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Abstract

The Möbius function for a group G was introduced in 1936 by Hall in
order to count ordered generating sets of G. In this paper we determine
the Möbius function of the simple small Ree groups, R(q) = 2G2(q) where
q = 32m+1 for m > 0, using their 2-transitive permutation representation
of degree q3 + 1. We also describe their maximal subgroups in terms
of this representation. We use this to enumerate smooth epimorphisms
from Γ to G for various finitely presented groups Γ, such as F2 and
the modular group PSL2(Z). We then highlight applications of these
enumerations to Grothendieck’s theory of dessins d’enfants as well as
probabilistic generation of the small Ree groups.

1 Introduction

The Möbius function of a finite group has its origins in the generalised enumera-
tion principle due to Weisner [42] first and shortly followed by Hall’s independent
discovery in [17]. Whereas Weisner considered the problem in more generality, Hall
was primarily concerned with Möbius inversion in the lattice of subgroups of a finite
group and so we mostly refer to Hall’s work. The motivating problem of [17] was to
enumerate the number of ordered tuples of elements of a finite group G which also
generate G. We begin with the following definition.

Definition 1.1. Let G be a finite group and H � G a subgroup of G. Let X =
{x1, . . . , xn} be an ordered subset of elements of G of size n, satisfying a finite,
possibly empty, family of relations, fi(X) = 1, and let Γ = 〈X | fi(X)〉. We call a
summatory function of H the function σΓ(H) which counts the number of subsets
X ⊂ H satisfying the relations fi(X) and an Eulerian function of H φΓ(H) the
function counting the number of such X where 〈X〉 = H.
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Remark 1.2. In the case where X as in the above definition has size n and there
are no other relations, i.e. when Γ ∼= Fn the free group on n generators, we write
σn(H) and φn(G) for our summatory and Eulerian functions respectively. We also
note that for certain considerations [17, Section 1.4] the ordering of the n elements
is necessary to consider.

The principle Hall uses is as follows. If G is a finite group and X is an ordered
n-tuple of elements of G, then X will generate some subgroup H � G, not necessarily
equal to G. From this we can write the following

σΓ(G) =
∑
H�G

φΓ(H).

Since these are two functions defined on a lattice and taking values in an abelian
group, we are able to use Möbius inversion to give

φΓ(G) =
∑
H�G

σΓ(H)μG(H)

where the Möbius function μG(H) is given by the formula

∑
K�H

μG(K) =

{
1 if H = G

0 otherwise.

Definition 1.3. The function μG(H) for H � G is called the Möbius function
of H. We refer to the collection of μG(H) for all H � G as the Möbius function
of G and μG(1) as the Möbius number of G.

Remark 1.4. In the case that G is a cyclic group, φ1(G) is precisely the Euler totient
function φ(|G|). We denote this as usual by φ(n) for a positive integer n. The Möbius
function of H � G is then μG(H) = μ(|G|/|H|) where μ(n) is the classical Möbius
function for a natural number n ≥ 1.

A priori, it seems as though we might have to work through the entire subgroup
lattice of G. But, since it is clear that μG(H1) = μG(H2) if H1 and H2 are conjugate
in G, we need only determine μG(H) on a set of conjugacy class representatives of
subgroups. In fact, due to the following theorem of Hall [17, Theorem 2.3], we need
only determine μG(H) on a set of conjugacy class representatives of subgroups which
occur as the intersection of maximal subgroups.

Theorem 1.5 (Hall, 1936). If H � G then μG(H) = 0 unless H = G or H is an
intersection of maximal subgroups of G.

The theory of Möbius functions and enumeration in a general poset was later
developed extensively by Rota in [35] and this was shortly followed by a short paper
due to Crapo [7] which extends Rota’s work by introducing the use of complements.
In the specific case of the Möbius function of a finite group we also draw the reader’s
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attention to the works of Kratzer and Thévenaz [22], Hawkes, Isaacs and Özaydin
[18] and Pahlings [29].

In general, determining the Möbius function of a finite group is a lengthy process
and one must have a large amount of information about the subgroup structure of
G including knowledge of its classes of maximal subgroups. However, a number
of results are known which facilitate its determination. The following, which can
already be found in Weisner [43, Theorem 1], is an immediate consequence of the
fact that if N is a normal subgroup of G, the subgroup lattice of the quotient G/N
is in bijective correspondence with the lattice of subgroups of G containing N .

Theorem 1.6 (Weisner, 1935). Let G be a group and let N � G be a normal subgroup
of G. Then

μG(N) = μG/N(1).

From Theorems 1.5 and 1.6 it is immediate that if H does not contain the Frattini
subgroup of G, then μG(H) = 0. Hall already makes the point [17, Paragraph 3.7]
that given the Möbius functions of A4, S4 and A5, the Möbius functions of their
double covers 2.A4, 2.S4 and 2.A5, respectively, can be “written down at once from
that of the corresponding factor group”. This immediacy extends to the Eulerian
function of a group. The following is an immediate corollary of a result due to
Pahlings [29, Lemma 1] for which a proof can be found in the author’s PhD thesis
[31].

Corollary 1.7. Let G be a finite group. Then

φn(G) = φn(G/Φ(G))|Φ(G)|n.

Remark 1.8. In principle this corollary can be generalised to arbitrary Eulerian
functions of G. However, the relationship between σΓ(H) and σΓ(H/Φ(G)) becomes
more delicate for arbitrary Γ.

In the case that G is a soluble group, Kratzer and Thévenaz take these ideas to
their extreme conclusion by relating μG(H) to the complements of factors of a fixed
chief series of G [22, Theorem 2.6]. In the case of nilpotent groups specifically, a
combination of results due to Weisner [43, Section 3] and Hall [17, Sections 2.7 and
2.8] essentially gives the Möbius function of any nilpotent group. These results seem
to have been reproved independently by Kratzer and Thévenaz in [22, Proposition
2.4], generalising the work of Delsarte [8].

