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Abstract

A famous result of Graham and Pollak states that the complete graph
with n vertices can be edge partitioned into n − 1, but no fewer, com-
plete bipartite graphs. This result has led to the study of the relationship
between the chromatic and biclique partition numbers of graphs. It has
become even more exciting with recent connections to the clique ver-
sus stable set problem, communication protocols and constraint satisfac-
tion and homomorphism problems. By defining an extended hypercube
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we construct a framework that provides much structural information re-
garding the relationship between these two parameters and a third, the
induced bipartite edge partition number. Using this we show that the
minimum counterexample to the former Alon-Saks-Seymour conjecture
must have biclique partition number at least 10. Finally we identify a
family of graphs to investigate for a smaller counterexample to the former
Alon-Saks-Seymour conjecture.

1 Introduction

Given a graphG the biclique partition number ofG, denoted by bp(G) is the minimum
number of complete bipartite graphs to which edges of G can be partitioned. It is a
famous theorem of Graham and Pollak that bp(Kn) = n− 1 [13, 14] where Kn is the
complete graph on n vertices. The early proofs of this simple statement were based
on linear algebra. There have been some movement towards more combinatorial
proofs [19]. The search for a simple combinatorial proof has resulted in development
of several extensions of the theorem. For example it is proved in [4] that if the edges
of a complete graph are coloured such that each colour class induces a complete
bipartite graph, then there is a spanning tree whose edges have all distinct colours.
Other extensions exist to hypergraphs [1, 7] and biclique coverings [2, 9].

Noting that χ(Kn) = n, one could consider extending the theorem to the question
of bounding χ(G) by a function of bp(G). To this end Alon, Saks and Seymour [16]
made the following

Conjecture 1.1. For every graph G, if bp(G) = n then χ(G) ≤ n + 1.

This conjecture has recently been disproved for general n by Huang and Su-
dakov [15], but we will show that it holds for small n. Specifically we will prove

Theorem 1.2. Conjecture 1.1 holds for n ≤ 9.

We note that Theorem 1.2 is an improvement on the earlier result of Rho [18]
which states that Conjecture 1.1 holds for n ≤ 4. After developing our framework,
Rho’s result will follow simply by considering the degrees in digraphs with fewer than
5 vertices and their complements.

The question of what is the best upper bound for χ(G) in terms of bp(G), and
what is their relationship in general, remains open. These questions have recently
been connected to other problems, namely: the clique versus stable set problem
and the stubborn problem. The former requires finding cuts which separate cliques
from stable sets and the latter requires covering the set of solutions of a constraint
satisfaction problem by 2-SAT instances [6]. A polynomial upper bound for χ(G) in
terms of bp(G) would be equivalent to a polynomial number of cuts and equivalent
to a polynomial covering. While the authors of [6] hope for a polynomial bound
for χ(G) in terms of bp(G), the authors of [15] conjecture that there exists a graph
with χ(G) ≥ 2c(log bp(G))2 for some positive constant c [15] (throughout the paper,
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all logarithms are to the base 2). That 2O((log bp(G))2) is an upper bound was proven
in [3, 17, 22]. Alon and Haviv made the connection between the communication
results of Yannakakis and decomposition into bicliques [3]. Recent papers by Göös
and by Fiorini et al. show that there exists graphs, G with χ(X) superpolynomially
larger than bp(G) [11, 12].

Another question of interest is to find the smallest counterexample to the Alon-
Saks-Seymour conjecture. The disproof of the conjecture constructs a graph on 917

vertices with bp(G) ≤ 30 × 915 < χ(G). Smaller counterexamples with about 255

vertices were found in [8]. We hope that a smaller counterexample could be found,
ideally one that is simply described.

Consider a graph with a fixed biclique partition number, bp(G) = k. The neigh-
bourhood of a vertex is completely determined by which side, if any, it appears in
each of the k complete bipartite graphs. Thus there are at most 3k different vertex
neighbourhoods and if G has more vertices than this, then there must be two vertices
with the same neighbourhood. In any proper colouring of G, these two vertices may
be given the same colour. Thus when considering the values of χ(G) when bp(G) = k
is fixed it is only necessary to check those G with no more than 3k vertices, a large
but finite set of graphs. However nice, in principle, it is that only a finite number
of computations are necessary, this number of graphs is still very large and more
reductions are needed to take advantage of this fact.

In this paper, we study this question from a graph homomorphism point of view.
First we introduce another notation. An induced bipartite subgraph of a graph G
is a bipartite subgraph B with bipartition (X, Y ) such that if x ∈ X and y ∈ Y ,
then {x, y} is an edge of B if and only if it is an edge of G. Note that an induced
bipartite subgraph is not necessarily an induced subgraph as G may have an edge
inside X or inside Y which is not in B. We define the induced bipartite edge–partition
number, denoted ibp(G), to be the smallest number of induced bipartite subgraphs
which partition the edges of G. It follows from the definition that ibp(G) ≤ bp(G).

We build a graph EC(k) such that ibp(G) ≤ k if and only if G admits a homo-
morphism to EC(k). Recall that a homomorphism is an edge-preserving mapping
of vertices. We then determine a set S of induced subgraphs of EC(k) such that
bp(G) ≤ k if and only if there exists a homomorphism of G to one of S. Thus finding
the best bound for χ(G) in terms of bp(G), is equivalent to finding the maximum
chromatic number of the subgraphs in S. However S is large, there are many iso-
morphic subgraphs in S. Additionally the graphs in S are usually not minimal with
respect to their chromatic number. We introduce techniques to produce a smaller set
of graphs for this purpose and we propose constructions that we believe will achieve
the largest chromatic number among graphs with bp(G) = p = 4k + 1 where p is a
prime power. Finally, using some computational work on this reduced set of graphs
we show that the conjecture of Alon-Saks-Seymour does hold for bp(G) ≤ 9. This
means that the smallest counterexample must have biclique partition number at least
10.

