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Abstract

A kernel J of a digraph D is an independent set of vertices of D such
that for every vertex w ∈ V (D)\J there exists an arc from w to a vertex
in J . In this paper we have obtained results for the existence and non-
existence of kernels in Cartesian products of certain families of digraphs,
and characterized T��Cn, T��Pn and �Cm��Cn which have kernels, where
T is a tournament, and �Pn and �Cn are, respectively, the directed path and
the directed cycle of order n. Finally, we have introduced and studied
kernel-partitionable digraphs.

1 Introduction

For notation and terminology, in general, we follow [1].

Let D = (V,A) be a digraph and let k and � be integers with k ≥ 2 and � ≥ 1.
A set J ⊆ V is a (k, �)-kernel of D if

(a) for every ordered pair (x, y) of distinct vertices in J, we have dD(x, y) ≥ k,

(b) for each z ∈ V \ J , there exists an x ∈ J such that dD(z, x) ≤ �.

It follows that every (k, �)-kernel is a (k, � + 1)-kernel, and for k ≥ 3, every
(k, �)-kernel is a (k − 1, �)-kernel.

A (2, 1)-kernel of D is called a kernel of D, or more precisely, a set J of vertices
in D is a kernel if J is independent (i.e., the subdigraph of D induced by J has no
arcs) and the first closed in-neighbourhood of J , namely N−

D [J ], is equal to V (D).
A digraph D is kernel-less if it has no kernel.

The Cartesian product of digraphs D1 and D2 is the digraph D = D1�D2

with vertex set V (D) = {(u, v) : u ∈ V (D1), v ∈ V (D2)} and arc set A(D) =
{((u1, v1), (u2, v2)) such that either u1 = u2 and (v1, v2) ∈ A(D2) or v1 = v2 and
(u1, u2) ∈ A(D1)}.

In [2], Kwaśnik proved the following:
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If the subset J1 ⊆ V (D1) is a (k1, �1)-kernel of D1 and J2 ⊆ V (D2) is a (k2, �2)-kernel
of D2, for ki ≥ 2, �i ≥ 1, i ∈ {1, 2}, then the set J = J1 × J2 is a (k, �)-kernel of the
digraph D1�D2, where k = min{k1, k2} and � = �1 + �2.

In [5], W�loch and W�loch generalize the above result for the generalized Cartesian
product in which they consider the product for strongly connected digraphs only.

From the above result of Kwaśnik, we have: If J1 ⊆ V (D1) and J2 ⊆ V (D2)
are kernels of the digraphs D1 and D2, respectively, then the set J = J1 × J2 is a
(2, 2)-kernel of the digraph D1�D2. Note that, the set J may not be a kernel of
D1�D2.

In this paper we consider the problem of finding either the existence or the non-
existence of kernels in Cartesian products D1�D2 of certain classes of digraphs D1

and D2. Finally, we introduce kernel-partitionable digraphs and provide examples of
them.

A digraph D is an oriented graph if D contains no directed cycle of length 2.

For any positive integer k, let V (�Pk) = V ( �Ck) = Zk = {0, 1, 2, . . . , k−1}, A(�Pk) =

{(i, i + 1) : i ∈ {0, 1, 2, . . . , k − 2}} and A( �Ck) = A(�Pk) ∪ {(k − 1, 0)}.

2 Preliminary lemmas

Lemma 2.1 Let D be a digraph and let O = {v ∈ V (D) : d+D(v) = 0}. Then any
kernel of D, if it exists, contains O.

Lemma 2.2 If T is a tournament, then there are at most three vertices with out-
degree one.

Proof. By contradiction. Suppose there exist four vertices, say, w, x, y and z of
out-degree one.

Case 1. The unique out-neighbour of w is in V (T )\{x, y, z}.

Then, {x, y, z} → w.

Case 2. The unique out-neighbour of w is in {x, y, z}, say, x, i.e., w → x.

