\mathcal{P}_{n, k}\left\langle T_{t}\right\rangle$ is a largest t-star of $\mathcal{P}_{n, k}$, and uniquely so if $k \geq t+3$ and $n \geq k+2$.

Proof. Let \mathcal{A} be a t-star of $\mathcal{P}_{n, k}$, so $\mathcal{A}=\mathcal{P}_{n, k}\left\langle T^{*}\right\rangle$ for some t-element set T^{*}. Let $A=\left\{\mathbf{a} \in P_{n, k}: f(\mathbf{a})=E\right.$ for some $\left.E \in \mathcal{A}\right\}$. Since f is a bijection, $|A|=|\mathcal{A}|$. Let $\left(e_{1}, i_{1}\right), \ldots,\left(e_{t}, i_{t}\right)$ be the elements of T^{*}. By definition of A, t of the entries of each partition in A are e_{1}, \ldots, e_{t}. Thus, $|A| \leq p_{n-q, k-t}$, where $q=\sum_{j=1}^{t} e_{j} \geq t$. By Lemma 2.1, we have $|A| \leq p_{n-t, k-t}$, and hence $|\mathcal{A}| \leq\left|\mathcal{P}_{n, k}\left\langle T_{t}\right\rangle\right|$.

Suppose $k \geq t+3$ and $n \geq k+2$. If $q>t$, then, by Lemma 2.1, we have $p_{n-q, k-t}<$ $p_{n-t, k-t}$, and hence $|\mathcal{A}|<\left|\mathcal{P}_{n, k}\left\langle T_{t}\right\rangle\right|$. Suppose $q=t$. Then $e_{1}=\cdots=e_{t}=1$, and hence $A \subseteq P_{n, k}(t)$. Therefore, $\mathcal{A} \subseteq \mathcal{P}_{n, k}\left\langle T_{t}\right\rangle$.

A t-intersecting subset A of $P_{n, k}$ is maximal if there is no t-intersecting subset B of $P_{n, k}$ such that A is a proper subset of B.

Lemma 3.3 If $k \geq t, n>2 k^{2}$, and A is a maximal t-intersecting subset of $P_{n, k}$, then A is not $(t+2)$-intersecting.

Proof. Clearly, $A \neq \emptyset$, so there exists $l \in[k]$ such that A is l-intersecting and not $(l+1)$-intersecting. Thus, there exist $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{k}\right)$ in A such that $\mathbf{a} l$-intersects \mathbf{b} and does not $(l+1)$-intersect \mathbf{b}. Suppose $l \geq t+2$. Let $X=\left\{a_{1}, \ldots, a_{k}\right\}$ and $Y=\left\{b_{1}, \ldots, b_{k}\right\}$. Then $X \cap Y \neq \emptyset$. Let $z \in X \cap Y$. Then $z=a_{j}$ for some $j \in[k]$.

For any k-tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ of integers, $\overrightarrow{\mathbf{x}}$ denotes the k-tuple obtained by putting the entries of \mathbf{x} in increasing order, as in the proof of Lemma 2.2.

Suppose $a_{j}>2 k$. We have $k \geq l \geq t+2 \geq 3$. Let $h \in[k] \backslash\{j\}$. Let $H=$ $\left\{i \in \mathbb{N}: a_{j}-i \in Y \backslash\left\{a_{j}\right\}\right.$ or $\left.a_{h}+i \in Y\right\}, I=\left\{i \in \mathbb{N}: a_{j}-i \in Y \backslash\left\{a_{j}\right\}\right\}$, and $J=\left\{i \in \mathbb{N}: a_{h}+i \in Y\right\}$. Since $H=I \cup J,|H| \leq|I|+|J| \leq\left|Y \backslash\left\{a_{j}\right\}\right|+|Y| \leq 2 k-1$. Thus, there exists $i \in[2 k]$ such that $i \notin H$, meaning that $a_{j}-i \notin Y \backslash\left\{a_{j}\right\}$ (so $\left.a_{j}-i \notin Y\right)$ and $a_{h}+i \notin Y$. Let $c_{j}=a_{j}-i, c_{h}=a_{h}+i$, and $c_{r}=a_{r}$ for each $r \in[k] \backslash\{j, h\}$. Let $\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right)$. Since $c_{j}>0$ and $\sum_{r=1}^{k} c_{r}=\sum_{r=1}^{k} a_{r}=n$, we have $\overrightarrow{\mathbf{c}} \in P_{n, k}$. Let $B=A \cup\{\overrightarrow{\mathbf{c}}\}$. Since A is $(t+2)$-intersecting, B is a t-intersecting subset of $P_{n, k}$. Since $a_{j} \in Y, c_{j}, c_{h} \notin Y$, and \mathbf{a} does not $(l+1)$-intersect $\mathbf{b}, \overrightarrow{\mathbf{c}}$ does not l-intersect \mathbf{b}. Thus, $\overrightarrow{\mathbf{c}} \notin A$ as A is l-intersecting. Thus, we have $A \subsetneq B$, which contradicts the assumption that A is a maximal t-intersecting subset of $P_{n, k}$.