Remark 1.9. Kratzer and Thévenaz cite Rota and Delsarte in their paper, but nei-
ther Kratzer and Thévenaz nor Delsarte make mention of the work of Weisner or
Hall.

Kratzer and Thévenaz also prove the following result which has implications for
the Möbius number of G [22, Theorem 3.1].
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Theorem 1.10. If G is a group and H � G, then

μG(H)
[G : G′]0

[NG(H) : H ]
∈ Z

where, for a positive integer n, n0 is the largest positive divisor of n without square
factors. In particular, μG(1) is a multiple of |G|/[G : G′]0.

However, as they point out at the end of their paper: “It results from Theorem
3.1 that μG(1) is a multiple of |G| if G is perfect. For example, μA5(1) = 60 =
|A5|, μA6(1) = 720 = 2|A6|, but μL2(7)(1) = 0. Thus, contrary to the case of
soluble groups, the behaviour of the Möbius function of simple groups seems more
difficult to comprehend.” Their interest in Möbius numbers stems from two sources:
idempotents in the Burnside ring and their relation with certain homology groups,
however, that is not to say the two are not connected cf. the work of Bouc [1].
We note that the connection between Möbius numbers and Lefschetz numbers is
also considered in Shareshian’s thesis [36] to which we direct the interested reader,
particularly, the reader who does not read French.

The connection to the Burnside ring of a group, G, is related via the table of
marks of G, originally introduced by Burnside [2]. As one might expect, there is
a deep connection between the Möbius function of G and the table of marks of G
[29, 30]. This relationship then extends to properties of the Burnside ring of G for
which we direct the interested reader to the aforementioned paper of Kratzer and
Thévenaz [22] and Solomon [37]. Their relation to the homology and homotopy
comes from considering the lattice of subgroups of a finite group, G, as a simplicial
complex. For more on the algebraic topological considerations we direct the reader
to the aforementioned papers and the references therein.

1.1 Applications of the Eulerian functions of a group

The Eulerian functions of a group are of natural interest to group theorists since
they can be used to answer questions of generation of G. However, the scope of
this function was first broadened, as far as the author is aware, through the work
of Downs and Jones [10, 11, 12, 13, 14] in their application of it to other categories.
Another way of interpreting φΓ(G) is that it enumerates epimorphisms from Γ to G,
hence dΓ(G) = φΓ(G)/|Aut(G)| is equal to the number of normal subgroups N � Γ
such that Γ/N ∼= G [17, Theorem 1.4].

Following this line of reasoning, Downs and Jones observed that if the normal
subgroups of Γ were in one-to-one correspondence with the regular objects of some
category K then dΓ(G) could be used to count the number of distinct regular objects
in that category whose automorphism group is isomorphic to G. For example, if X is
a topological space with covering space X̃ and fundamental group π1(X) ∼= Γ, then
dΓ is the number of distinct regular covers of X having covering group isomorphic
to G [14].

One important case is when X is the thrice-punctured Riemann sphere which
has π1(X) ∼= F2 and which, through Grothendieck’s dessins d’enfants programme
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[16], is also related to the absolute Galois group. The quantity d2(G) then counts
the number of distinct regular dessins having automorphism group isomorphic to G.
A number of other categories of maps are considered in the aforementioned work of
Downs and Jones which we explore in Section 4.

1.2 The small Ree groups

The existence of the small Ree groups was first announced in 1960 by Ree [32]
who constructed them shortly after in [34]. Ree observed that Suzuki’s original
construction [38] of the Suzuki groups Sz(22m+1) = 2B2(2

2m+1) for m > 0 could be
interpreted in terms of Lie theory and applied to the Chevalley groups of types G2

[32] and F4 [33] in certain characteristics. In the case of G2 in characteristic 3 the
groups which arise are known as the small Ree groups and are denoted 2G2(q) = R(q)
where q = 32m+1 and m ≥ 0.

The small Ree groups R(q) can naturally be considered as subquotients of the
matrix groups SL7(q) as in [23] or of Ω+

8 (q) as in [21]. For the purpose of determin-
ing all possible intersections of maximal subgroups in R(q) this is quite unwieldy.
Thankfully, Tits [39] determined the existence of a natural 2-transitive permuta-
tion representation of R(q) of degree q3 + 1, where R(q) can be seen as the group
of automorphisms of a certain 6-dimensional projective variety defined over Fq and
consisting of q3 + 1 points. Tits’ construction, however, still relies on the Lie the-
ory. A construction of the small Ree groups that is Lie-free is due to recent work
by Wilson [44, 45, 46]. In addition to these constructions, the small Ree groups
have an interpretation as the automorphism groups of finite generalized hexagons
for which we direct the reader to [40, Section 7.7] and as the automorphism group
of a 2− (q3 + 1, q + 1, 1) design [27].

As far as the author is aware, the only families of finite simple groups for which
the Möbius function is known are as follows. The Möbius function of the simple
groups L2(p), for p ≥ 5, were originally determined by Hall [17]. This was extended
to the Möbius function of L2(q) and PGL2(q), for all prime powers q ≥ 5, by Downs
[10]. Recently, Downs and Jones [14] have determined the Möbius function for the
simple Suzuki groups Sz(22m+1), where m > 0. It seems natural to then determine
the Möbius function of the simple small Ree groups.

The following is our main result.

