A generalization of the Erdős-Ko-Rado theorem

GÁbor Hegedứs
Antal Bejczy Center For Intelligent Robotics Kiscelli utca 82 Budapest, H-1032
Hungary
hegedus.gabor@nik.uni-obuda.hu

Abstract

Our main result is a new upper bound for the size of k-uniform, L intersecting families of sets, where L contains only positive integers. We characterize extremal families in this setting. Our proof is based on the Ray-Chaudhuri-Wilson Theorem [Osaka J. Math. 12 (1975),737-744]. As an application, we give a new proof for the Erdős-Ko-Rado Theorem, improve Fisher's inequality in the uniform case and give a uniform version of the Frankl-Füredi conjecture.

1 Introduction

First we introduce some notation.
Let $[n]$ stand for the set $\{1,2, \ldots, n\}$. We denote the family of all subsets of $[n]$ by $2^{[n]}$. For k an integer with $0 \leq k \leq n$ we denote by $\binom{[n]}{k}$ the family of all k element subsets of $[n]$. We say that a family \mathcal{F} of subsets of $[n]$ is k-uniform if $|F|=k$ for each $F \in \mathcal{F}$.

Bose proved the following result in [1].
Theorem 1.1 Let $\lambda>0$ be a positive integer. Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be a k-uniform family of subsets of $[n]$ such that $\left|F_{i} \cap F_{j}\right|=\lambda$ for each $1 \leq i, j \leq m, i \neq j$. Then $m \leq n$.

Majumdar generalized this result in [8] and proved the following nonuniform version of Theorem 1.1.

Theorem 1.2 Let $\lambda>0$ be a positive integer. Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be a family of subsets of $[n]$ such that $\left|F_{i} \cap F_{j}\right|=\lambda$ for each $1 \leq i, j \leq m, i \neq j$. Then $m \leq n$.

Frankl and Füredi conjectured in [6], and Ramanan proved in [9], the following statement.

Theorem 1.3 Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be a family of subsets of $[n]$ such that $1 \leq$ $\left|F_{i} \cap F_{j}\right| \leq s$ for each $1 \leq i, j \leq m, i \neq j$. Then

$$
m \leq \sum_{i=0}^{s}\binom{n-1}{i}
$$

Later Snevily conjectured the following statement in his doctoral dissertation (see [12]). Finally he proved this result in [11].

Theorem 1.4 Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be a family of subsets of $[n]$. Let $L=\left\{\ell_{1}, \ldots\right.$, $\left.\ell_{s}\right\}$ be a collection of s positive integers. If $\left|F_{i} \cap F_{j}\right| \in L$ for each $1 \leq i, j \leq m, i \neq j$, then

$$
m \leq \sum_{i=0}^{s}\binom{n-1}{i}
$$

A family \mathcal{F} is said to be t-intersecting if $\left|F \cap F^{\prime}\right| \geq t$ whenever $F, F^{\prime} \in \mathcal{F}$. In particular, \mathcal{F} is an intersecting family if $F \cap F^{\prime} \neq \emptyset$ whenever $F, F^{\prime} \in \mathcal{F}$.

Erdős, Ko and Rado proved the following well-known result in [5]:
Theorem 1.5 Let n, k, t be integers with $0<t<k<n$. Suppose \mathcal{F} is a t intersecting, k-uniform family of subsets of $[n]$. Then for $n>n_{0}(k, t)$,

$$
|\mathcal{F}| \leq\binom{ n-t}{k-t}
$$

Further, $|\mathcal{F}|=\binom{n-t}{k-t}$ if and only if for some $T \in\binom{[n]}{t}$ we have

$$
\mathcal{F}=\left\{F \in\binom{[n]}{k}: T \subseteq F\right\} .
$$

Let L be a set of nonnegative integers. A family \mathcal{F} is L-intersecting if $|E \cap F| \in$ L for every pair E, F of distinct members of \mathcal{F}. The following theorem gives a remarkable upper bound for the size of a k-uniform L-intersecting family.

Theorem 1.6 (Ray-Chaudhuri-Wilson [10]) Let s, k, n be positive integers such that $0<s \leq k \leq n$. Let L be a set of s nonnegative integers and $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ an L-intersecting, k-uniform family of subsets of $[n]$. Then

$$
m \leq\binom{ n}{s}
$$

Erdős, Deza and Frankl improved Theorem 1.6 in [4]. They used the theory of Δ-systems in their proof.