Therefore, $a_{j} \leq 2 k$. Since $n>2 k^{2}, a_{j}<n / k$. Since $\sum_{r=1}^{k} a_{r}=n$, there exists $h \in[k] \backslash\{j\}$ such that $a_{h} \geq n / k$. Thus, $a_{h}>2 k$. Let $H=\left\{i \in \mathbb{N}: a_{j}+i \in\right.$ $Y \backslash\left\{a_{j}\right\}$ or $\left.a_{h}-i \in Y\right\}, I=\left\{i \in \mathbb{N}: a_{j}+i \in Y \backslash\left\{a_{j}\right\}\right\}$, and $J=\left\{i \in \mathbb{N}: a_{h}-i \in Y\right\}$. Since $H=I \cup J,|H| \leq|I|+|J| \leq 2 k-1$. Thus, there exists $i \in[2 k]$ such that $a_{j}+i \notin Y \backslash\left\{a_{j}\right\}$ (so $a_{j}+i \notin Y$) and $a_{h}-i \notin Y$. Let $c_{j}=a_{j}+i, c_{h}=a_{h}-i$, and $c_{r}=a_{r}$ for each $r \in[k] \backslash\{j, h\}$. Let $\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right)$. Let $B=A \cup\{\overrightarrow{\mathbf{c}}\}$. As above, we obtain that B is a t-intersecting subset of $P_{n, k}$ with $A \subsetneq B$, a contradiction.

Therefore, $l<t+2$, and hence the result.
A closer attention to detail could improve the condition on n in the lemma above, but this alone would not strengthen Theorem 1.8. We now have all the tools needed for the proof of the theorem.

Proof of Theorem 1.8. Let $k \geq t+2$ and $n \geq 3 t k^{5}$. Let $c_{t}=\frac{8}{7}(t+1)$. Then $n \geq c_{t} k^{5}$.

Let A be a largest t-intersecting subset of $P_{n, k}$. Clearly, $A \neq \emptyset$, so there exists $l \in[k] \backslash[t-1]$ such that A is l-intersecting and not $(l+1)$-intersecting. Thus, A is a largest l-intersecting subset of $P_{n, k}$. Let $\mathcal{A}=\{f(\mathbf{a}): \mathbf{a} \in A\}$. Clearly, $|\mathcal{A}|=|A|$ (since f is a bijection) and \mathcal{A} is k-uniform. By Remark 1.10, \mathcal{A} is a largest l-intersecting
subfamily of $\mathcal{P}_{n, k}$, and \mathcal{A} is not $(l+1)$-intersecting. By Lemma 3.3, $l \in\{t, t+1\}$. By Lemma 3.2, $\tau\left(\mathcal{P}_{n, k}, i\right)=\left|\mathcal{P}_{n, k}\left\langle T_{i}\right\rangle\right|=p_{n-i, k-i}$ for each $i \in[k-1]$.

Suppose that \mathcal{A} is a non-trivial l-intersecting family. Then $|\mathcal{A}|>1$. As explained in Remark 1.9, the non-empty l-intersecting subsets of $P_{n, l+1}$ are the 1-element subsets, and hence the non-empty l-intersecting subfamilies of $\mathcal{P}_{n, l+1}$ are the subfamilies of size 1. Trivially, the same holds for l-intersecting subfamilies of $\mathcal{P}_{n, l}$. Since $\mathcal{A} \subseteq \mathcal{P}_{n, k}$ and $|\mathcal{A}|>1$, it follows that $k \geq l+2$.