Then {y, z} → w.

In any case, as d+T (y) = 1 = d+T (z), we have neither y → z nor z → y, a
contradiction.

Similarly, we have:

Lemma 2.3 If T is a tournament, then there are at most three vertices with in-
degree one.

Lemma 2.4 Let D be a digraph with a set X of vertices in D such that d+D(v) = 1
for every v ∈ X and D[X], the subdigraph induced by X, is a directed odd cycle.
Then D is kernel-less.
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Proof. Assume, by hypothesis, that D[X ] = �C2k+1 := 0 → 1 → 2 → · · · → (2k) → 0,
k ≥ 1. Suppose J is a kernel of D. Then J contains at most k vertices from X.
Consequently, there exist vertices i, i+1, where i ∈ {0, 1, 2, . . . , 2k}, such that both i
and i+1 belong to V (D)\J , where 2k+1 = 0. As i+1 is the only vertex dominated
by i, no vertex of J is dominated by i, a contradiction.

Lemma 2.5 Let T be a tournament, D be a digraph, x ∈ V (T ), y ∈ V (D) and
d+T (x) > d+D(y). Then for any kernel J of T�D, if it exists, we have (x, y) ∈
V (T�D) \ J.

Proof. Let d+T (x) = p and d+D(y) = q. Suppose (x, y) ∈ J . As d+T (x) = p, there
exist vertices x1, x2, . . . , xp in T such that x → xi, i ∈ {1, 2, . . . , p}, in T . As T is a
tournament, (x, y) ∈ J implies that, for every u ∈ V (T ) \ {x}, (u, y) ∈ V (T�D) \ J .
In particular, for every i ∈ {1, 2, . . . , p}, (xi, y) ∈ V (T�D) \ J . As d+D(y) = q, there
exist vertices y1, y2, . . . , yq in D such that y → yj, j ∈ {1, 2, . . . , q}, in D. For each
i ∈ {1, 2, . . . , p}, (xi, y) ∈ V (T�D)\J , (x, y) → (xi, y), and for every u ∈ V (T )\{x},
(u, y) /∈ J implies that there exists j(i) ∈ {1, 2, . . . , q} such that (xi, yj(i)) ∈ J . Since
q ≤ p − 1, there exist i′ and i′′ such that j(i′) = j(i′′), a contradiction, since the
adjacent vertices (xi′ , yj(i′)) and (xi′′ , yj(i′′)) are in J .

3 Kernel-less Cartesian products

First, we consider �Cm��Cn.

Lemma 3.1 Let m ≥ 3 and n ≥ 3 be positive integers. If m and n are relatively
prime, then �Cm��Cn is kernel-less.

Proof. Suppose �Cm��Cn admits a kernel, say, J .

Claim 1. There exists no (i, j) such that

{(i, j − 1), (i, j), (i, j + 1)} ⊆ V \ J,
where i ∈ {0, 1, 2, . . . , m− 1} and j ∈ {0, 1, 2, . . . , n− 1}.

Otherwise, there exists a vertex (i, j) such that {(i, j−1), (i, j), (i, j+1)} ⊆ V \J .
Now (i, j − 1) /∈ J implies that (i + 1, j − 1) ∈ J , since (i, j) /∈ J . Also, (i, j) /∈ J
implies that (i + 1, j) ∈ J , since (i, j + 1) /∈ J . Hence the two adjacent vertices
(i + 1, j − 1) and (i + 1, j) are in J , a contradiction.

Claim 2. (i + 1, j + 1) ∈ J whenever (i, j) ∈ J .

Suppose there exists (i, j) ∈ J with (i + 1, j + 1) /∈ J . As (i, j) ∈ J , both
(i, j + 1) and (i + 1, j) belong to V \ J . As (i, j + 1) /∈ J, (i, j + 2) ∈ J , and hence
(i+ 1, j + 2) /∈ J . Now {(i+ 1, j), (i+ 1, j+ 1), (i+ 1, j+ 2)} ⊆ V \J , a contradiction
to Claim 1.

