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Abstract

Our main result is a new upper bound for the size of k-uniform, L-
intersecting families of sets, where L contains only positive integers. We
characterize extremal families in this setting. Our proof is based on the
Ray-Chaudhuri–Wilson Theorem [Osaka J. Math. 12 (1975),737–744]. As
an application, we give a new proof for the Erdős-Ko-Rado Theorem,
improve Fisher’s inequality in the uniform case and give a uniform version
of the Frankl-Füredi conjecture.

1 Introduction

First we introduce some notation.

Let [n] stand for the set {1, 2, . . . , n}. We denote the family of all subsets of [n]
by 2[n]. For k an integer with 0 ≤ k ≤ n we denote by

(
[n]
k

)
the family of all k element

subsets of [n]. We say that a family F of subsets of [n] is k-uniform if |F | = k for
each F ∈ F .

Bose proved the following result in [1].

Theorem 1.1 Let λ > 0 be a positive integer. Let F = {F1, . . . , Fm} be a k-uniform
family of subsets of [n] such that |Fi ∩ Fj | = λ for each 1 ≤ i, j ≤ m, i �= j. Then
m ≤ n.

Majumdar generalized this result in [8] and proved the following nonuniform
version of Theorem 1.1.

Theorem 1.2 Let λ > 0 be a positive integer. Let F = {F1, . . . , Fm} be a family of
subsets of [n] such that |Fi ∩ Fj| = λ for each 1 ≤ i, j ≤ m, i �= j. Then m ≤ n.

Frankl and Füredi conjectured in [6], and Ramanan proved in [9], the following
statement.
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Theorem 1.3 Let F = {F1, . . . , Fm} be a family of subsets of [n] such that 1 ≤
|Fi ∩ Fj | ≤ s for each 1 ≤ i, j ≤ m, i �= j. Then

m ≤
s∑

i=0

(
n− 1

i

)
.

Later Snevily conjectured the following statement in his doctoral dissertation (see
[12]). Finally he proved this result in [11].

Theorem 1.4 Let F = {F1, . . . , Fm} be a family of subsets of [n]. Let L = {�1, . . . ,
�s} be a collection of s positive integers. If |Fi∩Fj | ∈ L for each 1 ≤ i, j ≤ m, i �= j,
then

m ≤
s∑

i=0

(
n− 1

i

)
.

A family F is said to be t-intersecting if |F ∩ F ′| ≥ t whenever F, F ′ ∈ F . In
particular, F is an intersecting family if F ∩ F ′ �= ∅ whenever F, F ′ ∈ F .

Erdős, Ko and Rado proved the following well-known result in [5]:

Theorem 1.5 Let n, k, t be integers with 0 < t < k < n. Suppose F is a t-
intersecting, k-uniform family of subsets of [n]. Then for n > n0(k, t),

|F| ≤
(
n− t

k − t

)
.

Further, |F| = (
n−t
k−t

)
if and only if for some T ∈ (

[n]
t

)
we have

F = {F ∈
(
[n]

k

)
: T ⊆ F}.

Let L be a set of nonnegative integers. A family F is L-intersecting if |E ∩ F | ∈
L for every pair E, F of distinct members of F . The following theorem gives a
remarkable upper bound for the size of a k-uniform L-intersecting family.

Theorem 1.6 (Ray-Chaudhuri–Wilson [10]) Let s, k, n be positive integers such
that 0 < s ≤ k ≤ n. Let L be a set of s nonnegative integers and F = {F1, . . . , Fm}
an L-intersecting, k-uniform family of subsets of [n]. Then

m ≤
(
n

s

)
.

Erdős, Deza and Frankl improved Theorem 1.6 in [4]. They used the theory of
Δ-systems in their proof.
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Theorem 1.7 Let s, k, n be positive integers satisfying 0 < s ≤ k ≤ n. Let L be a set
of s nonnegative integers and let F = {F1, . . . , Fm} be an L-intersecting, k-uniform
family of subsets of [n]. Then, for n > n0(k, L),

m ≤
s∏

i=1

n− �i
k − �i

.

Barg and Musin gave an improved version of Theorem 1.6 in [2].

Theorem 1.8 Let L be a set of s nonnegative integers and let F = {F1, . . . , Fm} be
an L-intersecting, k-uniform family of subsets of [n]. Suppose that

s(k2 − (s− 1))(2k − n/2)

n− 2(s− 1)
≤

s∑
i=1

�i.

Then

m ≤
(
n

s

)
−

(
n

s− 1

)
n− 2s+ 3

n− s+ 2
.

First we prove a special case of our main result.

Proposition 1.9 Let s, k, n be positive integers satisfying 0 < s ≤ k ≤ n. Let
L = {�1, . . . , �s} be a set of s positive integers such that 0 < �1 < . . . < �s. Suppose

that n ≥ (
k2

�1+1

)
s + �1. Let F = {F1, . . . , Fm} be an L-intersecting, k-uniform family

of subsets of [n]. Suppose that
⋂

F∈F
F = ∅. Then

m ≤
(
n− �1

s

)
.