Theorem 1.7 Let s, k, n be positive integers satisfying $0<s \leq k \leq n$. Let L be a set of s nonnegative integers and let $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be an L-intersecting, k-uniform family of subsets of $[n]$. Then, for $n>n_{0}(k, L)$,

$$
m \leq \prod_{i=1}^{s} \frac{n-\ell_{i}}{k-\ell_{i}}
$$

Barg and Musin gave an improved version of Theorem 1.6 in [2].
Theorem 1.8 Let L be a set of s nonnegative integers and let $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be an L-intersecting, k-uniform family of subsets of $[n]$. Suppose that

$$
\frac{s\left(k^{2}-(s-1)\right)(2 k-n / 2)}{n-2(s-1)} \leq \sum_{i=1}^{s} \ell_{i} .
$$

Then

$$
m \leq\binom{ n}{s}-\binom{n}{s-1} \frac{n-2 s+3}{n-s+2}
$$

First we prove a special case of our main result.
Proposition 1.9 Let s, k, n be positive integers satisfying $0<s \leq k \leq n$. Let $L=\left\{\ell_{1}, \ldots, \ell_{s}\right\}$ be a set of s positive integers such that $0<\ell_{1}<\ldots<\ell_{s}$. Suppose that $n \geq\binom{ k^{2}}{\ell_{1}+1} s+\ell_{1}$. Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be an L-intersecting, k-uniform family of subsets of $[n]$. Suppose that $\bigcap \mathcal{F}=\emptyset$. Then

$$
m \leq\binom{ n-\ell_{1}}{s}
$$

We now state our main results.
Theorem 1.10 Let s, k, n be positive integers satisfying $0<s \leq k \leq n$. Let $L=$ $\left\{\ell_{1}, \ldots, \ell_{s}\right\}$ be a set of s positive integers such that $0<\ell_{1}<\ldots<\ell_{s}$. Suppose that $n \geq\binom{ k^{2}}{\ell_{1}+1} s+\ell_{1}$. Let $\mathcal{G}=\left\{G_{1}, \ldots, G_{m}\right\}$ be an L-intersecting, k-uniform family of subsets of $[n]$. Then

$$
m \leq\binom{ n-\ell_{1}}{s}
$$

Further if $n>\binom{k^{2}}{\ell_{1}+1} s+\ell_{1}$ and

$$
|\mathcal{G}|=\binom{n-\ell_{1}}{s}
$$

then there exists a $T \in\binom{[n]}{\ell_{1}}$ subset such that $T \subseteq G$ for each $G \in \mathcal{G}$.

Clearly Theorem 1.10 implies the Ray-Chaudhuri-Wilson Theorem when n is sufficiently large.

In the proof of Theorem 1.10 we combine simple combinatorial arguments with the Ray-Chaudhuri-Wilson Theorem 1.6. Our proof was inspired by the proof of Proposition 8.8 in [7].

We give here some immediate consequences of Theorem 1.10. First we describe a uniform version of Theorem 1.3.

Corollary 1.11 Let s, k, n be positive integers such that $0<s<k \leq n$. Let $L=$ $\{1,2, \ldots, s\}$. Suppose that $n>\binom{k^{2}}{2} s$. Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be an L-intersecting, k-uniform family of subsets of $[n]$. Then

$$
m \leq\binom{ n-1}{s}
$$

Further if $n>\binom{k^{2}}{2} s+1$ and

$$
|\mathcal{F}|=\binom{n-1}{s}
$$

then $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$.
The following result is the uniform version of Theorem 1.1.
Corollary 1.12 Let $\lambda>0$ be a positive integer. Suppose that $n \geq\binom{ k^{2}}{\lambda+1}+\lambda$. Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be a k-uniform family of subsets of $[n]$ such that $\left|F_{i} \cap F_{j}\right|=\lambda$ for each $1 \leq i, j \leq m, i \neq j$. Then

$$
m \leq n-\lambda
$$

Further if $n>\binom{k^{2}}{\lambda+1}+\lambda$ and

$$
|\mathcal{F}|=n-\lambda,
$$

then there exists a $T \in\binom{[n]}{\lambda}$ subset such that $T \subseteq F$ for each $F \in \mathcal{F}$.