As m and n are relatively prime, by Claim 2, J = V ( �Cm��Cn), a contradiction.

Next, we have an application of Lemma 2.4.
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Theorem 3.1 Let D1 be a digraph with δ+(D1) = 0 and let D2 be a digraph such
that there exists a set Y of vertices in D2 with d+D2

(v) = 1 for every v ∈ Y and D2[Y ],
the subdigraph induced by Y , is a directed odd cycle. Then D1�D2 is kernel-less.

Proof. By hypothesis, d+D1
(u) = 0 for some u ∈ V (D1). Apply Lemma 2.4 for

D = D1�D2 and X = {u} × Y .

Corollary 3.1 Let D be a digraph with δ+(D) = 0. If n ≥ 1 is a positive integer,

then D��C2n+1 is kernel-less.

Corollary 3.2 Let T be a tournament with δ+(T ) = 0. If n ≥ 1 is a positive integer,

then T��C2n+1 is kernel-less.

Since any oriented tree has a vertex of out-degree zero, we have:

Corollary 3.3 If D is an oriented tree and if n ≥ 1 is a positive integer, then
D��C2n+1 is kernel-less.

Finally, we have some applications of Lemma 2.5.

Corollary 3.4 Let T be a tournament and D be a digraph. If δ+(T ) > Δ+(D), then
T�D is kernel-less.

Corollary 3.5 Let T be a tournament with δ+(T ) ≥ 2. If D is a nonempty digraph

with Δ+(D) ≤ 1, then T�D is kernel-less. In particular, for n ≥ 3, T� �Cn and for

n ≥ 2, T��Pn are kernel-less.

Lemma 3.2 Let T be a tournament with |{v ∈ V (T ) : d+T (v) ≤ 1}| ≤ 1. If D is
a nonempty digraph with Δ+(D) ≤ 1, then T�D is kernel-less. In particular, for

n ≥ 3, T��Cn and for n ≥ 2, T��Pn are kernel-less.

Proof. Let A = {v ∈ V (T ) : d+T (v) ≤ 1}. If A = ∅, then kernel-less follows
from Corollary 3.5. Hence, assume that A = {v}. Then d+T (v) ≤ 1, and for every
u ∈ V (T )\{v}, d+T (u) ≥ 2. Suppose T�D admits a kernel, say, J ; then by Lemma
2.5, J ⊆ {(v, x) : x ∈ V (D)}. For every u ∈ V (T ) \ {v} and for every x ∈ V (D),
(u, x) /∈ J implies that (v, x) ∈ J and, in T , we have u → v. But then d+T (v) = 0
and J = {(v, x) : x ∈ V (D)}, a contradiction to J being independent.

Lemma 3.3 Let n ≥ 3 and T be a tournament with δ+(T ) = 1.

(1) If T has at most two vertices of out-degree 1, then T� �Cn is kernel-less.

(2) If T has exactly three vertices of out-degree 1 and if n 	≡ 0 (mod 3), then T� �Cn

is kernel-less.
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Proof. Suppose T��Cn admits a kernel, say J . As d+�Cn
(j) = 1, j ∈ V ( �Cn), by Lemma

2.5 we have (v, j) ∈ V (T � �Cn) \ J , for every v ∈ V (T ) with d+T (v) ≥ 2. Hence
J ⊆ {(v, j) : d+T (v) = 1, 0 ≤ j ≤ n− 1}.

Proof of (1). If T has exactly one vertex, say, a of out-degree 1, then J ⊆ {(a, j) : 0 ≤
j ≤ n− 1}. Let the out-neighbour of a in T be b. As J is nonempty, (a, j) ∈ J for
some j. This implies that (b, j) /∈ J . As (a, j) → (b, j), no vertex of J is dominated
by (b, j), a contradiction.