From the structure of the graph family we construct and motivated by some of the
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Figure 1: The extended cube EC(2)

computational results we propose a place to search for small counterexamples to the
Alon-Saks-Seymour conjecture. These would substantially close the gap discussed
above. They would also begin to tell us more about the correct relationship between
bp(G) and χ(G).

2 Extended cubes and homomorphisms

Let M = (Z2 ∪ {∞},+, 0) be a monoid in which addition of elements in Z2 = {0, 1}
is done in the integers modulo 2 and x + ∞ = ∞ for every x. Let B be the set of
all elements of Mn that have a single 1 in their coordinates (B has n2n−1 elements).
We define EC(n) (the extended cube of dimension n) to be the graph whose vertex
set is Mn − �∞, �∞ = (∞,∞, . . .∞), with two vertices x and y being adjacent if and
only if x+y ∈ B. Note that the hypercube and squashed cubes [13, 20] of dimension
n are induced subgraphs of EC(n) (that have no vertices whose distance apart are
0, see below). The graph EC(2) is shown in Figure 1.

One can extend the definition of Hamming distance on hypercubes to Mn by
assuming that the distance between ∞ and anything else is 0. For example in
EC(2) the distance between (∞, 0) and (1,∞) is 0 and there is no edge between
these two vertices. The distance between (∞, 0) and (1, 1) is 1 and there is an edge
between these two vertices. This definition of distance is convenient although (as it
is not actually a metric) it abuses the usual definition of a distance function. It was
introduced by Graham and Pollak [13] for its important application to the isometric
embedding of graphs in squashed cubes (as a next best possibility for graphs not
embeddable in a hypercube).
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With this notation, EC(n) is a graph on Mn − �∞ with x and y being adjacent
if they are at Hamming distance exactly 1. A subgraph of EC(n) in which every
pair of vertices are at Hamming distance at most k is called a k-ball subgraph. The
graph EC(n) has 3n − 1 vertices, it is connected and, moreover, it is of diameter 2
as the following proposition shows.

Proposition 2.1. The graph EC(n) is of diameter 2 for n ≥ 2.

Proof. Let x and y be two distinct vertices of EC(n). If x and y are not adjacent
then we can find coordinates i and j such that neither xi nor yj is ∞, i.e., they are
0 or 1. Now let a be the vertex with ai = 1 + xi and ak = ∞ for k �= i. Let b the
vertex with bj = 1 + yj and bk = ∞ for k �= j. By construction a is adjacent to x
and b is adjacent to y. If either a or b is adjacent to both x and y, then we are done.
Otherwise the vertex c defined by ci = 1 + xi, cj = 1 + yj and ck = ∞ for k �= i, j
will be adjacent to both. �

The next two lemmas show the first connection between EC(n) and edge parti-
tioning into certain bipartite subgraphs.

Lemma 2.2. The edge set of EC(n) can be partitioned into n induced bipartite
subgraphs.

Proof. Let Bi be the bipartite subgraph with bipartition (Xi, Yi), where Xi consists
of all vertices x ∈ Mn − �∞, with xi = 0 and Yi consists of all vertices y ∈ Mn − �∞,
with yi = 1. Each edge {x, y} belongs to a unique Bi by the definition of adjacency.
Thus {Bi}ni=1 partitions E(EC(n)) into n induced subgraphs. �

Lemma 2.3. Each induced 1-ball subgraph of EC(n) has biclique partition number
at most n.

Proof. Let M be a 1-ball subgraph of EC(n). Then for each i, where 1 ≤ i ≤
n, we define Bi to be a bipartite graph where Xi is the set of vertices in V (M)
with 0 in coordinate i and Yi being the set of vertices in V (M) with 1 in their ith
coordinate. As before each edge of M belongs to a unique Bi, however the absence
of any pair of vertices at Hamming distance 2 or more ensures that Bi is a complete
bipartite subgraph. Hence {Bi}ni=1 is a set of edge-disjoint complete bipartite graphs
partitioning E(M). �

Let G be a graph with ibp(G) = n and let {B1, B2, . . . Bn} be a set of induced
bipartite subgraphs of G partitioning E(G). We define a homomorphism f of G to
EC(n) as follows. Given a vertex x of G, let f(x) be a vertex (of EC(n)) whose
ith coordinate is 0 if x ∈ Xi, is 1 if x ∈ Yi, and is ∞ otherwise. To check that
f is a homomorphism consider two adjacent vertices, x and y in G. Let Bi be
the unique induced bipartite graph containing the edge {x, y}. By construction
f(x) + f(y) = (∞,∞, . . . ,∞, 1,∞, . . . ,∞) ∈ B and therefor f(x) and f(y) are
adjacent and f is a homomorphism. Thus together with Lemma 2.2 we have:

Corollary 2.4. The maximum possible chromatic number of a graph G with ibp(G)
≤ n is χ(EC(n)).
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Corollary 2.5. The maximum chromatic number of a graph with bp(G) ≤ n is the
maximum of the chromatic numbers of the 1-ball subgraphs of EC(n).