Theorem 1.11. Let G = R(3n) be a simple small Ree group for a positive odd integer
n > 1. If H � G, then μG(H) = 0 unless H belongs to one of the following classes
of subgroups of G.
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Isomorphism for h|n
type of H � G and s.t. [G : NG(H)] μG(H)

R(3h) – |G|/33h(33h + 1)(3h − 1) μ(n/h)

3h +
√
3h+1 + 1: 6 – |G|/6(3h +

√
3h+1 + 1) −μ(n/h)

3h −
√
3h+1 + 1: 6 h > 1 |G|/6(3h −

√
3h+1 + 1) −μ(n/h)

(3h)1+1+1 : (3h − 1) – |G|/33h(3h − 1) −μ(n/h)
2× L2(3

h) h > 1 |G|/3h(32h − 1) −μ(n/h)

2× (3h : 3h−1
2

) h > 1 |G|/3h(3h − 1) μ(n/h)
(22 ×D(3h+1)/2) : 3 h > 1 |G|/6(3h + 1) −μ(n/h)
22 ×D(3h+1)/2 h > 1 |G|/6(3h + 1) 3μ(n/h)
2× L2(3) – |G|/24 −2μ(n)

23 – |G|/168 21μ(n)

The structure of this paper is as follows. In Section 2 we describe the structure
of the simple small Ree groups. In Section 3 we determine how maximal subgroups
of R(q) can intersect and use these results to determine the Möbius function of R(q).
Finally, in Section 4, we use the Möbius function of R(q) to determine a number of
Eulerian functions associated to the simple small Ree groups. In addition, we use
these to prove a number of results on their generation and asymptotic generation as
well as applying these results to a number of other categories. The results of this
paper formed part of the author’s thesis [31] in which analogous results for R(3) are
included. Since the Möbius function of R(3) can be found in GAP [15], we do not
include this content here. We use the ATLAS [6] notation throughout.

2 The structure of the simple small Ree groups

We turn now to the simple small Ree groups. Unless otherwise specified we let
G = R(q) be a simple small Ree group for q = 3n where n > 1 is a positive odd
integer and Ω is a set of size q3+1. We consider the natural 2-transitive permutation
representation of G on Ω whose action we now describe.

2.1 Conjugacy classes and centralisers of elements in R(q)

We begin by describing the conjugacy classes of elements of G and in particular the
action of their elements on Ω. We assemble the necessary results from the character
table of R(q), due to Ward [41], as well as results from Levchuk and Nuzhin [23] and
the summary given by Jones in [19].

We begin with the notation for the conjugacy classes of elements of orders 2, 3,
6 and 9. These are summarised in Table 1. For an element g ∈ G, we denote the set
of points in Ω stabilised by g as Ωg.

The Sylow 2-subgroups of G are elementary abelian of order 8 and the normaliser
of S ∈ Syl2(G) in G has shape 23 : 7 : 3 ∼= AΓL1(8). An involution in G is represented
by t and fixes q + 1 points in Ω which we refer to as the block of t. The centraliser
in G of t has shape 2× L2(q) and acts 2-transitively on the block of t [27]. Any two
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Conjugacy
class of g Order of g |CG(g)| |Ωg|

C2 2 q(q2 − 1) q + 1
C0
3 3 q3 1

C+
3 , C−

3 3 2q2 1
C+
6 , C−

6 6 2q 1
C0
9 , C+

9 , C−
9 9 3q 1

Table 1: Conjugacy classes in G of elements of orders 2, 3, 6 and 9.

distinct blocks can intersect in at most one point and any two points belong to a
unique block.

The Sylow 3-subgroups of G have order q3, exponent 9 and have trivial intersec-
tion with one another. Let B ∈ Syl3(G). The centre of B is elementary abelian of
order q and nontrivial elements of B belong to the conjugacy class C0

3 . There is an
elementary abelian normal subgroup E of B, of order q2, such that Z(B) � E � B.
The elements of E \ Z(B) belong to C∗

3 = C+
3 ∪ C−

3 and the elements of B \ E have
order 9. Elements of C0

3 and C0
9 are conjugate to their inverse whereas the inverses

of elements of C+
3 belong to C−

3 . Similarly for elements of the classes C+
6 and C+

9 .
Elements of C+

3 are denoted u and elements of C+
6 are the product of an involution t

with an element conjugate to u where tu = ut. If g ∈ G is any element of order 9,
then g3 ∈ C0

3 [41].
The remaining elements of G are all semisimple and are conjugate to a power

of an element appearing in Table 2. Where we write tr we mean an involution t
commuting with an element r of order (q − 1)/2. Similarly for ts.

Representative
element g ∈ G o(g) |CG(g)| |Ωg|

tr = rt q − 1 q − 1 2
ts = st (q + 1)/2 q + 1 0

w q −√
3q + 1 q −√

3q + 1 0
v q +

√
3q + 1 q +

√
3q + 1 0

Table 2: Representatives of non-involution semisimple elements in G.

The Hall subgroups of G are denoted Ai for i = 0, 1, 2, 3. They are all cyclic
and have pairwise trivial intersection. We introduce the following notation to denote
their orders.

Definition 2.1. Let q = 3n be an odd power of 3. For a positive divisor l of n we
define

a0(l) = (3l − 1)/2, a1(l) = (3l + 1)/4, a2(l) = 3l − 3
l+1
2 + 1, a3(l) = 3l + 3

l+1
2 + 1.

We may simply write ai when l = n and if no confusion can arise.
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A Hall subgroup of G conjugate to Ai has order ai for i = 0, 1, 2, 3. Note that
a1a2a3 is always congruent to 0 modulo 7 and elements of order 7 are all conjugate
in G. The order of G can then be written

|G| = 23q3a0a1a2a3.

2.2 Maximal subgroups of R(q)

The maximal subgroups of the simple small Ree groups were determined by Levchuk
and Nuzhin [23] and independently by Kleidman [21]. They are conjugate to one of
those listed in Table 3. In order to determine their possible mutual intersections we
describe the action of the maximal subgroups on Ω.