If T has exactly two vertices, say a′ and a′′ of out-degree 1, then J ⊆ {(a′, j),
(a′′, j) : 0 ≤ j ≤ n − 1}. As T is a tournament, we have, in T , either a′ → a′′

or a′′ → a′. Without loss of generality assume that (a′, a′′) ∈ A(T ). Let the out-
neighbour of a′′ in T be b. If (a′′, j) ∈ J for some j, then (a′, j), (b, j) /∈ J . Since
(a′′, j) → (b, j) → (a′, j) and (a′, j) /∈ J , no vertex of J is dominated by (b, j), a
contradiction. Hence J ⊆ {(a′, j) : 0 ≤ j ≤ n−1} and so (a′, j) ∈ J for some j; then
(a′′, j) /∈ J . Consequently, (a′′, j) dominates no vertex of J , a contradiction.

Proof of (2). Let the vertices of out-degree 1 in T be x, y and z. Clearly, they induce
a directed cycle of length 3 in T , say, without loss of generality that x → y → z → x.
By Lemma 2.5, J ⊆ {(x, j), (y, j), (z, j) : 0 ≤ j ≤ n − 1}. As J is nonempty, by
symmetry, assume that (x, 0) ∈ J .

Claim. If (x, j) ∈ J, then (x, j + 3) ∈ J .

If (x, j) ∈ J , then {(y, j), (z, j)} ⊆ V (T��Cn) \ J . This shows that (y, j + 1) ∈ J ,

and therefore {(x, j + 1), (z, j + 1)} ⊆ V (T��Cn) \ J . Consequently, (z, j + 2) ∈ J ,

and so {(x, j + 2), (y, j + 2)} ⊆ V (T��Cn) \ J . Thus (x, j + 3) ∈ J .

By the above claim, {(x, 0), (x, 3), (x, 6), . . . }⊆ J . This shows that n ≡ 0 (mod 3),
a contradiction.

Lemma 3.4 Let n ≥ 2 and T be a tournament. If T has no pair of vertices u, v
with d+T (u) = 0 and d+T (v) = 1, then T��Pn is kernel-less.

Proof. Suppose T��Pn admits a kernel, say J . By Lemma 2.5, J ⊆ {(w, i) : d+T (w) ≤ 1
and i ∈ {0, 1, 2, . . . , n− 1}}.

If δ+(T ) ≥ 2, then J = ∅ and therefore δ+(T ) ≤ 1.

By Lemma 2.2, T has at most three vertices with out-degree one.

If T has exactly three vertices, say x, y and z with out-degree one, then without
loss of generality assume that x → y → z → x. Hence, for every w ∈ V (T )\{x, y, z},
d+T (w) ≥ 3. Thus J ⊆ {(x, i), (y, i), (z, i) : 0 ≤ i ≤ n−1}. Amongst the three vertices
(x, n−1), (y, n−1), (z, n−1), at most one belongs to J and hence at least two must

be in V (T��Pn) \ J . Assume, by symmetry, that (x, n− 1), (y, n− 1) /∈ J . We have
a contradiction, since the unique vertex dominated by (x, n− 1) is (y, n− 1).

If T has exactly two vertices, say x and y with out-degree one, then there exists a
vertex z and without loss of generality assume that x → y → z → x. Hence, for every
w ∈ V (T )\{x, y}, d+T (w) ≥ 2. Thus J ⊆ {(x, i), (y, i) : 0 ≤ i ≤ n− 1}. Amongst the
three vertices (x, n− 1), (y, n− 1), (z, n− 1), at most one belongs to J and hence at
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least two must be in V (T��Pn) \ J . If (x, n− 1) and (y, n− 1) are not in J then we
have a contradiction, since the unique vertex dominated by (x, n−1) is (y, n−1). If
(y, n− 1) and (z, n− 1) are not in J , then again we have a contradiction, since the
unique vertex dominated by (y, n−1) is (z, n−1). If (z, n−1) and (x, n−1) are not
in J , then also we have a contradiction, since the vertices dominated by (z, n − 1)

are in V (T��Pn) \ J .