Proof. Note that each 1-ball subgraph M of EC(n) satisfies bp(M) ≤ n. On the
other hand every graph G with bp(G) ≤ n has also ibp(G) ≤ n and thus admits a
homomorphism to EC(n). We claim that the image of G under the homomorphism
is contained in a 1-ball subgraph of EC(n). By contradiction, suppose that f(x) = u
and f(y) = v are distance 2. Without loss of generality assume that ui = uj = 0
and vi = vj = 1 and for all other l �= i, j either ul = ∞ or vl = ∞. Thus the edge
{x, y} in G is in both bipartite graphs Bi and Bj which contradicts that the bipartite
graphs decompose G. �

Without considering the isomorphisms that exist between 1-ball subgraphs, we
will show that there are exactly maximal 2n(n−1) 1-ball subgraphs. However there
are many such isomorphisms and, furthermore, in many cases a 1-ball subgraph can
be coloured with few colours easily. To this end in the next section we study EC(n)
itself.

3 Vector-domination, 1-ball subgraphs, and bases

We introduce some notation first. For a vertex x = (x1, x2, . . . xn) of EC(n) we
define S0(x) = {i | xi = 0} and call it the 0-support of x. The 1-support, denoted
by S1(x) is defined analogously. The support of a vertex x is S(x) = S0(x) ∪ S1(x),
i.e., the set of non-infinity coordinates of x. The rank of a vertex is the cardinality
of its support; a vertex of rank n, that is a vertex with no ∞ coordinate, is called a
full–rank vertex. Given a pair of vertices x and y, we say that x is support-dominated
by y if S0(x) ⊆ S0(y) and S1(x) ⊆ S1(y).

Lemma 3.1. The graph EC(n) is 2n-colourable and has an independent set of size
2n − 1.

Proof. Any 0-ball subgraph of EC(n) is an independent set of EC(n). A 0-ball
subgraph obtained by the set of vertices support-dominated by a fixed full rank
vertex is an independent set of size 2n − 1. For colouring note that c, defined by
c(x) = S1(x), is a proper colouring of EC(n). �

We conjecture that the independence number of EC(n), α(EC(N)), is 2n − 1
and that each independent set of size 2n − 1 is support-dominated by a full-rank
vertex. This conjecture for n ≤ 4 can be easily verified. For n = 5 it is verified
using Maple’s graph theory package. If our conjecture is true, then it will imply that
χ(EC(n)) > (3

2
)n because χ(G) ≥ |V (G)|/α(G) holds for every graph.

Given a vertex x of EC(n), let fi(x) be a vertex obtained from x by switching 0
and 1 in the ith-coordinate, or keeping it the same if the ith coordinate is ∞. Note
that fi is an automorphism of EC(n). Using these automorphisms, given a subgraph
M of EC(n) and a vertex x of M one can always find an isomorphic copy of M in
which the image of x has an empty 1-support. With this notation we give another
proof of the following lemma which was originally proved in [18].
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Lemma 3.2. Any 1-ball subgraph M of EC(n) with a full rank vertex is n + 1
colourable.

Proof. We may consider an isomorphic copy of M which contains the vertex 0 =
(0, 0, . . . 0). Since no vertex ofM has Hamming distance 2 or more from 0 each vertex
has 1-support of size at most 1. Therefore the colouring of EC(n) given above, i.e.,
c(x) = S1(x), is a colouring which uses at most n+ 1 colours on M . �

Observation 3.3. Note that in a 1-ball subgraph M , if a vertex x is support-
dominated by a vertex y, then every neighbour of x in M is also a neighbour of
y in M .

In finding the chromatic number of a 1-ball subgraph we may ignore the set of
rank 1 vertices as the following lemma shows.

Lemma 3.4. Let n be the smallest integer for which Conjecture 1.1 is false. Let M
be a minimal 1-ball subgraph of EC(n) with χ(M) ≥ n + 2. Then each vertex of M
has rank at least 2.

Proof. For a contradiction let x be a vertex in M that is of rank 1 and let xi be
the only non-infinity coordinate of x. We may assume, without loss of generality,
that xi = 1. Since M is minimal, it has no vertex support-dominated by another
vertex of M . Therefore, no other vertex of M has ith coordinate 1, else x would
be a support-dominated vertex. Now we may delete the ith coordinate from each
vertex to obtain a subgraph M ′ of EC(n − 1). The minimality of n implies that
M ′ is n-colourable, which induces an n-colouring of M − x, thus proving that M is
(n + 1)-colourable. �

Let M be a maximal 1-ball subgraph of EC(n), i.e., adding any other vertex
results in a pair of vertices at Hamming distance greater than 1. By Corollary 2.5,
to find the maximum chromatic number among graphs with bp(G) = n, it is enough
to find the maximum chromatic number for the set of maximal 1-ball subgraphs of
EC(n). Below we will show that each such subgraph is uniquely determined by its
set of rank 2 vertices. A rank 2 vertex x with non-infinity coordinates at i and j will
be denoted by (i, xi)(j, xj).