Group Description

R(q1/p), p prime Maximal subfield subgroups
q1+1+1 : (q − 1) Parabolic subgroups

2× L2(q) Involution centralisers
(22 ×D(q+1)/2) : 3 Four-group normalisers
q −√

3q + 1: 6 Normalisers of a Hall subgroup A2

q +
√
3q + 1: 6 Normalisers of a Hall subgroup A3

Table 3: Conjugacy classes of maximal subgroups of the simple small Ree groups
R(q).

2.2.1 Subfield subgroups

The subfield subgroups of G are denoted Gl
∼= R(3l) for l ≥ 1 dividing n and they

are maximal when n/l is prime. There are 33l + 1 Sylow 3-subgroups in Gl, each
stabilising a distinct point in Ω. We denote the union of these points by Ω(l), on
which Gl acts 2-transitively. If g ∈ Gl fixes 1 or 2 points in Ω, then they again
belong to Ω(l). The blocks of involutions in Gl stabilise ql + 1 points in Ω(l), with
the remaining 3n − 3l points in Ω \ Ω(l).

2.2.2 Parabolic subgroups

The parabolic subgroups of G are the normalisers of the Sylow 3-subgroups. The
have shape q1+1+1 : (q − 1) and consist of all elements fixing a point ω ∈ Ω. As such
we also refer to them as point stabilisers and denote the stabiliser in G of ω by Pω.
The elements of the Sylow 3-subgroup B have been discussed, all remaining elements
of Pω \B have order 6 or order dividing q − 1.

2.2.3 Involution centralisers

Let t ∈ G be an involution, C = CG(t) its centraliser in G and Ωt the block of t
stabilised by C. Elements of C of order 3 belong to C∗

3 and fix a point in Ωt, elements
of order dividing q − 1 fix two points in Ωt and elements of order dividing (q + 1)/2
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do not fix any points in Ωt. It follows that any pair of commuting involutions in G
have disjoint blocks. We can also prove the following extension.

Lemma 2.2. Let t1 �= t2 be involutions in C. Then Ωt1 ∩ Ωt2 = ∅.

Proof. Since the blocks of two distinct involutions in G can intersect in at most
one point, assume for a contradiction that |Ωt1 ∩ Ωt2 | = 1. The dihedral subgroup
D = 〈t1, t2〉 is then contained in a point stabiliser and so either D ∼= D6 or D18. From
the list of maximal subgroups of L2(q) [9], neither of these are possible subgroups of
C and so Ωt1 ∩ Ωt2 = ∅.

The q2 − q + 1 involutions in 2× L2(q) fall into the following three C-conjugacy
classes of involutions:

1. {t}, the central involution,

2. the q(q − 1)/2 involutions in C ′, and

3. the q(q − 1)/2 involutions in the coset tC ′.

As a corollary of this along with the previous lemma we have that the blocks of the
involutions in C form a disjoint partition of Ω. That is to say, each ω ∈ Ω belongs
to the block of one and only one involution in C.

2.2.4 Four-group normalisers

The four-group normalisers of G can be built in two different ways.

• Let t1 �= t2 be commuting involutions in G with t3 = t1t2. The four-group
V = 〈t1, t2〉 is centralised in G by a dihedral subgroup of shape D(q+1)/2 and
normalised by an element u ∈ C∗

3 such that 〈t1, t2, u〉 ∼= L2(3). The normaliser
in G of V is then N = NG(V ) ∼= (22 ×D(q+1)/2) : 3.

• Alternatively, let 〈s〉 be a Hall subgroup conjugate to A1. The centraliser of
〈s〉 in G is a unique four-group V and V × 〈s〉 is normalised by an element tu
of order 6, where t commutes with V and u normalises 〈s〉.

A counting argument shows that 〈s〉 belongs to a unique four-group normaliser,
whereas a four-group belongs to 1+3(q+1)/2 four-group normalisers. To avoid con-
fusion with the normalisers of the other Hall subgroups, we refer to groups conjugate
to N in G as four-group normalisers.

There are four subgroups of N isomorphic to D(q+1)/2. One of them is normal
in N , which we denote by Dt, the other three are conjugate in N and we denote a
representative by Dt′ . The three NG(V )-conjugacy classes of involutions in NG(V )
are then the following:

1. the 3 involutions in V , namely t1, t2 and t3,

2. the (q + 1)/4 involutions in Dt, whose representative we denote by td, and;
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3. the 3(q + 1)/4 involutions in the conjugates of Dt′ in N, whose representative
we denote by t′d.

The centraliser of td in N is CN(td) ∼= 2× L2(3); conversely, if L is a subgroup of N
isomorphic to 2× L2(3), then its central involution is conjugate to td since the only
NG(V )-conjugacy class of involutions whose order is not divisible by 3 is that of td.
The centraliser of t′d in N is a Sylow 2-subgroup of N which is a Sylow 2-subgroup of
G and is thus elementary abelian of order 8. If V0 �= V is a four-group in N , then one
and only one of its nontrivial involutions belongs to V , at most one of its involutions
is conjugate to td and at most one of its involutions is conjugate to t′d since the order
of Dt is not divisible by 4. Thus, V0 is conjugate in N to either 〈ti, titd〉 or 〈ti, tjtd〉
where i �= j, 1 ≤ i, j ≤ 3 and titd and tjtd are both conjugate in N to t′d.

The geometric interpretation of N is then as follows, much of which follows from
the fact that CG(V ) � CG(t) for each t ∈ V . Since the involutions in N are contained
in an involution centraliser, their blocks are all pairwise disjoint. Furthermore, the
action of s stabilises the blocks of only the involutions in V , since s ∈ CG(V ). An
involution in N has centraliser order in N divisible by 3 if and only if it belongs to
Dt. Hence, the fixed point in Ω of an element in N of order 3 or 6 belongs to the
block of an involution in Dt.

