A generalization of the Erdős-Ko-Rado theorem

Gábor Hegedűs

Antal Bejczy Center For Intelligent Robotics Kiscelli utca 82 Budapest, H-1032 Hungary hegedus.gabor@nik.uni-obuda.hu

Abstract

Our main result is a new upper bound for the size of k-uniform, Lintersecting families of sets, where L contains only positive integers. We characterize extremal families in this setting. Our proof is based on the Ray-Chaudhuri–Wilson Theorem [Osaka J. Math. 12 (1975),737–744]. As an application, we give a new proof for the Erdős-Ko-Rado Theorem, improve Fisher's inequality in the uniform case and give a uniform version of the Frankl-Füredi conjecture.

1 Introduction

First we introduce some notation.

Let [n] stand for the set $\{1, 2, ..., n\}$. We denote the family of all subsets of [n] by $2^{[n]}$. For k an integer with $0 \le k \le n$ we denote by $\binom{[n]}{k}$ the family of all k element subsets of [n]. We say that a family \mathcal{F} of subsets of [n] is k-uniform if |F| = k for each $F \in \mathcal{F}$.

Bose proved the following result in [1].

Theorem 1.1 Let $\lambda > 0$ be a positive integer. Let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be a k-uniform family of subsets of [n] such that $|F_i \cap F_j| = \lambda$ for each $1 \leq i, j \leq m, i \neq j$. Then $m \leq n$.

Majumdar generalized this result in [8] and proved the following nonuniform version of Theorem 1.1.

Theorem 1.2 Let $\lambda > 0$ be a positive integer. Let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be a family of subsets of [n] such that $|F_i \cap F_j| = \lambda$ for each $1 \leq i, j \leq m, i \neq j$. Then $m \leq n$.

Frankl and Füredi conjectured in [6], and Ramanan proved in [9], the following statement.

Theorem 1.3 Let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be a family of subsets of [n] such that $1 \leq |F_i \cap F_j| \leq s$ for each $1 \leq i, j \leq m, i \neq j$. Then

$$m \le \sum_{i=0}^{s} \binom{n-1}{i}.$$

Later Snevily conjectured the following statement in his doctoral dissertation (see [12]). Finally he proved this result in [11].

Theorem 1.4 Let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be a family of subsets of [n]. Let $L = \{\ell_1, \ldots, \ell_s\}$ be a collection of s positive integers. If $|F_i \cap F_j| \in L$ for each $1 \leq i, j \leq m, i \neq j$, then

$$m \le \sum_{i=0}^{s} \binom{n-1}{i}.$$

A family \mathcal{F} is said to be *t*-intersecting if $|F \cap F'| \ge t$ whenever $F, F' \in \mathcal{F}$. In particular, \mathcal{F} is an intersecting family if $F \cap F' \neq \emptyset$ whenever $F, F' \in \mathcal{F}$.

Erdős, Ko and Rado proved the following well-known result in [5]:

Theorem 1.5 Let n, k, t be integers with 0 < t < k < n. Suppose \mathcal{F} is a t-intersecting, k-uniform family of subsets of [n]. Then for $n > n_0(k, t)$,

$$|\mathcal{F}| \le \binom{n-t}{k-t}.$$

Further, $|\mathcal{F}| = \binom{n-t}{k-t}$ if and only if for some $T \in \binom{[n]}{t}$ we have

$$\mathcal{F} = \{F \in \binom{[n]}{k} : T \subseteq F\}.$$

Let L be a set of nonnegative integers. A family \mathcal{F} is L-intersecting if $|E \cap F| \in L$ for every pair E, F of distinct members of \mathcal{F} . The following theorem gives a remarkable upper bound for the size of a k-uniform L-intersecting family.

Theorem 1.6 (Ray-Chaudhuri–Wilson [10]) Let s, k, n be positive integers such that $0 < s \le k \le n$. Let L be a set of s nonnegative integers and $\mathcal{F} = \{F_1, \ldots, F_m\}$ an L-intersecting, k-uniform family of subsets of [n]. Then

$$m \leq \binom{n}{s}.$$

Erdős, Deza and Frankl improved Theorem 1.6 in [4]. They used the theory of Δ -systems in their proof.