Note that there are total of 2n(n−1) rank 2 vertices in EC(n), n(n−1) each of two
different kinds, {(i, 0)(j, 0), (i, 1)(j, 1)|1 ≤ i < j ≤ n}, and {(i, 0)(j, 1), (i, 1)(j, 0)|1 ≤
i < j ≤ n}. Given a maximal 1-ball subgraph M of EC(n) and a pair of indices i
and j, with 1 ≤ i < j ≤ n, exactly one of the two rank 2 vertices a = (i, 1)(j, 1) and
b = (i, 0)(j, 0) can be in V (M). To see that at least one of them must be in V (M)
note that if a is at Hamming distance 2 from a vertex a′ in V (M), then a′ must agree
with b on the ith and the jth coordinates. If b is also at Hamming distance 2 from
a vertex b′ in V (M), then b′ must agree with a on the ith and the jth coordinates.
But then a′ and b′ are at Hamming distance at least 2, which contradicts the choice
of M . Now since M is a maximal 1-ball subgraph of EC(n), one of a or b must be
in V (M). Similarly, exactly one of (i, 1)(j, 0) and (i, 0)(j, 1) is in V (M). Thus every
maximal 1-ball set of vertices has exactly n(n− 1) rank 2 vertices.
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On the other hand, any set B of n(n− 1) rank 2 vertices, pairwise at Hamming
distance at most 1, determines a maximal 1-ball subgraph. To obtain such a maximal
1-ball subgraph from B we define MB to be set of all vertices in EC(n) that are at
Hamming distance at most 1 from vertices in B. We claim MB forms a maximal
1-ball subgraph.

To prove this claim, first note that the size of B forces us to have one from each
pair of rank 2 vertices at Hamming distance 2. To see that no pair of vertices of
MB are at Hamming distance 2, assume, for contradiction, that a and b are a pair of
vertices inMB with Hamming distance 2. Thus there are coordinates i and j at which
a and b are both not infinity and do not agree. Hence (i, ai)(j, aj) and (i, bi)(j, bj) are
a pair of rank 2 vertices at Hamming distance 2, and therefore exactly one of them,
say (i, ai)(j, aj), is in B. However this rank 2 vertex is also at Hamming distance 2
from b, contradicting the choice of elements in MB.

Given a maximal 1-ball subgraph M we call B, the set of rank 2 vertices in M ,
the base of M . We have proved:

Theorem 3.5. Any maximal 1-ball subgraph is uniquely determined by its base.

Corollary 3.6. There are exactly 2n(n−1) maximal 1-ball subgraphs of EC(n).

Therefore, to find the maximum chromatic number among the graphs with bp(G)
= n, it is enough to find the chromatic number of the just 2n(n−1) maximal 1-ball
subgraphs of EC(n). We should mention here that, first of all, there are many
isomorphisms between distinct members of this set of subgraphs. Secondly, we do
not need to check the chromatic number of the actual maximal 1-ball subgraph but
rather, again by Observation 3.3, to check the chromatic number of the subgraph
induced by the non-support-dominated set of vertices of the maximal 1-ball subgraph.

At this stage, it is convenient to encode each base as a 2-arc-coloured tournament
T whose nodes are labelled 1, 2, . . . , n. For every pair of vertices, i and j there is
exactly one arc between them. The arc will have a colour (blue or red) which encodes
00 or 11 pairs in the base. Exactly one of (i, 0)(j, 0) and (i, 1)(j, 1) is in the base. If
(i, 0)(j, 0) is in the base, then we colour the arc between i and j B (blue); if (i, 1)(j, 1)
is in the base, then we colour the arc between i and j R (red). Additionally the arc
will have a direction (from i to j or from j to i) which encodes the 01 or 10 pairs
in the base. Exactly one of (i, 0)(j, 1) and (i, 1)(j, 0) is in the base. If (i, 0)(j, 1)
and (i, 0)(j, 0) are in the base then we direct this blue arc from i to j. If (i, 0)(j, 1)
and (i, 1)(j, 1) are in the base then we direct this red arc from j to i. Similarly
if (i, 1)(j, 0) and (i, 0)(j, 0) are in the base then we direct this blue arc from j to
i. If (i, 1)(j, 0) and (i, 1)(j, 1) are in the base then we direct this red arc from i to
j. That is, we direct blue arcs from the 0 towards the 1 and red arcs from the 1
towards the 0. This gives a one-to-one correspondence between the bases and the
2-arc-coloured tournaments. In fact there are a few ways of encoding a base in a
2-arc-coloured tournament. Our choice has the simplest description of the action
of an automorphism of EC(n) on the encoded 1-ball subgraph. This description is
given at the end of next section, after we determine all the automorphisms of EC(n).
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Figure 2: 2-arc-coloured tournament from Example 3.7.

Example 3.7. Consider the 1-ball subgraph of EC(5) consisting of the following
vertices.

Rank 2 vertices:
(0, 0,∞,∞,∞), (∞, 0, 0,∞,∞), (∞,∞, 0, 0,∞), (∞,∞,∞, 0, 0), (0,∞,∞,∞, 0),
(0, 1,∞,∞,∞), (∞, 0, 1,∞,∞), (∞,∞, 0, 1,∞), (∞,∞,∞, 0, 1), (1,∞,∞,∞, 0),
(1,∞, 1,∞,∞), (∞, 1,∞, 1,∞), (∞,∞, 1,∞, 1), (1,∞,∞, 1,∞), (∞, 1,∞,∞, 1),
(1,∞, 0,∞,∞), (∞, 1,∞, 0,∞), (∞,∞, 1,∞, 0), (0,∞,∞, 1,∞), (∞, 0,∞,∞, 1).