Hence T has at most one vertex of out-degree one. By Lemma 3.2, |{v ∈ V (T ) :
d+T (v) ≤ 1}| ≥ 2. This completes the proof.

4 Kernels in Cartesian products

For an integer n ≥ 2 and a set S ⊆ {1, 2, . . . , n−1}, the circulant digraph Cn(S) is a
digraph with vertex set Zn = {0, 1, . . . , n−1} and arc set {(i, (i+j) (mod n)) : i ∈ Zn

and j ∈ S}.

In [3], we have characterized 2-regular circulant digraphs which have kernels: “Let
i + j 	= n and let m = gcd(i + j, n). The oriented graph Cn({i, j}) has a kernel if
and only if i 	≡ 0 (mod m), j 	≡ 0 (mod m) and m 	= 1.”

First, we consider: Cm({1})�Cn({1}) and Cn(S)�Cn(S) with |S| ≥ 2.

Lemma 4.1 Let m ≥ 3 and n ≥ 3 be positive integers. If m and n are not relatively
prime, then �Cm��Cn admits a kernel.

Proof. Assume without loss of generality that m ≤ n. For each � ∈ {0, 1, 2, . . . ,
n − 1}, define the set P� inductively as follows: (0, �) ∈ P�. If (a, b) ∈ P�, then
((a + 1) (mod m), (b + 1) (mod n)) ∈ P�. Let gcd(m,n) = k. If k is even, then set
J = P0 ∪P2 ∪P4 ∪ · · · ∪Pk−2, and if k is odd, then set J = P0 ∪P2 ∪P4 ∪ · · · ∪Pk−3.
Note that Pk = P0.

Claim 1. J is independent.
Otherwise, there exists (x, y) ∈ J such that either (x+ 1, y) or (x, y + 1) belongs

to J . Now (x, y) ∈ J implies that (x, y) ∈ P2i for some i. But then neither (x+ 1, y)
nor (x, y + 1) belongs to J , since (x + 1, y) ∈ P2i−1 and (x, y + 1) ∈ P2i+1.

Claim 2. J is absorbent.
Suppose (x, y) /∈ J . Then (x, y) ∈ P1 ∪ P3 ∪ P5 ∪ · · · ∪ Pk−1 if k is even, and

(x, y) ∈ [P1 ∪P3 ∪P5 ∪ · · · ∪Pk−2]∪Pk−1 if k is odd. Except for (x, y) ∈ Pk−2 ∪Pk−1

with k odd, both the out-neighbours (x + 1, y) and (x, y + 1) of (x, y) are in J . For
(x, y) ∈ Pk−2 with k odd, the out-neighbour (x+1, y) of (x, y) is in J ; for (x, y) ∈ Pk−1

with k odd, the out-neighbour (x, y + 1) of (x, y) is in J .

By Claims 1 and 2, J is a kernel of �Cm��Cn.

Theorem 4.1 If |S| ≥ 2, then Cn(S)�Cn(S) admits a kernel.

Proof. Let S = {i1, i2, . . . , ik}, 0 < i1 < i2 < · · · < ik < n. For � ∈ {0, 1, 2, . . . ,
n− 1}, define the set P� inductively as follows:
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(0, �) ∈ P�.

If (a, b) ∈ P�, then ((a + 1) (mod n), (b + 1) (mod n)) ∈ P�.

Let A be a maximal independent set of Cn(S). Set J =
⋃

�∈A
P�.

Claim 1. J is independent.