2.2.5 Normalisers of Hall subgroups A2, A3

The cyclic Hall subgroups, A2, A3, are normalised by cyclic subgroups of order 6. Let
A = 〈a〉 be conjugate to a Hall subgroup A2 or A3, and let N be its normaliser in
G; the geometric picture of NG(A2) is analogous to that of NG(A3). Since nontrivial
elements of A do not fix any points in Ω the action of A partitions Ω into (q3+1)/|A|
subsets of size |A|. If u ∈ C∗

3 normalises A, then there are |A| conjugates of u in
N and the fixed points of elements conjugate to u belong to a unique subset of this
partition. For each conjugate of u there is an involution t with which it commutes
and so the fixed point of u belongs to the block of t. The remaining elements in
the block of t each belong to a distinct orbit of a, since if an orbit of a contained
more than one element of Ωt then t would commute with a. As with the four-group
normalisers, elements conjugate to tu behave similarly to the elements conjugate
to u.

2.3 Conjugacy classes and normalisers of subgroups in R(q)

In order to facilitate the determination of the Möbius function of G we would like to
restrict ourselves to a small number of classes of subgroups of G by proving that any
subgroup H lying outside these classes has μG(H) = 0. We begin by determining
the subgroups of G that occur as intersections of maximal subgroups. However, as
we shall see, there are various classes of subgroups which can exist as intersections of
maximal subgroups that also have μG(H) = 0. In anticipation we define the union
of the classes of subgroups of G appearing in Table 4 as MaxInt.

Remark 2.3. Our use of the notation for the classes appearing in Table 4 is as
follows. Where we include the (l), for example P(l), we mean the union over all
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Isomorphism
Class type Description

R(l) R(3l) Subfield subgroups
P(l) (3l)1+1+1 : (3l − 1) Parabolic subgroups of R(3l)
C t(l) 2× L2(3

l) Involution centralisers in R(3l), l > 1

Cω
t (l) 2× (3l : 3

l−1
2 ) Point stabilisers of elements of C t(l), l > 1

F (l) 3l Sylow 3-subgroups of elements of C t(l), l > 1
C 0(l) 3l − 1 Centralisers of Hall subgroups A0 in R(3l), l > 1

NV (l) (22 ×D(3l+1)/2) : 3 Four-group normalisers in R(3l), l > 1

N2(l) a2(l) : 6 Normalisers of Hall subgroups A2 in R(3l), l > 1
N3(l) a3(l) : 6 Normalisers of Hall subgroups A3 in R(3l)
C V (l) 22 ×D(3l+1)/2 Four-group centralisers in R(3l), l > 1

D2(l) D2a2(l) Normal dihedral subgroups of elements of NV (l), l > 1

D3(l) D2a3(l) Normal dihedral subgroups of elements of NV (l)

C t(1) 2× L2(3) Involution centralisers in R(3)
E 23 Sylow 2-subgroups of G
V 22 Four-groups
C ∗

6 6 Cyclic subgroups of order 6 generated by tu ∈ C+
6

C ∗
3 3 Cyclic subgroups of order 3 generated by u ∈ C+

3

C 2 2 Cyclic subgroups of order 2 generated by t ∈ C2
I 1 The identity subgroup

Table 4: The disjoint subsets of MaxInt. Each subset consists of subgroups of G
for all l dividing n unless otherwise stated.

divisors l of n of parabolic subgroups of subfield subgroups conjugate to R(3l). Where
we omit the (l) by writing, for example P , we mean those elements of P(l) for which
l = n or, in the case of R, the maximal subfield subgroups. In certain classes we
have made exclusions to avoid the following repetitions

NV (1) = C t(1), C V (1) = E , C ω
t (1) = C ∗

6, F (1) = C ∗
3, D2(1) = C 0(1) = C 2.

In particular, the list is ordered so that no element of a class appears in more than
one class. Furthermore, no element of any class of MaxInt is a subgroup of any
element of a successive class in the stated ordering with the possible exceptions of
elements of N2(l) being subgroups of elements of N3(l) and elements of D2(l) being
subgroups of elements of D3(l).

Our aim is then to prove the following lemma.

Lemma 2.4. Let G be a simple small Ree group and let H � G. If μG(H) �= 0, then
H ∈ MaxInt.

An important step in determining the inversion formula of a group is to deter-
mine the conjugacy classes of contributing subgroups along with their sizes. The
following results are also necessary in enumerating containments between subgroups
in MaxInt. Since they are logically independent from determining the Möbius func-
tion of G and will be used along the way to proving Lemma 2.4, we state them
first.
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Lemma 2.5. Elements of R(l)∪P(l)∪C t(l)∪C t(1)∪Cω
t (l)∪NV (l)∪N2(l)∪N3(l)

are self-normalising in G.

Proof. If H ∈ R(l), then H is contained only in larger subfield subgroups, all of
which are simple, hence NG(H) = H . Let H ∼= (3h)1+1+1 : (3h − 1) ∈ P(l) and let P
denote the unique parabolic subgroup of G containing H , then the normaliser in G
of H is contained in P [23, Lemma 1]. Let S denote the Sylow 3-subgroup of P , let
S0 denote the Sylow 3-subgroup of H and let A ∼= 3h − 1 denote a complement to
S0 in H . Since the normaliser in P of A has order q − 1, there are |S| conjugates of
A in P and since CG(A) ∩ S = 1, the elements of S permute the conjugates of A as
a regular permutation group. Since by a similar argument there are |S0| conjugates
of A in H being permuted regularly by S0, we have that NG(H)∩ S = S0. Now, the
centraliser in G of A also acts regularly on the q− 1 trivial elements of the centre of
S [41, Section III.4]. Since nothing in CG(A) \ A normalises Z(S0), it follows that
NG(H) ∩ CG(A) = A. Hence NG(H) = S0 :A = H .