Rank 3 vertices:
(0, 1,∞, 1,∞), (∞, 0, 1,∞, 1), (1,∞, 0, 1,∞), (∞, 1,∞, 0, 1), (1,∞, 1,∞, 0).
The base of this 1-ball subgraph is the set of its rank 2 vertices. The corresponding
2-arc-coloured tournament is show in Figure 2

Another way to think about finding the chromatic number of 1-ball subgraphs
comes from the following observation about their independent sets. Although we do
not have a characterization of all maximal independent sets of EC(n), there is an
easy characterization of independent sets in each 1-ball subgraph. Since there are
no two vertices at Hamming distance 2 or more in a 1-ball subgraph and since every
pair of vertices at Hamming distance exactly 1 are adjacent, the only independent
sets in a 1-ball subgraph are 0-ball subgraphs. It is not hard to check that the
set of vertices in any 0-ball subgraph is support-dominated by a full rank vertex.
Thus determining the chromatic number of any given 1-ball subgraphs is equivalent
to finding the minimum set of full rank vertices (which need not be in the 1-ball
subgraph) which support-dominate every vertex in the 1-ball subgraph.

4 Automorphisms of EC(n)

Let a be a permutation of the n coordinates of the vertices of EC(n); obviously
a is an automorphism of EC(n). Let fi be the function which exchanges values
of 0 and 1 in the ith coordinate of each vertex of EC(n), leaving it the same if
the ith coordinate is ∞. As we already mentioned it is not hard to see that fi is
an automorphism of EC(n). Composition of any number of these automorphisms
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is also an automorphism; let A(n) be the set of all these automorphisms. In this
section we show that A(n) is the full automorphism group of EC(n). We note that
A(n) is isomorphic to S2(Sn), the wreath product of S2 and Sn. For discussion of
wreath products and their properties we refer the reader to [10].

Let x be a vertex of rank i in EC(n). Any vertex y adjacent to x can be formed
from x by exchanging 0 and 1 in one entry (i choices), then replacing some subset
of the other entries in S(x) by ∞ (2i−1 choices), then setting each entry outside
S(x) arbitrarily (3n−i choices). Hence, a vertex of rank i has degree di = i2i−13n−i.
Using prime factorization, it is straightforward, although not elegant, to check that
di = dj implies i = j or i = 2, j = 3. Since a vertex of rank i can be mapped to any
other vertex of rank i using automorphisms from A(n), the set of vertices of rank i
(i �= 2, 3) forms an orbit under the action of the automorphism group of EC(n) on
vertices of EC(n).

Let φ be any automorphism of EC(n). Then φ must map a vertex of rank 1 to a
vertex of rank 1. Let (i, xi) be a vertex of rank 1 with xi �= ∞. Then the action of
φ on (i, 0) or (i, 1) completely determines how φ acts on the ith coordinate of each
vertex. Since φ((i, 0)) is a vertex of rank 1, let l be its non-infinity coordinate. We
first investigate the effect of φ on the value, xi. If φ((i, 0)) has a 1 in its non-infinity
coordinate, then φ must exchange every 0 and 1 in the ith coordinate of each vector
in order to preserve adjacency. If the non-infinity coordinate of φ((i, 0)) is a 0, then φ
should not make any change to the ith coordinate of any vector. Note that in either
case if the ith coordinate of a vertex z is ∞, then φ should keep it as ∞, as otherwise
φ(z) will be adjacent to either φ((i, 0)) or φ((i, 1)), whereas z was not adjacent to
(i, 0) nor (i, 1).

Now we investigate the positional effect of φ on xi. If the lth coordinate of
φ((i, 0)) is the non-infinity coordinate, then φ must take the ith coordinate of each
vertex to the lth coordinate (after the change from previous part). Moreover, this
correspondence of i to l must be one-to-one as we are not allowed to create new
adjacency. Hence we have proved:

Proposition 4.1. The set A(n) of automorphisms, generated by permutations of
coordinates and exchanges of 1 and 0 in a fixed coordinate, is the full automorphism
group of EC(n).

Two bases are isomorphic if there is an automorphism of EC(n) which maps
one base to the other. We note that two bases are isomorphic if and only if their
corresponding maximal 1-ball subgraphs are isomorphic. Isomorphism between two
bases can also be described using their corresponding 2-arc-coloured tournaments, as
follows: We note that a permutation of the coordinates of the vertices in EC(n) cor-
responds precisely to the same permutation acting on the nodes of the tournaments.
The automorphism fi, i.e., switching 0 and 1 at coordinate i, does not change the
nodes nor the directions of the arcs of the tournament, it simply switches the colour
of every arc leaving node i while keeping the colour of every other arc unchanged.
This observation will be used in Section 5 to verify the former Alon-Saks-Seymour
Conjecture for small values of n.
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5 The rank of 1-ball subgraphs

As Lemma 3.2 indicates, the existence of a vertex of full rank in a 1-ball subgraph
leads to a small chromatic number. This leads to the following natural question:
what is the minimum value of the maximum rank of a vertex over all maximal 1-ball
subgraphs? For this purpose, we define the rank of a maximal 1-ball subgraph to be
the maximum rank of its vertices, and let ρ(n) denote the minimum rank over all
maximal 1-ball subgraphs of EC(n). We now prove

Proposition 5.1. ρ(n) = Θ(logn), that is, there are positive constants c1 and c2
such that c1 log n ≤ ρ(n) ≤ c2 log n.

Proof. This problem of finding ρ(n) is closely related to the Ramsey number
R(m,m). The Ramsey number R(m,m) is defined to be the least positive inte-
ger t such that every blue-red edge colouring of the complete graph Kt contains
either a blue clique or a red clique on m vertices [5]. Let C(n) be the largest integer
such that every 2-arc-coloured Kn contains a monochromatic clique of order C(n)
and there is a 2-arc-coloured Kn which does not contain a monochromatic clique of
order C(n) + 1. We note that

R(C(n), C(n)) ≤ n < R(C(n) + 1, C(n) + 1).