Let $m=\max \{l, k-l\}$. For each $i \in[m]$, let

$$
s_{i}=\binom{l}{i}\binom{k-l}{i}^{2} \tau\left(\mathcal{P}_{n, k}, l+i\right)
$$

By Lemma 3.1, $|\mathcal{A}| \leq k \tau\left(\mathcal{P}_{n, k}, l+1\right)+\sum_{i=1}^{l} s_{i}$. Clearly, $\tau\left(\mathcal{P}_{n, k}, l+i\right) \neq 0$ if and only if $i \leq k-l$. Thus,

$$
\begin{equation*}
|\mathcal{A}| \leq k \tau\left(\mathcal{P}_{n, k}, l+1\right)+\sum_{i=1}^{k-l} s_{i}=k p_{n-l-1, k-l-1}+s_{k-l}+\sum_{i=1}^{k-l-1} s_{i} . \tag{2}
\end{equation*}
$$

Consider any $i \in[k-l-1]$. Suppose $i \leq k-l-2$. If $i \geq l$, then $s_{i+1}=0$. Suppose $i<l$. We have

$$
s_{i+1}=\frac{(l-i)(k-l-i)^{2} p_{n-l-i-1, k-l-i-1}}{(i+1)^{3} p_{n-l-i, k-l-i}} s_{i} .
$$

Since $n-l-i \geq c_{t} k^{5}-l-i>c_{t} k^{2}(k-l-i)^{3}>(l-i)(k-l-i)^{2}(k-l-i)^{3}$, we have $p_{n-l-i, k-l-i}>(l-i)(k-l-i)^{2} p_{n-l-i-1, k-l-i-1}$ by Lemma 2.2. Thus, $s_{i+1}<$ $s_{i} /(i+1)^{3}$. Now suppose $i=k-l-1$. Then $\tau\left(\mathcal{P}_{n, k}, l+i+1\right)=\tau\left(\mathcal{P}_{n, k}, k\right)=1$ and $\tau\left(\mathcal{P}_{n, k}, l+i\right)=\tau\left(\mathcal{P}_{n, k}, k-1\right)=p_{n-(k-1), k-(k-1)}=p_{n-k+1,1}=1$. If $i \geq l$, then $s_{i+1}=0$. If $i<l$, then

$$
s_{i+1}=s_{k-l}=\frac{l-(k-l-1)}{(k-l)^{3}} s_{k-l-1}<\frac{l}{(k-l)^{3}} s_{k-l-1} .
$$

We have therefore shown that $s_{i+1} \leq s_{i} /(i+1)^{3}$ for any $i \in[k-l-2]$, and that $s_{k-l} \leq\left(l /(k-l)^{3}\right) s_{k-l-1}$. It follows that $s_{i} \leq s_{1} /(i!)^{3}$ for any $i \in[k-l-1]$. Thus,

$$
\begin{aligned}
s_{k-l} & \leq \frac{l}{(k-l)^{3}} \frac{s_{1}}{((k-l-1)!)^{3}}=\frac{l^{2}(k-l)^{2} p_{n-l-1, k-l-1}}{(k-l)^{3}((k-l-1)!)^{3}} \\
& =\frac{l^{2} p_{n-l-1, k-l-1}}{(k-l)((k-l-1)!)^{3}} \leq \frac{l^{2}}{2} p_{n-l-1, k-l-1},
\end{aligned}
$$

and $s_{i} \leq s_{1} /\left(2^{i-1}\right)^{3}=s_{1} / 8^{i-1}$ for any $i \in[k-l-1]$. We have

$$
\sum_{i=1}^{k-l-1} s_{i} \leq s_{1} \sum_{i=1}^{k-l-1}\left(\frac{1}{8}\right)^{i-1}<s_{1} \sum_{i=0}^{\infty}\left(\frac{1}{8}\right)^{i}=\frac{8}{7} s_{1}=\frac{8}{7} l(k-l)^{2} p_{n-l-1, k-l-1} .
$$

Thus, by (2), $|\mathcal{A}|<\left(k+\frac{l^{2}}{2}+\frac{8}{7} l(k-l)^{2}\right) p_{n-l-1, k-l-1}$. Since $l \in\{t, t+1\}$ and $k \geq l+2$, we have

$$
k+\frac{l^{2}}{2}+\frac{8}{7} l(k-l)^{2}=k+\frac{8}{7} l k^{2}-\frac{8}{7} l^{2}\left(2 k-l-\frac{7}{16}\right)<k+c_{t} k^{2}-\frac{8}{7} l^{2} k<c_{t} k^{2} .
$$

By Lemma 2.2, $p_{n-l, k-l}>c_{t} k^{2} p_{n-l-1, k-l-1}$ as $n-l \geq c_{t} k^{5}-l>c_{t} k^{2}(k-l)^{3}$. Thus, we have $|\mathcal{A}|<p_{n-l, k-l}=\tau\left(\mathcal{P}_{n, k}, l\right)$, which is a contradiction as \mathcal{A} is a largest l intersecting subfamily of $\mathcal{P}_{n, k}$.