If H ∼= 2 × L2(3
h) ∈ C t(l) ∪ C t(1) or H ∼= 2 × (3h : 3h−1

2
) ∈ C ω

t , then the
normaliser of H in Gmust fix its unique central involution and so NG(H) � 2×L2(q).
Since subfield subgroups are self-normalising in L2(q) and since subgroups of L2(q)

isomorphic to 3h : 3h−1
2

are also self-normalising in L2(q), we have that NG(H) = H
in each case.

IfH ∈ NV (l)∪N2(l)∪N3(l), thenH contains a characteristic subgroup A of shape

22× (3h+1)/4, 3h−
√
3h+1+1 or 3h+

√
3h+1+1 as appropriate. This characteristic

subgroup is centralised in G by a Hall subgroup conjugate to 22 ×A1, A2 or A3 and
so NG(A) is either a four-group normaliser of Hall subgroup normaliser. Let 〈tu〉 be
a cyclic subgroup of order 6 in H . Since 〈tu〉 is self-normalising in NG(A), there are
4|A1|, |A2| or |A3| conjguates of 〈tu〉 in NG(A), as appropriate. Since CG(tu)∩CG(A)
is trivial these conjugates are permuted regularly by the elements of CG(A). It follows
then that A cannot grow in NG(H), otherwise the orbit of its |A| conjugates of tu
would not be preserved.

Lemma 2.6. Elements of C V (l) are normalised in G by elements of NV (l).

Proof. If H ∼= 22 × D(3h+1)/2 ∈ C V (l), then NG(H) contains the subgroup H : 3 ∈
NV (l) in which H is normal. Since H : 3 � NG(H) � NG(V ) where V is the charac-
teristic normal four-group in H , the only way N can grow is by a power of an element
s of order (q + 1)/4 which centralises the characteristic normal cyclic subgroup A of
order (3h + 1)/4 in H . Since 〈s〉 acts regularly on the involutions which normalise
but do not centralise A, A does not grow in NG(H) and we have that H : 3 is the full
normaliser of G in H .

Lemma 2.7. Elements of D i(l) are normalised in G by a subgroup isomorphic to
(22 ×D2aj (l)) : 3, where i, j ∈ {2, 3} as appropriate.

Proof. If D ∈ D2(l)∪D3(l) is isomorphic to D2a2(h) or D2a3(h) then D is contained in
the normal dihedral subgroup of order (q+1)/2 in a four-group normaliser, N . Hence,
the normal subgroup of D of order a2(h) or a3(h), as appropriate, is characteristic
in N , and is normalised in N by an element of order 3. The normaliser in G of H is
then isomorphic to (22 ×D2aj (l)) : 3, as claimed.
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If H ∈ E ∪ V ∪C 2 ∪ I , then the normaliser of H in G is clear or has already
been established. This leaves the following lemma to prove.

Lemma 2.8. Let H � R(q), where q = 3n, and H ∈ F (l) ∪C 0(l) ∪C ∗
6 ∪C ∗

3.

1. If H ∼= 3h ∈ F (l) ∪C ∗
3, then NG(H) ∼= q1+1 : (3h − 1).

2. If H ∼= 3h − 1 ∈ C 0(l), then NG(H) ∼= D2(q−1).

3. If H ∼= 6 ∈ C ∗
6, then NG(H) ∼= 2× q.

Proof. We determine the normaliser in G of H by beginning with its centraliser in
G.

1. If H ∼= 3h ∈ F (l), then the nontrivial elements of H belong to C∗
3 with |H ∩

C+
3 | = |H ∩ C−

3 | = (3h − 1)/2. Let S ∈ Syl3(G) be the unique Sylow 3-
subgroup to which H belongs and let h ∈ H be nontrivial. The centraliser in
G of H is contained in CG(h) which has order 2q2. Since H belongs to the
elementary abelian normal subgroup of order q2 in S and since H belongs to
an involution centraliser, we have |CG(H)| = 2q2. The elements normalising
but not centralising H in G are of order (3h−1)/2 and belong to the subgroup
of G isomorphic to L2(3

h) containing H . Hence the full normaliser in G of H
has size q2(q − 1).

2. If H ∼= 3h − 1 ∈ C 0(l), then the normaliser of H in G must fix the unique
central involution in H and so NG(H) � 2×L2(q). The normaliser in L2(q) of
an element of order (q − 1)/2 is dihedral of order q − 1 from which is follows
that NG(H) ∼= 2×Dq−1

∼= D2(q−1).

3. If H ∼= 6 ∈ C ∗
6, then as in the previous case, the normaliser in G of H must fix

the unique involution of H and so NG(H) � 2×L2(q). Since the normaliser in
L2(q) of an element of order 3 is its Sylow 3-subgroup, we have NG(H) ∼= 2×q.

This completes the proof.

The following result [23, Lemma 4] will aid us in determining the conjugacy
classes of subgroups in MaxInt.

Lemma 2.9. Let G be a simple small Ree group and let R(l) be the set of subfield
subgroups of G. If Gm, Gk ∈ R(l) are isomorphic, then they are conjugate in G.

Lemma 2.10. Isomorphic elements of MaxInt are conjugate in G.

Proof. By Lemma 2.9 isomorphic elements ofR(l) are conjugate inG. Since maximal
subgroups of G are conjugate in G if they are isomorphic it follows that isomorphic
elements of P(l)∪C t(l)∪C t(1)∪NV (l)∪N2(l)∪N3(l) are also conjugate in G. The
conjugacy of isomorphic elements of E ∪V ∪C 2 is immediate from their conjugacy
within the normaliser of a Sylow 2-subgroup of G [41] and from the preceding state-
ments it follows that isomorphic elements of C V (l) ∪ D2(l) ∪ D3(l) are conjugate.
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Isomorphic elements of C 0(l)∪C ∗
6 ∪C ∗

3 ∪ I are generated by conjugate elements in
G and so isomorphic subgroups belonging to these classes are conjugate in G. Ele-
ments of C ω

t (l) are involution centralisers of elements in P(l) and since involutions
are conjugate in each element of P(l), isomorphic elements of C ω

t (l) are conjugate in
G. Finally, since elements of F (l) are the Sylow 3-subgroups of conjugate elements of
C t(l), we have that isomorphic elements of F (l) are conjugate in G. This completes
the proof.