We now state our main results.

Theorem 1.10 Let s, k, n be positive integers satisfying 0 < s ≤ k ≤ n. Let L =
{�1, . . . , �s} be a set of s positive integers such that 0 < �1 < . . . < �s. Suppose that

n ≥ (
k2

�1+1

)
s + �1. Let G = {G1, . . . , Gm} be an L-intersecting, k-uniform family of

subsets of [n]. Then

m ≤
(
n− �1

s

)
.

Further if n >
(

k2

�1+1

)
s+ �1 and

|G| =
(
n− �1

s

)
,

then there exists a T ∈ (
[n]
�1

)
subset such that T ⊆ G for each G ∈ G.
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Clearly Theorem 1.10 implies the Ray-Chaudhuri–Wilson Theorem when n is
sufficiently large.

In the proof of Theorem 1.10 we combine simple combinatorial arguments with
the Ray-Chaudhuri–Wilson Theorem 1.6. Our proof was inspired by the proof of
Proposition 8.8 in [7].

We give here some immediate consequences of Theorem 1.10. First we describe
a uniform version of Theorem 1.3.

Corollary 1.11 Let s, k, n be positive integers such that 0 < s < k ≤ n. Let L =
{1, 2, . . . , s}. Suppose that n >

(
k2

2

)
s. Let F = {F1, . . . , Fm} be an L-intersecting,

k-uniform family of subsets of [n]. Then

m ≤
(
n− 1

s

)
.

Further if n >
(
k2

2

)
s + 1 and

|F| =
(
n− 1

s

)
,

then
⋂

F∈F F �= ∅.

The following result is the uniform version of Theorem 1.1.

Corollary 1.12 Let λ > 0 be a positive integer. Suppose that n ≥ (
k2

λ+1

)
+ λ. Let

F = {F1, . . . , Fm} be a k-uniform family of subsets of [n] such that |Fi ∩ Fj | = λ for
each 1 ≤ i, j ≤ m, i �= j. Then

m ≤ n− λ.

Further if n >
(

k2

λ+1

)
+ λ and

|F| = n− λ,

then there exists a T ∈ (
[n]
λ

)
subset such that T ⊆ F for each F ∈ F .

2 Proof of our results

The following Lemma is a well-known Helly-type result (see e.g. [3]).

Lemma 2.1 If each family of at most k + 1 members of a k-uniform set system
intersect, then all members intersect.

In our proof we use the following lemma.
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Lemma 2.2 Let �1 be a positive integer. Let H be a family of subsets of [n]. Suppose
that

⋂
H∈H

H = ∅. Let F ⊆ [n], F /∈ H be a subset such that |F ∩ H| ≥ �1 for each

H ∈ H. Let Q :=
⋃

H∈H
H. Then

|Q ∩ F | ≥ �1 + 1.

Proof. Since |F ∩H| ≥ �1 for each H ∈ H, thus |Q ∩ F | ≥ �1. Indirectly, suppose
that |Q ∩ F | = �1. Let U := Q ∩ F . Then

U = Q ∩ F = (
⋃

H∈H
H) ∩ F =

⋃
H∈H

(H ∩ F ).

Hence H ∩F ⊆ U for each H ∈ H. Since |U | = �1 and |H ∩F | ≥ �1 for each H ∈ H,
thus U = H ∩ F for each H ∈ H. Hence U ⊆ ⋂

H∈H
H , which is a contradiction with

⋂
H∈H

H = ∅.

Lemma 2.3 Let H be a family of subsets of [n]. Suppose that t := |H| ≥ 2 and H
is a k-uniform, intersecting family. Then

|
⋃

H∈H
H| ≤ k + (t− 1)(k − 1). (1)

Proof. We use induction on t. The inequality (1) is trivially true for t = 2.

Let t ≥ 3. Suppose that the inequality (1) is true for t−1. Let H be an arbitrary
k-uniform intersecting family such that |H| = t. Let G ⊆ H be a fixed subset of H
such that |G| = t − 1. Clearly G is intersecting and k-uniform. It follows from the
induction hypothesis that

|
⋃
G∈G

G| ≤ k + (t− 2)(k − 1).

Let {S} = H \ G. Then
⋃

H∈H
H = (

⋃
G∈G

G) ∪ S,

thus

|
⋃

H∈H
H| = |

⋃
G∈G

G|+|S|−|(
⋃
G∈G

G)∩S| ≤ k+(t−2)(k−1)+k−1 = k+(t−1)(k−1).
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Proof of Proposition 1.9:

Consider the special case when
⋂

F∈F
F = ∅. By Lemma 2.1 there exists a G ⊆ F

subset such that
⋂

G∈G
G = ∅ and |G| = k + 1. Let

M :=
⋃
G∈G

G.