2 Proof of our results

The following Lemma is a well-known Helly-type result (see e.g. [3]).
Lemma 2.1 If each family of at most $k+1$ members of $a k$-uniform set system intersect, then all members intersect.

In our proof we use the following lemma.

Lemma 2.2 Let ℓ_{1} be a positive integer. Let \mathcal{H} be a family of subsets of [n]. Suppose that $\bigcap H=\emptyset$. Let $F \subseteq[n], F \notin \mathcal{H}$ be a subset such that $|F \cap H| \geq \ell_{1}$ for each $H \in \mathcal{H}$
$H \in \mathcal{H}$. Let $Q:=\bigcup_{H \in \mathcal{H}} H$. Then

$$
|Q \cap F| \geq \ell_{1}+1
$$

Proof. Since $|F \cap H| \geq \ell_{1}$ for each $H \in \mathcal{H}$, thus $|Q \cap F| \geq \ell_{1}$. Indirectly, suppose that $|Q \cap F|=\ell_{1}$. Let $U:=Q \cap F$. Then

$$
U=Q \cap F=\left(\bigcup_{H \in \mathcal{H}} H\right) \cap F=\bigcup_{H \in \mathcal{H}}(H \cap F) .
$$

Hence $H \cap F \subseteq U$ for each $H \in \mathcal{H}$. Since $|U|=\ell_{1}$ and $|H \cap F| \geq \ell_{1}$ for each $H \in \mathcal{H}$, thus $U=H \cap F$ for each $H \in \mathcal{H}$. Hence $U \subseteq \bigcap_{\mathcal{H}} H$, which is a contradiction with $\bigcap_{H \in \mathcal{H}} H=\emptyset$.

Lemma 2.3 Let \mathcal{H} be a family of subsets of $[n]$. Suppose that $t:=|\mathcal{H}| \geq 2$ and \mathcal{H} is a k-uniform, intersecting family. Then

$$
\begin{equation*}
\left|\bigcup_{H \in \mathcal{H}} H\right| \leq k+(t-1)(k-1) \tag{1}
\end{equation*}
$$

Proof. We use induction on t. The inequality (1) is trivially true for $t=2$.
Let $t \geq 3$. Suppose that the inequality (1) is true for $t-1$. Let \mathcal{H} be an arbitrary k-uniform intersecting family such that $|\mathcal{H}|=t$. Let $\mathcal{G} \subseteq \mathcal{H}$ be a fixed subset of \mathcal{H} such that $|\mathcal{G}|=t-1$. Clearly \mathcal{G} is intersecting and k-uniform. It follows from the induction hypothesis that

$$
\left|\bigcup_{G \in \mathcal{G}} G\right| \leq k+(t-2)(k-1)
$$

Let $\{S\}=\mathcal{H} \backslash \mathcal{G}$. Then

$$
\bigcup_{H \in \mathcal{H}} H=\left(\bigcup_{G \in \mathcal{G}} G\right) \cup S,
$$

thus

$$
\left|\bigcup_{H \in \mathcal{H}} H\right|=\left|\bigcup_{G \in \mathcal{G}} G\right|+|S|-\left|\left(\bigcup_{G \in \mathcal{G}} G\right) \cap S\right| \leq k+(t-2)(k-1)+k-1=k+(t-1)(k-1)
$$

Proof of Proposition 1.9:

Consider the special case when $\bigcap_{F \in \mathcal{F}} F=\emptyset$. By Lemma 2.1 there exists a $\mathcal{G} \subseteq \mathcal{F}$ subset such that $\bigcap_{G \in \mathcal{G}} G=\emptyset$ and $|\mathcal{G}|=k+1$. Let

$$
M:=\bigcup_{G \in \mathcal{G}} G
$$

It follows from Lemma 2.3 that $|M| \leq k+k(k-1)=k^{2}$. On the other hand it is easy to see that $|M \cap F| \geq \ell_{1}+1$ for each $F \in \mathcal{F}$ by Lemma 2.2.