Since c12
m/2 ≤ R(m,m) ≤ 4m−1 for some positive constants c1 (see, e.g., [20], pp.

360-361), we have
c12

C(n)/2 ≤ n ≤ 4C(n),

which implies
C(n) = Θ(logn).

Next we will show that C(n) ≤ ρ(n) ≤ 2C(n) for every positive integer n. This
immediately implies Proposition 5.1.

Let M be a maximal 1-ball subgraph of EC(n) and T be the corresponding 2-arc-
coloured tournament. A vertex x of M , with 1-support S1(x) and 0-support S0(x),
corresponds to an ordered pair (T0, T1) of sub-tournaments of T , where T0 is induced
by S0(x) whose arcs all have colour B, T1 is induced by S1(x) whose arcs all have
colour R, all arcs in T from S0(x) to S1(x) have colour B and all arcs in T from
S1(x) to S0(x) have colour R. This observation will also be useful for generating all
the vertices in M of rank greater than 2.

Now let M be a maximal 1-ball subgraph of EC(n) whose rank is ρ(n). Since
the corresponding 2-arc-coloured tournament T contains a monochromatic sub-tour-
nament of size C(n), we have ρ(n) ≥ C(n).

On the other hand, let T be a 2-arc-coloured tournament of order n such that it
does not contain a monochromatic sub-tournament of order C(n) + 1. Let v be a
vertex with maximum rank in the corresponding maximal 1-ball subgraph. Then

ρ(n) ≤ |S0(v)|+ |S1(v)| ≤ 2C(n).

This completes the proof of Proposition 5.1. �
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6 Proof of Theorem 1.2

With the terminology from previous sections we make further reductions, and using
these reductions we can prove the claim of the former conjecture for small values
of n and thus increase the lower bound on the minimum counterexample. If T is a
2-arc-coloured tournament we define the term monochromatic subgraph of T to mean
the directed graph on the same node-set as T containing every arc of just one of the
colours from T . The union of the two monochromatic subgraphs of T is T .

Let M be a maximal 1-ball subgraph of EC(n) and k < n be an integer. Let
J be a k-subset of {1, 2, . . . , n}. A set U of vertices in M is called J-independent
if |S0(x) ∩ S1(y) ∩ J | + |S1(x) ∩ S0(y) ∩ J | = 0 for any two vertices x and y in U .
We note that, if U is J-independent, then the subgraph M [U ] of M induced by U
admits a homomorphism to a maximal 1-ball subgraph of EC(n− k). Let M [Ū ] be
the subgraph of M induced by the complement of U , then we have

χ(M) ≤ χ(M [U ]) + χ(M [Ū ]).

Suppose that the stated result of the former Alon-Saks-Seymour Conjecture is true
for all k ≤ n− 1 and there is a subset U of V (M) which is J-independent for some
J such that χ(M [Ū ]) ≤ k. Then we have

χ(M) ≤ k + (n− k + 1) = n+ 1.

This observation is used to derive the following.

Proposition 6.1. Suppose that for all graphs G with bp(G) < n, we have χ(G) ≤
bp(G)+1. Let T be a 2-arc-coloured tournament with n nodes such that one (or both)
of the two monochromatic subgraphs of T contains a node with outdegree 0. Then
the corresponding maximal 1-ball subgraph is (n+ 1)-colourable.

Proof. We only need to consider the case when the monochromatic subgraph of T of
colour R contains a node with outdegree 0, since the other case can be converted to
the first case by switching 0 and 1 at every coordinate. Let TR be the monochromatic
subgraph of T of colour R and suppose that node i has outdegree 0 in TR. Let M
be the maximal 1-ball subgraph corresponding to T , and U be the subset of V (M)
consisting of all the vertices whose ith coordinate is either 0 or ∞. Then Ū , the
complement of U , must form an independent set in M . If Ū contains two adjacent
vertices x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), then there is a coordinate j �= i
such that {xj , yj} = {0, 1}. This implies that TR contains the arc directed from i
to j, contradicting the assumption that node i has outdegree 0 in TR. By the above
observation, χ(M) ≤ 1 + n. �

Thus we only need to consider 2-arc-coloured tournaments T such that at every
node there is a leaving arc of colour B and a leaving arc of colour R. In particular,
we only need to consider those tournaments in which every node has outdegree at
least 2. This observation itself immediately gives the following.

Theorem 6.2. Conjecture 1.1 is true for n ≤ 5.
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Proof. We note that EC(1) is isomorphic to K2, and hence the result is true
for n = 1. For n ≤ 4, every tournament contains a node whose outdegree is less
than 2 (otherwise it needs at least 2n arcs), thus we may apply Proposition 6.1 and
induction. We also note that the case n ≤ 4 was previously proved by Rho [18].

Next we consider the case n = 5. In this case either Proposition 6.1 will apply
again or each node has exactly 2 out-going arcs, one of each colour. We claim that
all such 2-arc-coloured tournaments are basis of a 1-ball subgraph isomorphic to the
one obtained from two monochromatic 5-cycles. To see this, suppose T is a 2-arc-
coloured tournament on 5 nodes with each node having exactly 2 out-going arcs one
of each colour. If each node also has an incoming arc of each colour then T must be
union of two directed monochromatic 5-cycles and we are done. Else there is a node
v1 with two incoming blue arcs. Let v2v1, v3v1, v1v4 be the blue arcs incident to v1,
thus v1v5 is a red arc. By the automorphism f1 we have symmetry between v4 and v5
so we may assume v5v4 is the arc connecting v4 and v5. Without loss of generality we
may also assume the other out-going arc at v5 is v5v3. The automorphism, f5 allows
us to choose the colours of these two out-going arcs. The arc connecting v2 and v5
must be directed towards v5 and thus must be coloured red. Now applying f2 will
change the coloured indegree of v5 and v1, giving them both one in-coming arc of each
colour. The out-going arcs from v4 connect to v2 and v3 and using automorphism,
f4 we may assume they are colours blue and red respectively. This finally forces arc
v3v2 to be colour red. Thus, up to automorphism, each vertex has one incoming arc
of each colour.