It follows from Lemma 2.3 that |M | ≤ k + k(k − 1) = k2. On the other hand it is
easy to see that |M ∩ F | ≥ �1 + 1 for each F ∈ F by Lemma 2.2.

Let T be a fixed subset of M such that |T | = �1 + 1. Define

F(T ) := {F ∈ F : T ⊆ M ∩ F}.

Let L′ := {�2, . . . , �s}. Clearly |L′| = s − 1. Then F(T ) is an L′-intersecting, k-
uniform family, because F is an L-intersecting family and |M ∩F | ≥ �1 + 1 for each
F ∈ F .

Proposition 2.4

F =
⋃

T⊆M,|T |=�1+1

F(T ).

Proof. Let M :=
⋃

T⊆M,|T |=�1+1

F(T ). Clearly M ⊆ F . We prove that F ⊆ M.

Let F ∈ F be an arbitrary subset. Firstly, if F ∈ G, then F ∩ M = F , because
M =

⋃
G∈G

G. Let T be a fixed subset of F such that |T | = �1 + 1. Then F ∈ F(T ).

Secondly, suppose that F /∈ G. Then |F ∩M | ≥ �1 + 1 by Lemma 2.2. Let T be a
fixed subset of F ∩M such that |T | = �1 + 1. Then F ∈ F(T ) again.

Let T be a fixed, but arbitrary subset of M such that |T | = �1 + 1. Consider the
set system

G(T ) := {F \ T : F ∈ F(T )}.
Clearly |G(T )| = |F(T )|. Let L := {�2 − �1 − 1, . . . , �s − �1 − 1}. Here |L| = s− 1.
Since F(T ) is an L′-intersecting, k-uniform family, thus G(T ) is an L-intersecting,
(k− �1−1)-uniform family and G ⊆ [n]\T for each G ∈ G(T ). Hence it follows from
Theorem 1.6 that

|F(T )| = |G(T )| ≤
(
n− �1 − 1

s− 1

)
.

Finally Proposition 2.4 implies that

|F| ≤
∑

T⊆M,|T |=�1+1

|F(T )| ≤
(

k2

�1 + 1

)(
n− �1 − 1

s− 1

)
,
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but (
n− �1 − 1

s− 1

)
=

s

n− �1

(
n− �1

s

)
,

hence

|F| ≤
(

k2

�1 + 1

)
s

n− �1

(
n− �1

s

)
≤

(
n− �1

s

)

because n ≥ (
k2

�1+1

)
s+ �1.

Proof of Theorem 1.10:

First we handle the case when | ⋂
G∈G

G| ≥ �1. Let T be a fixed subset of
⋂

G∈G
G

such that |T | = �1. Consider the set system

K := {G \ T : G ∈ G}.
Obviously |G| = |K|. Let L′ := {0, �2 − �1, . . . , �s − �1}. Then clearly K is a (k− �1)-
uniform L′-intersecting set system of subsets of [n] \ T . It follows immediately from
Ray-Chaudhuri–Wilson Theorem 1.6 that

|G| = |K| ≤
(
n− �1

s

)
.

Now suppose that | ⋂
G∈G

G| = t, where 0 < t < �1. Let T be a fixed subset of

⋂
G∈G

G such that |T | = t. Then consider the set system

F := {G \ T : G ∈ G}.
Clearly |F| = |G|. Let L′ := {�1 − t, �2 − t, . . . , �s − t}. Then clearly F is a (k − t)-
uniform L′-intersecting set system of subsets of [n] \ T . It follows from Proposition
1.9 that

|G| = |F| ≤
(
n− t− (�1 − t)

s

)
=

(
n− �1

s

)
.

Finally suppose that
⋂

G∈G
G = ∅. Then Proposition 1.9 gives us immediately that

|G| ≤
(
n− �1

s

)
.

Proof of Corollary 1.10:
It follows from the proof of Theorem 1.10 that if |F| = (

n−�1
s

)
and n >

(
k2

�1+1

)
s + �1,

then | ⋂
F∈F

F | ≥ �1. Thus there exists a T ∈ (
[n]
�1

)
such that T ⊆ F for each F ∈ F .
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3 Remarks

Let q ≥ 2 stand for a fixed prime power. Let PG(2, q) denote the finite projective
plane over the Galois field GF (q). Denote by L the set of all lines of PG(2, q). Let
k := q + 1. Then L can be considered as a k-uniform family of subsets of the base
set [k2 − k + 1]. Clearly |L| = k.

This example motivates our next conjecture.

Conjecture 1 Let 0 < s ≤ k ≤ n be positive integers. Let L = {�1, . . . , �s} be a
set of s positive integers such that 0 < �1 < · · · < �s. Suppose that n > k2 − k + 1.
Let F = {F1, . . . , Fm} be an L-intersecting, k-uniform family of subsets of [n]. Then

m ≤
(
n− �1

s

)
.

Further, if

|F| =
(
n− �1

s

)
,

then there exists a T ∈ (
[n]
�1

)
subset such that T ⊆ F for each F ∈ F .
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