Otherwise, there exists a vertex of J, say, (x, y) such that {(x, y + i1), . . . , (x, y +
ik), (x + i1, y), . . . , (x + ik, y)} ∩ J 	= ∅. That is, there exists a vertex y − x of A
such that {y − x + i1, . . . , y − x + ik, y − x− i1, . . . , y − x− ik} ∩ A 	= ∅. In Cn(S),
{y − x− i1, . . . , y − x− ik} → y − x → {y − x + i1, . . . , y − x + ik}, a contradiction
to A being independent.

Claim 2. J is absorbent.

Suppose (x, y) /∈ J ; equivalently, y − x /∈ A. Claim 2 follows if {(x, y +
i1), . . . , (x, y+ik), (x+i1, y), . . . , (x+ik, y)}∩J 	= ∅. Otherwise, {(x, y+i1), . . . , (x, y+
ik), (x + i1, y), . . . , (x + ik, y)} ∩ J = ∅. That is, {y − x + i1, . . . , y − x + ik, y − x−
i1, . . . , y − x− ik} ∩A = ∅. But then A ∪ {y − x} is an independent set of Cn(S), a
contradiction to the maximality of A.

By Claims 1 and 2, J is a kernel of Cn(S)�Cn(S).

Next, we consider T��Cn, where T is a tournament.

Lemma 4.2 Let T be a tournament with δ+(T ) = 1. If T has exactly three vertices

of out-degree 1 and n ≡ 0 (mod 3), then T��Cn admits a kernel.

Proof. Let the vertices of out-degree 1 in T be x, y and z. Clearly, they induce a
directed cycle of length 3 in T , say, without loss of generality that x → y → z → x.

Set J = {(x, 3i), (y, 3i+ 1), (z, 3i+ 2) : 0 ≤ i ≤ n
3
−1}. Clearly, J is independent.

Claim. J is absorbent.

Let (r, s) ∈ V (T��Cn) \ J .

Case 1. r ∈ {x, y, z}, say, r = x, i.e., (x, s) ∈ V (T��Cn) \ J .

Then s 	≡ 0 (mod 3). If s ≡ 1 (mod 3), then (y, s) ∈ J and (x, s) → (y, s). If
s ≡ 2 (mod 3), then (x, s + 1) ∈ J and (x, s) → (x, s + 1).

Case 2. r /∈ {x, y, z}.

If s ≡ 0 (mod 3), then (x, s) ∈ J and (r, s) → (x, s). If s ≡ 1 (mod 3), then
(y, s) ∈ J and (r, s) → (y, s). If s ≡ 2 (mod 3), then (z, s) ∈ J and (r, s) → (z, s).

Thus J is a kernel of T��Cn.

Lemma 4.3 Let T be a tournament with δ+(T ) = 0. If n ≥ 2 is a positive integer

and if T has a vertex of out-degree one, then T��C2n admits a kernel.

Proof. By hypothesis, there exist vertices x and y in T such that V (T )\{x} → x
and V (T )\{x, y} → y. Set J = {(x, j) : j ∈ {0, 2, 4, . . . , 2n − 2}} ∪ {(y, j) : j ∈
{1, 3, 5, . . . , 2n− 1}}. Clearly, J is independent.
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Let (p, q) ∈ V (T��C2n)\J . If p = x, then q ∈ {1, 3, 5, . . . , 2n − 1} and (x, q) →
(x, q+1), a vertex in J . If p = y, then q ∈ {0, 2, 4, . . . , 2n−2} and (y, q) → (y, q+1),
a vertex in J . So assume that p /∈ {x, y}. If q ∈ {0, 2, 4, . . . , 2n− 2}, then (p, q) →
(x, q), a vertex in J . If q ∈ {1, 3, 5, . . . , 2n − 1}, then (p, q) → (y, q), a vertex in J .
Here addition is reduced modulo 2n. Thus J is absorbent.

Lemma 4.4 Let T be a tournament with δ+(T ) = 0. If n ≥ 2 is a positive integer

and if T has a vertex of out-degree one, then T��Pn admits a kernel.