Let T be a fixed subset of M such that $|T|=\ell_{1}+1$. Define

$$
\mathcal{F}(T):=\{F \in \mathcal{F}: T \subseteq M \cap F\}
$$

Let $L^{\prime}:=\left\{\ell_{2}, \ldots, \ell_{s}\right\}$. Clearly $\left|L^{\prime}\right|=s-1$. Then $\mathcal{F}(T)$ is an L^{\prime}-intersecting, k uniform family, because \mathcal{F} is an L-intersecting family and $|M \cap F| \geq \ell_{1}+1$ for each $F \in \mathcal{F}$.

Proposition 2.4

$$
\mathcal{F}=\bigcup_{T \subseteq M,|T|=\ell_{1}+1} \mathcal{F}(T)
$$

Proof. Let $\mathcal{M}:=\underset{T \subseteq M,|T|=\ell_{1}+1}{ } \mathcal{F}(T)$. Clearly $\mathcal{M} \subseteq \mathcal{F}$. We prove that $\mathcal{F} \subseteq \mathcal{M}$.
Let $F \in \mathcal{F}$ be an arbitrary subset. Firstly, if $F \in \mathcal{G}$, then $F \cap M=F$, because $M=\bigcup_{G \in \mathcal{G}} G$. Let T be a fixed subset of F such that $|T|=\ell_{1}+1$. Then $F \in \mathcal{F}(T)$. Secondly, suppose that $F \notin \mathcal{G}$. Then $|F \cap M| \geq \ell_{1}+1$ by Lemma 2.2. Let T be a fixed subset of $F \cap M$ such that $|T|=\ell_{1}+1$. Then $F \in \mathcal{F}(T)$ again.

Let T be a fixed, but arbitrary subset of M such that $|T|=\ell_{1}+1$. Consider the set system

$$
\mathcal{G}(T):=\{F \backslash T: F \in \mathcal{F}(T)\} .
$$

Clearly $|\mathcal{G}(T)|=|\mathcal{F}(T)|$. Let $\bar{L}:=\left\{\ell_{2}-\ell_{1}-1, \ldots, \ell_{s}-\ell_{1}-1\right\}$. Here $|\bar{L}|=s-1$. Since $\mathcal{F}(T)$ is an L^{\prime}-intersecting, k-uniform family, thus $\mathcal{G}(T)$ is an \bar{L}-intersecting, $\left(k-\ell_{1}-1\right)$-uniform family and $G \subseteq[n] \backslash T$ for each $G \in \mathcal{G}(T)$. Hence it follows from Theorem 1.6 that

$$
|\mathcal{F}(T)|=|\mathcal{G}(T)| \leq\binom{ n-\ell_{1}-1}{s-1}
$$

Finally Proposition 2.4 implies that

$$
|\mathcal{F}| \leq \sum_{T \subseteq M,|T|=\ell_{1}+1}|\mathcal{F}(T)| \leq\binom{ k^{2}}{\ell_{1}+1}\binom{n-\ell_{1}-1}{s-1}
$$

but

$$
\binom{n-\ell_{1}-1}{s-1}=\frac{s}{n-\ell_{1}}\binom{n-\ell_{1}}{s}
$$

hence

$$
|\mathcal{F}| \leq\binom{ k^{2}}{\ell_{1}+1} \frac{s}{n-\ell_{1}}\binom{n-\ell_{1}}{s} \leq\binom{ n-\ell_{1}}{s}
$$

because $n \geq\binom{ k^{2}}{\ell_{1}+1} s+\ell_{1}$.

Proof of Theorem 1.10:

First we handle the case when $\left|\bigcap_{G \in \mathcal{G}} G\right| \geq \ell_{1}$. Let T be a fixed subset of $\bigcap_{G \in \mathcal{G}} G$ such that $|T|=\ell_{1}$. Consider the set system

$$
\mathcal{K}:=\{G \backslash T: G \in \mathcal{G}\} .
$$

Obviously $|\mathcal{G}|=|\mathcal{K}|$. Let $L^{\prime}:=\left\{0, \ell_{2}-\ell_{1}, \ldots, \ell_{s}-\ell_{1}\right\}$. Then clearly \mathcal{K} is a $\left(k-\ell_{1}\right)$ uniform L^{\prime}-intersecting set system of subsets of $[n] \backslash T$. It follows immediately from Ray-Chaudhuri-Wilson Theorem 1.6 that