Theorem 1.7 Let s, k, n be positive integers satisfying $0 < s \le k \le n$. Let L be a set of s nonnegative integers and let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be an L-intersecting, k-uniform family of subsets of [n]. Then, for $n > n_0(k, L)$,

$$m \le \prod_{i=1}^{s} \frac{n - \ell_i}{k - \ell_i}.$$

Barg and Musin gave an improved version of Theorem 1.6 in [2].

Theorem 1.8 Let L be a set of s nonnegative integers and let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be an L-intersecting, k-uniform family of subsets of [n]. Suppose that

$$\frac{s(k^2 - (s-1))(2k - n/2)}{n - 2(s-1)} \leq \sum_{i=1}^{s} \ell_i$$

Then

$$m \leq \binom{n}{s} - \binom{n}{s-1} \frac{n-2s+3}{n-s+2}$$

First we prove a special case of our main result.

Proposition 1.9 Let s, k, n be positive integers satisfying $0 < s \leq k \leq n$. Let $L = \{\ell_1, \ldots, \ell_s\}$ be a set of s positive integers such that $0 < \ell_1 < \ldots < \ell_s$. Suppose that $n \geq \binom{k^2}{\ell_{l+1}}s + \ell_1$. Let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be an L-intersecting, k-uniform family of subsets of [n]. Suppose that $\bigcap_{E \in \mathcal{F}} \mathcal{F} = \emptyset$. Then

$$m \le \binom{n-\ell_1}{s}.$$

We now state our main results.

Theorem 1.10 Let s, k, n be positive integers satisfying $0 < s \le k \le n$. Let $L = \{\ell_1, \ldots, \ell_s\}$ be a set of s positive integers such that $0 < \ell_1 < \ldots < \ell_s$. Suppose that $n \ge \binom{k^2}{\ell_{l+1}}s + \ell_1$. Let $\mathcal{G} = \{G_1, \ldots, G_m\}$ be an L-intersecting, k-uniform family of subsets of [n]. Then

$$m \le \binom{n-\ell_1}{s}.$$

Further if $n > \binom{k^2}{\ell_1+1}s + \ell_1$ and

$$|\mathcal{G}| = \binom{n-\ell_1}{s},$$

then there exists a $T \in {[n] \choose \ell_1}$ subset such that $T \subseteq G$ for each $G \in \mathcal{G}$.

Clearly Theorem 1.10 implies the Ray-Chaudhuri–Wilson Theorem when n is sufficiently large.

In the proof of Theorem 1.10 we combine simple combinatorial arguments with the Ray-Chaudhuri–Wilson Theorem 1.6. Our proof was inspired by the proof of Proposition 8.8 in [7].

We give here some immediate consequences of Theorem 1.10. First we describe a uniform version of Theorem 1.3.

Corollary 1.11 Let s, k, n be positive integers such that $0 < s < k \le n$. Let $L = \{1, 2, \ldots, s\}$. Suppose that $n > {\binom{k^2}{2}}s$. Let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be an L-intersecting, k-uniform family of subsets of [n]. Then

$$m \le \binom{n-1}{s}.$$

Further if $n > \binom{k^2}{2}s + 1$ and

$$|\mathcal{F}| = \binom{n-1}{s},$$

then $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$.

The following result is the uniform version of Theorem 1.1.

Corollary 1.12 Let $\lambda > 0$ be a positive integer. Suppose that $n \ge {\binom{k^2}{\lambda+1}} + \lambda$. Let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be a k-uniform family of subsets of [n] such that $|F_i \cap F_j| = \lambda$ for each $1 \le i, j \le m, i \ne j$. Then

 $m \le n - \lambda.$

 $|\mathcal{F}| = n - \lambda,$

Further if $n > \binom{k^2}{\lambda+1} + \lambda$ and

then there exists a $T \in {[n] \choose \lambda}$ subset such that $T \subseteq F$ for each $F \in \mathcal{F}$.

2 Proof of our results

The following Lemma is a well-known Helly-type result (see e.g. [3]).

