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Abstract

Moderately large numbers of transitive elliptic spreads are constructed
in characteristic 2 and dimension ≡ 2 (mod 4).

1 Introduction

If V is an orthogonal vector space, an orthogonal spread is a set of maximal totally
singular subspaces such that every nonzero singular vector is in a unique member of
the set. Throughout this note q will denote a power of 2. Dillon [4], and later also Dye
[5], showed that O−(2m, q)-spaces and O(2m− 1, q)-spaces have orthogonal spreads
for all m ≥ 2, and that O+(2m, q)-spaces have orthogonal spreads if and only if m is
even. Moreover, the O+(2m, q)-spreads and O(2m−1, q)-spreads constructed in [4, 5]
are permuted 3-transitively by isometry groups isomorphic to PSL(2, qm−1), which is
not the case for the O−(2m, q)-spreads in [4, 5] when m > 2 (see Example 3.1 below).
The fact that the various orthogonal spreads in those papers admit transitive cyclic
groups of isometries is implicit in their constructions (see [7, 8] and Example 3.1).
Much of the small literature on elliptic spreads (i. e., O−(2m, q)-spreads) has focused
on existence in large dimensions (citing [5]; cf. Example 3.2 below) or examples in
dimension 6 behaving “nicely” (as in [3, 2]).

This note is concerned with large-dimensional examples, requiring information
from [8] to obtain many O−(2m, q)-spreads admitting transitive cyclic groups of
isometries when m > 1 is odd (although “many” is rather small compared to the
numbers obtained in related research on semifields [9]). Equivalence of elliptic spreads
is defined at the end of the next section.

Theorem 1.1. Let m > 1 be odd and let q be a power of 2. Let m,m1, . . . , mn−1 be
any sequence of n ≥ 1 distinct divisors > 1 of m with each divisible by the next. Then
there are at least

(∏n−1
1 (qmi+1)

)
/2m1 log2 q pairwise inequivalent O

−(2m, q)-spreads
each of which is permuted transitively by a cyclic group of isometries.

We will see that this result is closely tied to results in [8]. Such a sequence (mi) can
be obtained from the prime factorization m =

∏n
1 pj of m by setting mi =

∏n
i+1 pj.
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In particular, we obtain at least qm/p
/
2(m/p) log2 q inequivalent elliptic spreads when

p is the smallest prime dividing m.

The desirability of having examples of transitive orthogonal spreads can be seen
from [1]. There are analogous results in [8] producing many O+(2m, q)-spreads and
O(2m− 1, q)-spreads.

2 Background

We refer to [12] for the standard properties of the orthogonal and symplectic vector
spaces used here. We name geometries using their isometry groups. We will be
concerned with singular vectors and totally singular (t.s.) subspaces of orthogonal
spaces, and totally isotropic (t.i.) subspaces of symplectic spaces. In characteristic
2, an orthogonal vector space is also a symplectic space, and t.s. subspaces are also
t.i. subspaces.

Orthogonal spreads were defined earlier. For the O−(2m, q)-spaces considered
here, an orthogonal spread consists of qm +1 t.s. m− 1-spaces, and is also called an
elliptic spread. A symplectic spread is a set of maximal t.i. subspaces of a symplectic
space such that every nonzero vector is in a unique member of the set.

Two orthogonal or symplectic spreads are equivalent if there is an isomorphism of
the underlying orthogonal or symplectic geometries sending one spread to the other.
The automorphism group of an orthogonal or symplectic spread is the group of such
isomorphisms of the spread with itself.

3 Examples

Let F (2) = Fq2m ⊃ F = Fqm ⊃ K = Fq form ≥ 2, with involutory field automorphism
x �→ x̄. Let W := ker T for the trace map T :F → K.

The quadratic form Q(x) := T (xx̄) turns F (2) into an orthogonal K-space with
associated alternating bilinear form (x, y) := T (xȳ + x̄y). The subspace W is t.s.: if
w ∈ W then Q(w) = T (ww̄) = T (w)2 = 0.

Write C := {θ ∈ F (2) | θθ̄ = 1}, so that F (2)∗ = F ∗ × C. If θ ∈ C then θ̃ : x �→ xθ
defines an isometry of the orthogonal space F (2) (since T (θxθx) = T (θθ̄xx̄) = T (xx̄)).

The occurrence of a group C̃ of these qm + 1 isometries makes it clear that F (2) is
an O−(2m, q)-space: its singular points form an elliptic quadric. Moreover, W is a
maximal t.s. subspace since dimW = m− 1.