Therefore, \mathcal{A} is a trivial l-intersecting family. Consequently, \mathcal{A} is a largest l-star of $\mathcal{P}_{n, k}$. By Lemma 3.2, $|\mathcal{A}|=\left|\mathcal{P}_{n, k}\left\langle T_{l}\right\rangle\right|$. Since $n-t \geq c_{t} k^{5}-t>(k-t)^{3}, p_{n-t, k-t}>$ $p_{n-(t+1), k-(t+1)}$ by Lemma 2.2. Since $l \in\{t, t+1\}$ and $|A|=|\mathcal{A}|=\left|\mathcal{P}_{n, k}\left\langle T_{l}\right\rangle\right|=$ $p_{n-l, k-l} \leq p_{n-t, k-t}=\left|P_{n, k}(t)\right| \leq|A|$, it follows that $l=t$ and $|A|=\left|P_{n, k}(t)\right|$. By Lemma 3.2, $A=P_{n, k}(t)$ if $k \geq t+3$.

Acknowledgements

The author wishes to thank the anonymous referees for checking the paper carefully and providing remarks that led to an improvement in the presentation.

References

[1] R. Ahlswede and L.H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), 125-136.
[2] G.E. Andrews and K. Eriksson, Integer partitions, Cambridge Univ. Press, Cambridge, 2004.
[3] B. Bollobás, Combinatorics, Cambridge Univ. Press, Cambridge, 1986.
[4] P. Borg, Extremal t-intersecting sub-families of hereditary families, J. London Math. Soc. 79 (2009), 167-185.
[5] P. Borg, Intersecting families of sets and permutations: a survey, in: A.R. Baswell (Ed.), Advances in Mathematics Research, Vol. 16, Nova Science Publishers, Inc., 2011, pp. 283-299.
[6] P. Borg, Strongly intersecting integer partitions, Discrete Math. 336 (2014), 80-84.
[7] P. Borg, The maximum sum and the maximum product of sizes of crossintersecting families, European J. Combin. 35 (2014), 117-130.
[8] M. Deza and P. Frankl, The Erdős-Ko-Rado theorem-22 years later, SIAM J. Algebraic Discrete Methods 4 (1983), 419-431.
[9] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961), 313-320.
[10] P. Frankl, Extremal set systems, in: R.L. Graham, M. Grötschel and L. Lovász (Eds.), Handbook of Combinatorics, Vol. 2, Elsevier, Amsterdam, 1995, pp. 1293-1329.
[11] P. Frankl, The Erdős-Ko-Rado Theorem is true for $n=c k t$, in: Proc. Fifth Hung. Comb. Coll., Coll. Math. Soc. J. Bolyai, Vol. 18, North-Holland, Amsterdam, 1978, pp. 365-375.
[12] P. Frankl, The shifting technique in extremal set theory, in: C. Whitehead (Ed.), Combinatorial Surveys, Cambridge Univ. Press, London/New York, 1987, pp. 81-110.
[13] P. Frankl and Z. Füredi, Beyond the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 56 (1991), 182-194.
[14] P. Frankl and N. Tokushige, Invitation to intersection problems for finite sets, J. Combin. Theory Ser. A 144 (2016), 157-211.
[15] F. Holroyd, C. Spencer and J. Talbot, Compression and Erdős-Ko-Rado graphs, Discrete Math. 293 (2005), 155-164.
[16] F. Holroyd and J. Talbot, Graphs with the Erdős-Ko-Rado property, Discrete Math. 293 (2005), 165-176.
[17] G. Kalai, Algebraic shifting, in: T. Hibi (Ed.), Adv. Stud. Pure Math., Vol. 33, Math. Soc. Japan, Tokyo, 2002, pp. 121-163.
[18] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329-337.
[19] J. Wang and H. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory Ser. A 118 (2011), 455-462.
[20] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984), 247-257.