Lemma 2.1 If each family of at most k + 1 members of a k-uniform set system intersect, then all members intersect.

In our proof we use the following lemma.

Lemma 2.2 Let ℓ_1 be a positive integer. Let \mathcal{H} be a family of subsets of [n]. Suppose that $\bigcap_{H \in \mathcal{H}} H = \emptyset$. Let $F \subseteq [n]$, $F \notin \mathcal{H}$ be a subset such that $|F \cap H| \ge \ell_1$ for each $H \in \mathcal{H}$. Let $Q := \bigcup_{H \in \mathcal{H}} H$. Then

$$|Q \cap F| \ge \ell_1 + 1.$$

Proof. Since $|F \cap H| \ge \ell_1$ for each $H \in \mathcal{H}$, thus $|Q \cap F| \ge \ell_1$. Indirectly, suppose that $|Q \cap F| = \ell_1$. Let $U := Q \cap F$. Then

$$U = Q \cap F = (\bigcup_{H \in \mathcal{H}} H) \cap F = \bigcup_{H \in \mathcal{H}} (H \cap F).$$

Hence $H \cap F \subseteq U$ for each $H \in \mathcal{H}$. Since $|U| = \ell_1$ and $|H \cap F| \ge \ell_1$ for each $H \in \mathcal{H}$, thus $U = H \cap F$ for each $H \in \mathcal{H}$. Hence $U \subseteq \bigcap_{H \in \mathcal{H}} H$, which is a contradiction with

$$\bigcap_{H\in\mathcal{H}}H=\emptyset.$$

Lemma 2.3 Let \mathcal{H} be a family of subsets of [n]. Suppose that $t := |\mathcal{H}| \ge 2$ and \mathcal{H} is a k-uniform, intersecting family. Then

$$|\bigcup_{H \in \mathcal{H}} H| \le k + (t-1)(k-1).$$
(1)

Proof. We use induction on t. The inequality (1) is trivially true for t = 2.

Let $t \geq 3$. Suppose that the inequality (1) is true for t-1. Let \mathcal{H} be an arbitrary k-uniform intersecting family such that $|\mathcal{H}| = t$. Let $\mathcal{G} \subseteq \mathcal{H}$ be a fixed subset of \mathcal{H} such that $|\mathcal{G}| = t - 1$. Clearly \mathcal{G} is intersecting and k-uniform. It follows from the induction hypothesis that

$$|\bigcup_{G\in\mathcal{G}}G| \le k + (t-2)(k-1).$$

Let $\{S\} = \mathcal{H} \setminus \mathcal{G}$. Then

$$\bigcup_{H \in \mathcal{H}} H = (\bigcup_{G \in \mathcal{G}} G) \cup S,$$

thus

$$|\bigcup_{H\in\mathcal{H}}H| = |\bigcup_{G\in\mathcal{G}}G| + |S| - |(\bigcup_{G\in\mathcal{G}}G)\cap S| \le k + (t-2)(k-1) + k - 1 = k + (t-1)(k-1).$$

Proof of Proposition 1.9:

Consider the special case when $\bigcap_{F \in \mathcal{F}} F = \emptyset$. By Lemma 2.1 there exists a $\mathcal{G} \subseteq \mathcal{F}$ subset such that $\bigcap_{G \in \mathcal{G}} G = \emptyset$ and $|\mathcal{G}| = k + 1$. Let

$$M := \bigcup_{G \in \mathcal{G}} G.$$

It follows from Lemma 2.3 that $|M| \leq k + k(k-1) = k^2$. On the other hand it is easy to see that $|M \cap F| \geq \ell_1 + 1$ for each $F \in \mathcal{F}$ by Lemma 2.2.

Let T be a fixed subset of M such that $|T| = \ell_1 + 1$. Define

$$\mathcal{F}(T) := \{ F \in \mathcal{F} : T \subseteq M \cap F \}.$$

Let $L' := \{\ell_2, \ldots, \ell_s\}$. Clearly |L'| = s - 1. Then $\mathcal{F}(T)$ is an L'-intersecting, kuniform family, because \mathcal{F} is an L-intersecting family and $|M \cap F| \ge \ell_1 + 1$ for each $F \in \mathcal{F}$.