Proof. By hypothesis, there exist vertices x and y in T such that V (T )\{x} → x
and V (T )\{x, y} → y. The set J = {(x, j) : j ∈ {n− 1, n− 3, n− 5, . . . }} ∪ {(y, j) :

j ∈ {n− 2, n− 4, n− 6, . . . }} is a kernel of T��Pn.

Theorem 4.2 For any digraph D and for any n ≥ |V (D)|, D�K∗
n admits a kernel,

where K∗
n denotes the complete symmetric digraph on n vertices.

Proof. Let V (D) = {v1, v2, . . . , v|V (D)|} and V (K∗
n) = {1, 2, . . . , n}. Then J =

{(vi, i) : i ∈ {1, 2, . . . , |V (D)|}} is a kernel of D�K∗
n.

For any digraph D, χ(D) denotes the chromatic number of the underlying graph
of D.

Theorem 4.3 Let D1 and D2 be digraphs. If D2 contains χ(D1) pairwise disjoint
kernels, then the Cartesian product D1�D2 contains a kernel.

Proof. Let χ(D1) = k. Let {U1, U2, . . . , Uk} be a chromatic partition of D1 and, by
hypothesis, we have a collection {V1, V2, . . . , Vk} of pairwise disjoint kernels of D2.
Consider the set W = (U1 × V1) ∪ (U2 × V2) ∪ · · · ∪ (Uk × Vk).

As Ui and Vi are, respectively, independent subsets of D1 and D2, Ui × Vi is
an independent subset of D1�D2. Suppose W is not independent; then there exist
vertices (a, b) and (c, d) such that (a, b) ∈ Ui × Vi, (c, d) ∈ Uj × Vj, i 	= j and
(a, b) → (c, d) in D1�D2. But then either a = c and b → d or a → c and b = d.
Consequently i = j, a contradiction. Hence W is independent.

If (x, y) /∈ W , then x ∈ Ui for some i and so y /∈ Vi. As Vi is a kernel of D2, there
exists z ∈ Vi such that y → z in D2. Hence (x, z) ∈ Ui × Vi ⊆ W and (x, y) → (x, z)
in D1�D2. Thus W is absorbent.

Hence W is a kernel of D1�D2. This completes the proof.

5 A few characterizations

Combining Lemmas 3.1 and 4.1, we have:

Theorem 5.1 Let m ≥ 3 and n ≥ 3 be positive integers. Then �Cm��Cn admits a
kernel if and only if m and n are not relatively prime.
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Combining Lemmas 3.3 and 4.2 and Corollary 3.5, we have:

Theorem 5.2 Let n ≥ 3 and T be a tournament with δ+(T ) ≥ 1. Then T��Cn

admits a kernel if and only if δ+(T ) = 1, T has exactly three vertices with out-degree
1, and n ≡ 0 (mod 3).

Combining Corollary 3.2 and Lemmas 4.3 and 3.2, we have:

Theorem 5.3 Let n ≥ 3 and T be a tournament with δ+(T ) = 0. Then T��Cn

admits a kernel if and only if n is even and T has a vertex of out-degree one.

Combining Lemmas 4.4 and 3.4, we have:

Theorem 5.4 Let n ≥ 2 and T be a tournament. Then T��Pn admits a kernel if
and only if T has a vertex of out-degree zero and a vertex of out-degree one.

6 Kernel-partitionable digraphs

A digraph D is said to be kernel-partitionable if there is a partition {J1, J2, . . . , J�}
of V (D) such that for each i ∈ {1, 2, . . . , �}, Ji is a kernel of the subdigraph induced
by V (D) \ (J1 ∪ J2 ∪ · · · ∪ Ji−1).