3 The Möbius function of the simple small Ree groups

Throughout this section G = R(q) denotes a simple small Ree group acting 2-
transitively on Ω, a set of size q3 + 1, as described in the previous section. We
let ω ∈ Ω and Pω ∈ P denote the stabiliser of ω in G. We let t ∈ G denote an
involution, C = CG(t) ∈ C t be its centraliser in G and Ωt the points in Ω fixed by t.
A subfield subgroup is denoted by Gm ∈ R(l), where m divides n, and Ω(m) denotes
the 33m + 1 points in Ω stabilised by the Sylow 3-subgroups of Gm. A four-group of
G is denoted by V and the normaliser in G of V is denoted by N = NG(V ) ∈ NV .

We follow closely the style used by Downs [11] in order to calculate μG(H) for a
subgroup H � G of a group G. In order to enumerate overgroups conjugate to K in
G of a fixed subgroup H � G we take care since conjugacy in G is not necessarily
preserved in K. The following definition will be necessary.

Definition 3.1. Let H � K be subgroups of G. We denote by νK(H) the number of
subgroups conjugate to K in G that contain H. This is enumerated using the formula

n∑
i=1

[G : NG(K)][K : NK(Hi)]

[G : NG(H)]
=

n∑
i=1

|K||NG(Hi)|
|NG(K)||NK(Hi)|

where {H1, . . . , Hn} is a set of representatives from each conjugacy class in K of
subgroups conjugate to H in G.

We also recall the definition and an important property of the classical Möbius
function from number theory since they will be necessary for our calculations. For a
positive integer n we define

μ(n) =

{
(−1)d if n is the product of d distinct primes

0 if n > 1 and has a square factor greater than 1.

If n > 0 is a positive integer, then

∑
l|n

μ(l) =

{
1 if n = 1

0 if n > 1

where l sums over all positive divisors of n.
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3.1 Intersections with parabolic subgroups and maximal subfield sub-
groups

From our discussion on the action of elements of G on Ω, intersections with parabolic
subgroups are relatively straightforward to determine.

Lemma 3.2. Let Pω ∈ P , let M �= Pω be a maximal subgroup of G and let H =
M ∩ Pω.

1. If M ∈ R is a maximal subfield subgroup, then H ∈ P(l) ∪C 2 ∪ I .

2. If M ∈ P \ {Pω}, then H ∈ C 0.

3. If M ∈ C t, then H ∈ C ω
t ∪C 2.

4. If M ∈ NV ∪N2 ∪N3, then H ∈ C ∗
6 ∪C ∗

3 ∪C 2 ∪ I .

Proof. (1) Let Gm ∈ R be a maximal subfield subgroup. If ω ∈ Ω(m) then the
intersection ofGm with Pω is the stabiliser of ω inGm, belonging toP(l). If ω /∈ Ω(m)
and H /∈ I , then ω lies in the block of a unique involution in Gm, in which case
H ∈ C 2.
(2) The Sylow 3-subgroups of G have trivial intersection and so H consists of all
elements which pointwise fix two points, hence H ∈ C 0.
(3) If ω ∈ Ωt then H is isomorphic to the direct product of 〈t〉 with a point stabiliser
in L2(q), hence H ∼= 2 × (q : q−1

2
) ∈ C ω

t . Otherwise, since ω belongs to the block of
exactly one involution of M , if ω /∈ Ωt, then H ∈ C 2.
(4) This follows from comparison of the orders of these groups.

In the case of the maximal subfield subgroups, their pairwise intersection is a
little less well-behaved in certain cases. From analysis using GAP it can be shown
that when G = R(27) a number of unexpected possibilities arise for the intersection
of two subgroups isomorphic to R(3) including subgroups of shape 3, 32, 9 and 3×S3.
In order not to have to deal with these cases we prove the following lemmas which
allow us to immediately rule out a large class of subgroups H � G which occur as
the intersection of maximal subgroups but have μG(H) = 0. In order to determine
them, we use the preceding lemmas in this section to determine the Möbius function
of a number of classes of subgroups in MaxInt. We first prove the following partial
result on the intersection of maximal subfield subgroups.

Lemma 3.3. Let Gm1 , Gm2 ∈ R be maximal subfield subgroups of G. If |Ω(m1) ∩
Ω(m2)| ≥ 3, then Gm1 ∩Gm2 ∈ R(l).

Proof. Let Ω(m1, m2) = Ω(m1)∩Ω(m2), let ω1, ω2 and ω3 be three distinct elements
of Ω(m1, m2) and let ti be the unique involution fixing ωj and ωk pointwise where
1 ≤ i, j, k ≤ 3 are pairwise distinct. The subgroup T = 〈t1, t2, t3〉 is not contained in
a parabolic subgroup of G and furthermore, since any pair of involutions contained
in an involution centraliser or a four-group or Hall subgroup normaliser have disjoint
blocks, we have that L2(8) � T � Gm0 where m0 divides gcd(m1, m2). Since sub-
groups isomorphic to L2(8) are contained in a unique subgroup isomorphic to R(3),
which is a subgroup of both Gm1 and Gm2 , we have that H ∈ R(l).
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In the subsequent lemmas we summarise the calculation of each μG(H) in a table
where we record the overgroups K � H contributing to μG(H) according to their
isomorphism type. These correspond to the classes of MaxInt. The subgroups H
occur for each positive divisor h of n and their overgroups occur for k dividing n
such that h divides k. Any extra conditions are recorded in the table. We record
the normaliser in K of H in order to aid computation of νK(H), the number of
overgroups of H conjugate to K in G.