$$
|\mathcal{G}|=|\mathcal{K}| \leq\binom{ n-\ell_{1}}{s}
$$

Now suppose that $|\bigcap G|=t$, where $0<t<\ell_{1}$. Let T be a fixed subset of $G \in \mathcal{G}$
$\bigcap_{G \in \mathcal{G}} G$ such that $|T|=t$. Then consider the set system

$$
\mathcal{F}:=\{G \backslash T: G \in \mathcal{G}\} .
$$

Clearly $|\mathcal{F}|=|\mathcal{G}|$. Let $L^{\prime}:=\left\{\ell_{1}-t, \ell_{2}-t, \ldots, \ell_{s}-t\right\}$. Then clearly \mathcal{F} is a $(k-t)-$ uniform L^{\prime}-intersecting set system of subsets of $[n] \backslash T$. It follows from Proposition 1.9 that

$$
|\mathcal{G}|=|\mathcal{F}| \leq\binom{ n-t-\left(\ell_{1}-t\right)}{s}=\binom{n-\ell_{1}}{s}
$$

Finally suppose that $\bigcap_{G} G=\emptyset$. Then Proposition 1.9 gives us immediately that

$$
|\mathcal{G}| \leq\binom{ n-\ell_{1}}{s}
$$

Proof of Corollary 1.10:

It follows from the proof of Theorem 1.10 that if $|\mathcal{F}|=\binom{n-\ell_{1}}{s}$ and $n>\binom{k^{2}}{\ell_{1}+1} s+\ell_{1}$, then $\left|\bigcap_{F \in \mathcal{F}} F\right| \geq \ell_{1}$. Thus there exists a $T \in\binom{[n]}{\ell_{1}}$ such that $T \subseteq F$ for each $F \in \mathcal{F}$.

3 Remarks

Let $q \geq 2$ stand for a fixed prime power. Let $P G(2, q)$ denote the finite projective plane over the Galois field $G F(q)$. Denote by \mathcal{L} the set of all lines of $P G(2, q)$. Let $k:=q+1$. Then \mathcal{L} can be considered as a k-uniform family of subsets of the base set $\left[k^{2}-k+1\right]$. Clearly $|\mathcal{L}|=k$.

This example motivates our next conjecture.
Conjecture 1 Let $0<s \leq k \leq n$ be positive integers. Let $L=\left\{\ell_{1}, \ldots, \ell_{s}\right\}$ be a set of s positive integers such that $0<\ell_{1}<\cdots<\ell_{s}$. Suppose that $n>k^{2}-k+1$. Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be an L-intersecting, k-uniform family of subsets of $[n]$. Then

$$
m \leq\binom{ n-\ell_{1}}{s}
$$

Further, if

$$
|\mathcal{F}|=\binom{n-\ell_{1}}{s}
$$

References

[1] R. C. Bose, A note on Fisher's inequality for balanced incomplete block designs, Ann. Math. Stat. 20 (1949), 619-620.
[2] A. Barg and O. R. Musin, Bounds on sets with few distances, J. Combin. Theory Ser. A 118 (4) (2011), 1465-1474.
[3] B. Bollobás, On generalized graphs, Acta Math. Hung. 16(3) (1965), 447-452.
[4] M. Deza, P. Erdős and P. Frankl, Intersection properties of systems of finite sets, Proc. London Math. Soc. 3 (2) (1978), 369-384.
[5] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. 12 (1) (1961), 313-320.
[6] P. Frankl and Z. Füredi, Families of finite sets with missing intersections, Colloquia Mathematica Societatis János Bolyai 37 (1981), 305-320.
[7] S. Jukna, Extremal combinatorics: with applications in computer science, Springer Science and Business Mediar, 2011.
[8] K. N. Majumdar, On some theorems in combinatorics relating to incomplete block designs, Ann. Math. Stat. 24 (1953), 377-389.
[9] G. V. Ramanan, Proof of a conjecture of Frankl and Fúredi, J. Combin. Theory Ser. A $\mathbf{7 9}$ (1) (1997), 53-67.
[10] D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs, Osaka J. Math. 12 (3) (1975), 737-744.
[11] H. S. Snevily, A sharp bound for the number of sets that pairwise intersect at k positive values, Combinatorica 23 (3) (2003), 527-533.
[12] H. S. Snevily, Combinatorics of finite sets, Doctoral dissertation, University of Illinois at Urbana-Champaign, 1991.