Proposition 2.4

$$\mathcal{F} = \bigcup_{T \subseteq M, |T| = \ell_1 + 1} \mathcal{F}(T)$$

Proof. Let $\mathcal{M} := \bigcup_{T \subseteq M, |T| = \ell_1 + 1} \mathcal{F}(T)$. Clearly $\mathcal{M} \subseteq \mathcal{F}$. We prove that $\mathcal{F} \subseteq \mathcal{M}$. Let $F \in \mathcal{F}$ be an arbitrary subset. Firstly, if $F \in \mathcal{G}$, then $F \cap M = F$, because $M = \bigcup_{G \in \mathcal{G}} G$. Let T be a fixed subset of F such that $|T| = \ell_1 + 1$. Then $F \in \mathcal{F}(T)$. Secondly, suppose that $F \notin \mathcal{G}$. Then $|F \cap M| \ge \ell_1 + 1$ by Lemma 2.2. Let T be a fixed subset of $F \cap M$ such that $|T| = \ell_1 + 1$. Then $F \in \mathcal{F}(T)$ again.

Let T be a fixed, but arbitrary subset of M such that $|T| = \ell_1 + 1$. Consider the set system

$$\mathcal{G}(T) := \{ F \setminus T : F \in \mathcal{F}(T) \}.$$

Clearly $|\mathcal{G}(T)| = |\mathcal{F}(T)|$. Let $\overline{L} := \{\ell_2 - \ell_1 - 1, \dots, \ell_s - \ell_1 - 1\}$. Here $|\overline{L}| = s - 1$. Since $\mathcal{F}(T)$ is an *L*'-intersecting, *k*-uniform family, thus $\mathcal{G}(T)$ is an *L*-intersecting, $(k - \ell_1 - 1)$ -uniform family and $G \subseteq [n] \setminus T$ for each $G \in \mathcal{G}(T)$. Hence it follows from Theorem 1.6 that

$$|\mathcal{F}(T)| = |\mathcal{G}(T)| \le \binom{n-\ell_1-1}{s-1}.$$

Finally Proposition 2.4 implies that

$$|\mathcal{F}| \le \sum_{T \subseteq M, |T| = \ell_1 + 1} |\mathcal{F}(T)| \le \binom{k^2}{\ell_1 + 1} \binom{n - \ell_1 - 1}{s - 1},$$

but

$$\binom{n-\ell_1-1}{s-1} = \frac{s}{n-\ell_1} \binom{n-\ell_1}{s},$$

hence

$$|\mathcal{F}| \le \binom{k^2}{\ell_1 + 1} \frac{s}{n - \ell_1} \binom{n - \ell_1}{s} \le \binom{n - \ell_1}{s}$$

because $n \ge \binom{k^2}{\ell_1+1}s + \ell_1$.

Proof of Theorem 1.10:

First we handle the case when $|\bigcap_{G\in\mathcal{G}}G| \ge \ell_1$. Let T be a fixed subset of $\bigcap_{G\in\mathcal{G}}G$ such that $|T| = \ell_1$. Consider the set system

$$\mathcal{K} := \{ G \setminus T : G \in \mathcal{G} \}$$

Obviously $|\mathcal{G}| = |\mathcal{K}|$. Let $L' := \{0, \ell_2 - \ell_1, \dots, \ell_s - \ell_1\}$. Then clearly \mathcal{K} is a $(k - \ell_1)$ uniform L'-intersecting set system of subsets of $[n] \setminus T$. It follows immediately from Ray-Chaudhuri–Wilson Theorem 1.6 that

$$|\mathcal{G}| = |\mathcal{K}| \le {\binom{n-\ell_1}{s}}.$$

Now suppose that $|\bigcap_{G \in \mathcal{G}} G| = t$, where $0 < t < \ell_1$. Let T be a fixed subset of $\bigcap_{G \in \mathcal{G}} G$ such that |T| = t. Then consider the set system