We use the blue directed 5-cycle to assign a distance to every red arc, equivalent
to the oriented distance from its tail to its head. It is easy to see that the distance
must be either 2 or 3. If it is 3 then we apply all the automorphisms, fi for 1 ≤ i ≤ 5,
switching colours and now the red arcs will all have distance 2 with respect to the
blue 5-cycle. This shows that the orientations of the two directed monochromatic 5-
cycles can be chosen arbitrarily. Thus, without loss of generality, the 1-ball subgraph
will have the following 10 vertices as the only non-support-dominated vertices.

Rank 2 vertices:
(0, 0,∞,∞,∞), (∞, 0, 0,∞,∞), (∞,∞, 0, 0,∞), (∞,∞,∞, 0, 0), (0,∞,∞,∞, 0).
Rank 3 vertices:
(0, 1,∞, 1,∞), (∞, 0, 1,∞, 1), (1,∞, 0, 1,∞), (∞, 1,∞, 0, 1), (1,∞, 1,∞, 0).

A 6-colouring of the corresponding 1-ball subgraph is easily obtained by colouring
all the rank 2 vertices with one colour and assigning each rank 3 vertex a new distinct
colour. Note that rank 2 vertices form an independent set as they are support-
dominated by (0, 0, 0, 0, 0). We will now show that there cannot be any vertices of
rank 4 or 5. In every element of a base (all the rank 2 vertices) a 1 in position i
implies an ∞ in position i+1 (mod 5). A vertex of rank at least 4 must have at least
three pairs of consecutive (mod 5) positions that do not contain ∞. Thus a vertex
of rank at least 4 will contain at least three 0’s. No mater how these are arranged in
the 5 positions, it is incompatible with the rank 2 vertices that contain two 1’s. So
there are no vertices of rank 4 or 5. �
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Proof of Theorem 1.2. With the aid of a long computation we were able to prove
Theorem 1.2. The use of Proposition 6.1 to prove the case for n depends on its
validity for all k < n. In the reminder of this section we describe the computational
methods for n = 9, this computation depends on n = 6, 7, 8 which were checked with
the same methods.

Note that for n = 9, the number of 1-ball subgraphs needed to be checked is 272

and, with today’s computational power, it is practically impossible to even produce
all these graphs. However there are many isomorphisms among maximal 1-ball sub-
graphs and the task is tractable once most isomorphic copies are removed. To this
end we first start with a list of the 191536 non-isomorphic tournaments on 9 nodes.

Now, given a fixed tournament T on 9 nodes, we have 236possible 2-arc-colourings,
each corresponding to a maximal 1-ball subgraph. However there are still many
isomorphisms among these maximal 1-ball subgraphs. Such an isomorphism may be
induced by an automorphism fi of EC(n) for i = 1, 2, . . . 9, by an automorphism
of T itself, or by any combination of these. We note that the actions of fi on a
maximal 1-ball subgraph is equivalent to exchanging the colour of the out-going arcs
from node i in the corresponding 2-arc-coloured tournament. If we pick an out-going
arc for each node in T and then fix a colour for that arc, we still will produce all
the non-isomorphic maximal 1-ball subgraphs obtained form T, but with far fewer
isomorphic copies. Those colourings for which all the arcs leaving some node have
the same colour can be discarded, using Proposition 6.1.

Our next step was to produce and then colour the 1-ball subgraph from a given
2-arc coloured tournament. To make the graphs smaller, and so easier to colour, we
discarded the support-dominated vertices as we discussed earlier. To produce the
set of all non-support-dominated vertices from a given 2-arc-coloured tournament we
introduced the concept of bident-free subtournament. A bident in a 2-arc-coloured
tournament is a subgraph consisting of 2 arcs with different colours and common
beginning node. In Figure 2, the nodes 1, 2, 3, blue arc (1, 2) and red arc (1, 3) are
a bident. A subtournament of a given tournament is an induced sub-digraph on any
subset of nodes of the tournament. A bident-free subtournament in a 2-arc-coloured
tournament is a subtournament that has no bident. In Figure 2 nodes 1, 3 and 4
induce a bident-free subtournament.

If a maximal 1-ball subgraph M is encoded by a 2-arc-coloured tournament TM ,
then each vertex v of M will correspond to a subtournament Tv which is the union
of a blue clique Tb (nodes corresponding to 0 coordinates) and a red clique Tr (nodes
corresponding to 1 coordinates) with the extra property that each out-going arc from
Tb is blue and each out-going arc from Tr is red. It is now clear that Tv is bident-free.
On the other hand given a bident-free subtournament T ′ we can construct one or
two vertices corresponding to T ′. To this end, for each coordinate x, if x is not a
node of T ′ choose ∞ for x, if x is a node of T ′ with an out-going arc of colour B
then choose 0 for this coordinate, if x has an out-going arc of colour R choose 1
for this coordinate, if x has no out-going arc then x can be either 0 or 1, in which
case we will have two vertices of M corresponding to T ′. There can be at most one
such x; supposing that there were two, there would have to be an arc between them



Z. GAO ET AL. /AUSTRALAS. J. COMBIN. 66 (2) (2016), 211–228 225

contradicting the fact that they each have no out-going arcs.