Example 3.1. The set F
˜C is the usual desarguesian spread. Moreover, W

˜C is an
elliptic spread (as in [4] and [5]) permuted transitively by the cyclic isometry group C̃:

the members ofW
˜C intersect pairwise in 0, and its union has size 1+(qm+1)(qm−1−1),

which is the number of singular vectors. In view of [1, Theorem 1.1], if m > 2 then

the automorphism group of W
˜C normalizes C̃.
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In dimension 2m = 6 the Klein correspondence produces an ovoid from W
˜C that

is constructed in an entirely different manner and studied in detail in [3]. These
examples are equivalent by [3, Theorem 1.1], and the automorphism group appears
in [3, Theorem 3.1].

Example 3.2. Let Σ be any symplectic spread in an Sp(2m, q)-space V . There are
many different ways that V can be equipped with the structure of an O−(2m, q)-
space producing the given symplectic structure. Choose one of them. We emphasize
that this orthogonal structure is not related to Σ.

IfX ∈ Σ let X ′ be the set of singular vectors in X. Then X ′ is a t.s. (m−1)-space
(since the quadratic form Q|X :X → K is semilinear on the t.i. subspace X), and
{X ′ | X ∈ Σ} is an orthogonal spread of the orthogonal space V .

This presumably produces reasonably large numbers of inequivalent elliptic
spreads starting from a single symplectic spread. However, in the next section we
will proceed differently, using inequivalent symplectic spreads. Most of the known
symplectic spreads in characteristic 2 are the ones in Example 3.1 or are obtained
by a process described in [7, 8, 9]; examples are in the next section. The only other
known types arise from the Suzuki groups [10], are in Sp(4m, 2e)-spaces for odd m
and e, and again produce elliptic spreads.

4 Moderately large numbers of elliptic spreads

The following notation is based on [8]. Let F (2) ⊃ F = F0 ⊃ · · · ⊃ Fn = Fq be
a tower of fields with m := [F :Fn] odd and corresponding trace maps Ti :F → Fi.
Write Wi := ker(Ti+1

∣∣
Fi
). Since m is odd, Tn(1) = 1 and TnTi(x) = Tn(x) for all i

and all x ∈ F . For each i let F
(2)
i be the subfield of F (2) of degree 2 over Fi.

View V := F (2) as an O−(2m, q)-space with associated quadratic form Qn(x) :=
Tn(xx). Then V is also a symplectic space, with alternating bilinear form (x, y)n :=

Tn(xy + xy). Let C and C̃ be as before.

Let ζ0 = 1 and 1 �= ζi ∈ C∩F
(2)
i for i ≥ 1. Write γi :=

∏i
0 ζj, 0 ≤ i ≤ m− 1, and

S((Fi)
n
0 , (ζi)

n
0

)
:=

{( n−1∑
0

Wiγi + Fnγn
)
θ | θ ∈ C

}
. (4.1)

By [8, Theorems 4.3 and 5.2] (cf. [6, pp. 565–617]),

(a) S((Fi)
n
0 , (ζi)

n
0

)
is a symplectic spread of the Fn-space V, and C̃ acts transitively

on this spread; and

(b) For
(
(Fi)

n
0 , (ζi)

n
0

)
and

(
(F ′

i )
n′
0 , (ζ

′
i)

n′
0

)
as above, if the associated symplectic

spreads are equivalent then n′ = n, F ′
i = Fi and ζ ′i = ζσi for some σ ∈ AutF (2)

and all i.
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We use (a), and parts of the proof of (b) in [8], to prove the following result, which
implies Theorem 1.1:

Theorem 4.2. For odd m > 1, even qm > 8 and
(
(Fi)

n
0 , (ζi)

n−1
0

)
as above,

(i) Σ
(
(Fi)

n
0 , (ζi)

n−1
0

)
:=

{( n−1∑
0

Wiγi
)
θ | θ ∈ C

}
is an O−(2m, q)-spread of the Fn-

space V equipped with the quadratic form Qn, and C̃ is a group of isometries
acting transitively on this elliptic spread, and

(ii) Σ
(
(Fi)

n
0 , (ζi)

n−1
0

)
and Σ

(
(F ′

i )
n′
0 , (ζ

′
i)

n′−1
0

)
are equivalent if and only if n′ = n,

F ′
i = Fi and ζ ′i = ζσi for some σ ∈ AutF (2) and all i.