 $_{G\in \mathcal{G}}$

$$\mathcal{F} := \{ G \setminus T : \ G \in \mathcal{G} \}.$$

Clearly $|\mathcal{F}| = |\mathcal{G}|$. Let $L' := \{\ell_1 - t, \ell_2 - t, \dots, \ell_s - t\}$. Then clearly \mathcal{F} is a (k - t)-uniform L'-intersecting set system of subsets of $[n] \setminus T$. It follows from Proposition 1.9 that

$$|\mathcal{G}| = |\mathcal{F}| \le \binom{n-t-(\ell_1-t)}{s} = \binom{n-\ell_1}{s}.$$

Finally suppose that $\bigcap_{G \in \mathcal{G}} G = \emptyset$. Then Proposition 1.9 gives us immediately that

$$|\mathcal{G}| \le \binom{n-\ell_1}{s}.$$

Proof of Corollary 1.10:

It follows from the proof of Theorem 1.10 that if $|\mathcal{F}| = \binom{n-\ell_1}{s}$ and $n > \binom{k^2}{\ell_1+1}s + \ell_1$, then $|\bigcap_{F \in \mathcal{F}} F| \ge \ell_1$. Thus there exists a $T \in \binom{[n]}{\ell_1}$ such that $T \subseteq F$ for each $F \in \mathcal{F}$.

262

Г	Т
L	

3 Remarks

Let $q \ge 2$ stand for a fixed prime power. Let PG(2,q) denote the finite projective plane over the Galois field GF(q). Denote by \mathcal{L} the set of all lines of PG(2,q). Let k := q + 1. Then \mathcal{L} can be considered as a k-uniform family of subsets of the base set $[k^2 - k + 1]$. Clearly $|\mathcal{L}| = k$.

This example motivates our next conjecture.

Conjecture 1 Let $0 < s \le k \le n$ be positive integers. Let $L = \{\ell_1, \ldots, \ell_s\}$ be a set of s positive integers such that $0 < \ell_1 < \cdots < \ell_s$. Suppose that $n > k^2 - k + 1$. Let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be an L-intersecting, k-uniform family of subsets of [n]. Then

$$m \le \binom{n-\ell_1}{s}.$$

Further, if

$$|\mathcal{F}| = \binom{n-\ell_1}{s},$$

then there exists a $T \in {[n] \choose \ell_1}$ subset such that $T \subseteq F$ for each $F \in \mathcal{F}$.

References

- R. C. Bose, A note on Fisher's inequality for balanced incomplete block designs, Ann. Math. Stat. 20 (1949), 619–620.
- [2] A. Barg and O. R. Musin, Bounds on sets with few distances, J. Combin. Theory Ser. A 118 (4) (2011), 1465–1474.
- [3] B. Bollobás, On generalized graphs, Acta Math. Hung. 16(3) (1965), 447–452.
- [4] M. Deza, P. Erdős and P. Frankl, Intersection properties of systems of finite sets, Proc. London Math. Soc. 3 (2) (1978), 369–384.
- [5] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. 12 (1) (1961), 313–320.
- [6] P. Frankl and Z. Füredi, Families of finite sets with missing intersections, Colloquia Mathematica Societatis János Bolyai 37 (1981), 305–320.
- [7] S. Jukna, *Extremal combinatorics: with applications in computer science*, Springer Science and Business Mediar, 2011.
- [8] K. N. Majumdar, On some theorems in combinatorics relating to incomplete block designs, Ann. Math. Stat. 24 (1953), 377–389.
- [9] G. V. Ramanan, Proof of a conjecture of Frankl and Fúredi, J. Combin. Theory Ser. A 79 (1) (1997), 53–67.

- [10] D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs, Osaka J. Math. 12 (3) (1975), 737–744.
- [11] H. S. Snevily, A sharp bound for the number of sets that pairwise intersect at k positive values, *Combinatorica* **23** (3) (2003), 527–533.
- [12] H. S. Snevily, Combinatorics of finite sets, Doctoral dissertation, University of Illinois at Urbana-Champaign, 1991.

(Received 1 Feb 2016)