A digraph for which every induced subdigraph has a kernel is said to be kernel-
perfect. Clearly, every kernel-perfect digraph is kernel-partitionable but the converse
is not true. For example, consider a directed odd cycle and at every vertex of the
cycle attach a directed even cycle. This yields a family of digraphs which are kernel-
partitionable but not kernel-perfect. Let �C2n+1 : v1 → v2 → · · · → v2n+1 → v1 and
let Hi be the directed even cycle attached at vi. To see that this digraph is kernel-

partitionable, set J1 = [the vertices of the kernel of H1 containing v1] ∪{
2n+1⋃

i=2

[the

vertices of the kernel of Hi not containing vi]}.

Theorem 6.1 If D1 and D2 are kernel-partitionable digraphs, then D1�D2 admits
a kernel.

Proof. Let {J1, J2, . . . , Jr} and {L1, L2, . . . , Ls} be, respectively, the partitions of
V (D1) and V (D2) obtained from the definition of kernel-partitionable. Consider the

set J =
min{r,s}⋃

i=1

(Ji�Li).

Claim 1. J is independent.

If two adjacent vertices (a, b) and (c, d) are in J , then either a = c ∈ Ji for some
i and the two adjacent vertices b and d of D2 are in Li, or b = d ∈ Li for some i and
the two adjacent vertices a and c of D1 are in Ji. In any case, we have a contradiction
to the independent property of Li or Ji.
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Claim 2. J is absorbent.

Let (xi, yj) ∈ V (D1�D2) \ J . Then xi ∈ J� and yj ∈ Lm for some � 	= m.
Clearly, (xi, yj) dominates a vertex of Jp�Lp, where p = min{�,m}. Therefore J is
absorbent.

This completes the proof.

The converse of Theorem 6.1 is not true. For if m and n are odd integers and if
gcd(m,n) 	= 1, then �Cm��Cn admits a kernel (see Theorem 5.1), but neither �Cm nor
�Cn is kernel-partitionable.

Corollary 6.1 If D1 and D2 are kernel-perfect digraphs, then D1�D2 admits a ker-
nel.

Theorem 6.2 If |S| = 2 and if Cn(S) admits a kernel, then Cn(S) is kernel-
partitionable.

Proof. Let S = {i, j} and let J be a kernel of Cn(S). Also, let D = Cn(S) \ J . As J
is a kernel of Cn({i, j}), for every x ∈ V (D), d+D(x) ≤ 1.

Suppose there exists a directed k-cycle �Ck : u0 → u1 → u2 → · · · → uk−1 → u0,
in D, where uk = u0 and u−1 = uk−1.

Claim. If (u�−1+i) ≡ u� (mod n), then (u�+j) ≡ u�+1 (mod n), � ∈ {0, 1, 2, . . . , k−1}.

Otherwise (u� + i) ≡ u�+1 (mod n). From the definition of kernel, the adjacent
vertices (u�−1 + j) (mod n) and (u� + j) (mod n) are in J , a contradiction.

Similarly, if (u�−1 + j) ≡ u� (mod n), then (u� + i) ≡ u�+1 (mod n), � ∈
{0, 1, 2, . . . , k − 1}.

Hence the directed cycle �Ck, in D, is of even length. Consequently, D contains
no directed odd cycle. Thus D is kernel-perfect [4] and therefore Cn(S) is kernel-
partitionable.

We have another family of digraphs which are kernel-partitionable but not kernel-
perfect. For, let n be odd and take i, j such that Cn({i, j}) admits a kernel. By the
above theorem, Cn({i, j}) is kernel-partitionable. Restrict i, j such that there exist
integers � and m with (� + m) ≡ 1 (mod 2) and (�i + mj) ≡ 0 (mod n). But then
Cn({i, j}) is not kernel-perfect, since it contains a directed odd cycle.

7 Conclusion

The main problem is: characterize digraphs D1 and D2 such that the Cartesian
product D1�D2 has a kernel.

In this paper, we have solved the above problem for the Cartesian products T� �Cn,
T��Pn, �Cm��Cn and H1�H2, where H1 and H2 are kernel-partitionable digraphs.

We propose the following:

Problem. Characterize kernel-partitionable digraphs.
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