Proof. (i) By Example 3.2 together with theorem (a) stated above, it suffices to
verify that

∑n−1
0 Wiγi is a t.s. Fn-space. This subspace is a hyperplane of the t.i. Fn-

space
∑n−1

0 Wiγi + Fnγn; we will show that it is the set of Qn-singular vectors of
that Fn-space. If wi ∈ Wi, 0 ≤ i ≤ m−1, then Qn(wiγi) = Tn(wiγiwiγi) = Tn(w

2
i ) =

TnTi+1(wi)
2 = Tn(0). Thus,

∑n−1
0 Wiγi is t.s. since it is a t.i. subspace spanned by

singular vectors.

(ii) Assume that Σ
(
(Fi)

n
0 , (ζi)

n−1
0

)
and Σ

(
(F ′

i )
n′
0 , (ζ

′
i)

n′−1
0

)
are equivalent by a semi-

linear map of F (2) preserving the orthogonal geometry. Then that map is a semilinear
isomorphism of F (2) as a vector space over Fn with F (2) as a vector space over Fn′,
so that Fn = Fn′ and we have only one quadratic form Qn to consider. (This avoids
the additional trace map F (2) → F2 used in [8, p. 8].)

The cyclic group C̃ is transitive on both Σ
(
(F ′

i )
n′
0 , (ζ

′
i)

n′−1
0

)
and Σ

(
(Fi)

n
0 , (ζi)

n−1
0

)
,

so that Σ
(
(F ′

i )
n′
0 , (ζ

′
i)

n′−1
0

)
= Σ

(
(Fi)

n
0 , (ζi)

n−1
0

)σ
for some σ ∈ AutF (2) by the exact

same Sylow argument as in [8, proof of Theorem 5.2]. This equality of sets implies
that n′ = n and ζ ′i = ζσi for some σ ∈ AutF (2) and all i as in [8, Lemma 5.3].
(More precisely, what is needed is the bookkeeping proof of that lemma but with all
references to γn and γ′

n′ deleted.)

The converse is trivial.

Remark 4.3. As in [8], the classification of the finite simple groups was not needed
for dealing with elliptic spread equivalence. However, in view of [1] the automorphism
group of Σ

(
(Fi)

n
0 , (ζi)

n−1
0

)
is a 1-dimensional semilinear group: the semidirect product

of C̃× F ∗
n with the stabilizer in AutF (2) of all ζi.

Remarks 4.4. A symplectic spread in anO−(2n, q)-space produces an elliptic spread
(Example 3.2). However, comparing (4.1) and the results following it with Theo-
rem 4.2 shows that the same elliptic spread can arise from many inequivalent sym-
plectic spreads by using different choices for ζn.

This observation should be compared with [7] and various sequels (such as [8, 9]).
Those papers are based on the fact that a symplectic spread in an Sp(2m, q)-space
(with m odd and q even) produces an essentially unique orthogonal spread in an
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O+(2m+2, q)-space, while an orthogonal spread in an O+(2m+2, q)-space produces
many inequivalent symplectic spreads and hence many affine planes.

Remark 4.5. Is there any way to decide whether or not a given elliptic spread Σ
in an O−(2n, q)-space “extends” to a symplectic spread? In other words, is there a
way to know from properties of Σ that, for each X ∈ Σ, it is possible to choose a t.i.
subspace X̂ ⊃ X so that the set of these X̂ is a symplectic spread?

We used the cyclic group C̃ as a crutch for this purpose. Such choices presumably
do not arise for the large numbers of O−(6, q)-spreads obtained from a “derivation”
process [3, 2]. Moreover, although we deal with large dimensions, the number of
elliptic spreads we obtain in an orthogonal space of fixed dimension is tiny compared
to the number obtained by derivation in an O−(6, q)-space.

Corrections. 1. Alan Prince has observed that [8, Theorem 1.1] needs to be
modified slightly by deleting the word “nondesarguesian”. As it stands, that theorem
states that there are more than 5/4 nondesarguesian flag-transitive planes of order
64, whereas there is only one such plane [11] (constructed in [8]).

2. In [8, Remark 6.6] it states that the affine planes obtained in that paper are
precisely the flag-transitive scions of the desarguesian plane of order qm; here “scions”
refer to planes obtained by a recursive “up and down process” described in [8, 9].
That remark should have continued with the assumption that these scions were
obtained by retaining flag-transitivity throughout the up and down process. Retaining
flag-transitivity is needed for the inductive argument in that remark. Otherwise,
however unlikely it may seem, this up and down process could magically produce a
spread having unexpected automorphisms.
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