Note that of the two vertices obtained in the last case, it is possible to have a non-
support-dominated vertex and a vector-dominated vertex. Thus it is not necessarily
true that the bident-free tournament corresponding to a non-support-dominated ver-
tex is maximal with respect to being bident-free, but this is almost true. We use
the set of maximal bident-free subtournaments to produce our set of non-support-
dominated vertices as follows.

We first find all the maximal bident-free subtournaments. This was achieved using
the following iteration. For disjoint C,L, F ⊆ {1, 2, . . . , n}, let 〈C,L, F 〉 denote the
set of all bident-free sets X such that C ⊆ X ⊆ C ∪ L and such that X + x is not
bident-free for any x ∈ (L \ X) ∪ F . The set of all maximal bident-free subsets is
〈∅, {1, 2, . . . , 9}, ∅〉. We determine the elements of this set by repeatedly applying
the refinement 〈C,L, F 〉 = 〈C+x, L−x, F 〉 ∪ 〈C,L−x, F+x〉 for some x ∈ L. At any
step we can apply the following simplification rules:

1. 〈C,L, F 〉 = 〈C,L−x, F 〉 for any x ∈ L such that C+x is not bident-free.

2. 〈C,L, F 〉 = 〈C,L, F−x〉 for any x ∈ L such that C+x is not bident-free.

3. 〈C,L, F 〉 = ∅ if C ∪ L+x is bident-free for any x ∈ F .

4. 〈C,L, F 〉 = {C ∪ L} if rules 1–3 have been applied and C ∪ L is bident-free.

The set of non-support-dominated vertices are now built as follows. First for each
maximal bident-free subtournament we construct one or two vertices corresponding
to it. Then for each node x of a maximal bident-free subtournament T ′, we remove
all the out-going arcs together with their end nodes to obtain a bident-free subtour-
nament T ′

x in which x is a sink. Then we add to L the two vertices made from T ′
x

if they are not support-dominated. Finally, we remove duplicate vertices by sorting;
usually there were very few.

For each graph M produced by this method, we applied the standard greedy
colouring algorithm with random vertex labellings until a colouring with 10 colours
was found. This was successful in all cases.

Of 191536 nonisomorphic tournaments on 9 vertices, 6880 have minimum out-
degree 0 and 50816 have minimum outdegree 1. There are 105916 tournaments of
minimum outdegree 2, 27909 tournaments of minimum outdegree 3, and 15 of mini-
mum outdegree 4.

Our computation produced 2709401599952 graphs with 21 being the number of
vertices of the smallest graph and 66 being the number of vertices of the largest
graph. Table 6 shows how many graphs there were of each order. The total time
for the computation was 11 GHz–years. Source code for the search is available for
interested readers at http://users.cecs.anu.edu.au/~bdm/data/jbr.tar.gz .
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|V (M)| Number of graphs |V (M)| Number of graphs
21 1 44 125901710465
22 604 45 81267251957
23 22546 46 48642558565
24 335917 47 27104914998
25 3009042 48 14110182128
26 19453912 49 6883192715
27 99243002 50 3150968376
28 414422072 51 1356263082
29 1449107249 52 548904802
30 4319529292 53 209052332
31 11117985007 54 74877323
32 24970401600 55 25204691
33 49387718809 56 7956173
34 86792501140 57 2363278
35 136716885660 58 652342
36 194566281907 59 167827
37 251704504252 60 40896
38 297176474277 61 8294
39 320821496578 62 1722
40 316875725672 63 207
41 286424162481 64 34
42 237128311702 65 1
43 180127755021 66 1

Total 2709401599952

Table 1. Colouring 1-ball subgraphs of EC(9)

7 Concluding Remarks

It is natural to think that the more non-support-dominated vertices we have in a
maximal 1-ball subgraph the more chances we have for a higher chromatic number
with a fixed bp. In this regard we would like to ask what is the largest size of a
1-ball subgraph of EC(n) with no support-dominated vertices. For n = 5 and n = 9
we have observed that such a largest graph is obtained when the 2-arc colouring in
the corresponding tournament comes from a quadratic residue graph, i.e., {x, y} is
coloured B if x− y is a square in Zn and R otherwise. We note that for these orders
this is also a Ramsey colouring; i.e., a colouring in which the largest monochromatic
subgraph is as small as possible. The arcs in these tournaments are directed from x
to x + i (mod n) for i < n/2. We do not know if this is a general pattern. But we
propose that perhaps answering the following question will provide a much smaller
counterexample to the Alon-Saks-Seymour Conjecture than is already known:
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Problem 7.1. Given n = 4p + 1 where p is a prime power, what is the largest
chromatic number of a 1-ball subgraph of EC(n) corresponding to a 2-arc coloured
Eulerian tournament whose colour classes correspond to the quadratic residue graph?

We note that the origin of Graham Pollak theorem comes from studying the
possibility of embedding a graph G in EC(n) for some n. By proving that the
largest clique size of EC(n) is equal to n+1, they showed that the smallest n might
be as big as |V (G)| − 1. P. Winkler, proving the Graham-Pollak conjecture [21],
showed that n = |V (G)| − 1 works for every graph. Perhaps studying EC(n) would
help to find a combinatorial proof of the Graham-Pollak theorem. So we propose the
following question:

Problem 7.2. What is α(EC(n))?.

We believe that it is 2n − 1.
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