Lemma 3.4. If H ∼= R(3h) ∈ R(l), then μG(H) = μ(n/h).

Proof. Let H be as in the hypotheses. If M is a maximal subgroup of G containing
H , thenM is a maximal subfield subgroup. A counting argument then shows that for
a subfield subgroup R(3h), the subfield subgroups which contain it are in one-to-one
correspondence with the elements of the lattice of positive divisors of n/h. This is
summarised in Table 5 from which we see that μG(H) = μ(n/h).

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – R(3k) 1 μ(n/k)

Table 5: H ∼= R(3h) ∈ R(l)

Lemma 3.5. If H ∼= (3h)1+1+1 : (3h − 1) ∈ P(l), then μG(H) = −μ(n/h).

Proof. Let H be as in the hypotheses. Since H contains elements from the conjugacy
classes C0, the only maximal subgroups containing H are maximal subfield subgroups
or a unique parabolic subgroup. By Lemma 3.2 and since H is self normalising in
G, for each positive number k such that h|k|n the only subgroups of G containing
H are a unique element in R(l) and a unique element in P(l). We present this in
Table 6 from which we see that μG(H) = −μ(n/h).

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – (3h)1+1+1 : (3h − 1) 1 μ(n/k)
(3k)1+1+1 : (3k − 1) k > h (3h)1+1+1 : (3h − 1) 1 −μ(n/k)

Table 6: H ∼= (3h)1+1+1 : (3h − 1) ∈ P(l)

Lemma 3.6. If H � Pω and H ∩ C0
3 �= ∅, then μG(H) �= 0 if and only if H ∈ P(l).

Proof. Let H be as in the hypotheses. By Lemma 3.5 we can assume that H /∈ P(l).
Note that if M �= Pω is any other maximal subgroup of G containing H , then M
is a maximal subfield subgroup. Also note that if H is contained in any subfield
subgroup Gm not necessarily maximal, then the normaliser of H in Gm is equal to
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the normaliser of H in Gm ∩ Pω ∈ P(l). We proceed by induction on H . Suppose
that H is contained in Pω, but no other element of P(l). This implies that H is not
contained in any element of R(l) \ {G} and the only contributions to the Möbius
function of H are those of G and Pω, which cancel, and so μG(H) = 0. Now,
suppose H is as in our hypothesis and maximal so that our hypothesis is true for
all overgroups of H . A counting argument shows that for each divisor k of n, the
number of subgroups of G, conjugate to Gk, that contain H is equal to the number of
subgroups (3k)1+1+1 : (3k − 1) ∈ P(l) that contain H . As such, the Möbius function
of H cancels at each divisor and we have μG(H) = 0. This completes the induction
step.

Before proving the following lemma we make an important observation. Let Gm

be a subfield subgroup of G. A Hall subgroup of G conjugate to Ai, where 1 ≤ i ≤ 3,
is not necessarily contained in a Hall subgroup of Gm of order ai(m). We have more
to say on this below, for now consider the particular case when G = R(33m). A
subfield subgroup Gm � G contains elements of Hall subgroups of Gm of orders
a1(l), a2(l) or a3(l), but each of these elements is contained in some Hall subgroup
of G conjugate to A1 of order (3

3m +1)/4. The centraliser in Gm of such an element
will then either be cyclic of order 6 or conjugate to 2×L2(3) depending on whether
i = 1, 2 or 3.

Lemma 3.7. The intersection of a maximal subfield subgroup and an involution
centraliser belongs to C t(l) ∪C t(1) ∪ F (l) ∪D2(l) ∪D3(l) ∪V ∪C ∗

3 ∪C 2 ∪ I .

Proof. Let Gm ∈ R and let H = Gm ∩ C. Recall that if g ∈ H fixes a point ω ∈ Ω,
then ω ∈ Ωt ∩Ω(m). If |Ωt ∩Ω(m)| ≥ 2, then t ∈ Gm and H is the centraliser in Gm

of t, hence H ∈ C t(l) ∪C t(1). If Ω
t ∩ Ω(m) = {ω}, then H ∈ F (l) ∪C ∗

3 ∪ I .
Now suppose that Ωt ∩ Ω(m) = ∅. Then t /∈ Gm and H is isomorphic to a

subgroup of C ′ ∼= L2(q) not containing elements of order 3, or dividing (q − 1)/2,
hence H is isomorphic to a subgroup of Dq+1 [9]. If H does not contain elements
of order k > 2 dividing (q + 1)/4 then H is a subgroup of a Sylow 2-subgroup of
C. Since every Sylow 2-subgroup of C contains t, we have H � V for some V ∈ V
and belongs to our list. If there exists s ∈ H of order k, then k divides a1(l) or
a2(l/3)a3(l/3) depending on whether 3 divides m or not. Let V be the unique four-
group centralising 〈s〉 in G and let t′ be an involution of C ′ normalising but not
centralising 〈s〉 in G. If k divides a1(l), then V � Gm, contradicting our assumption,
so s /∈ H . If k divides a2(l/3)a3(l/3), then V ∩ Gm = 1, hence H ∼= D2a2(l/3) or
D2a3(l/3). Furthermore, since 〈s, t′〉 is centralised by V , H is contained in the normal
dihedral subgroup of order (q + 1)/2 of a four-group normaliser.

Lemma 3.8. If H ∼= 2× L2(3
h) ∈ C t(l), then μG(H) = −μ(n/h).

Proof. Let H be as in the hypothesis. The only maximal subgroups of G containing
H are those in R(l) and in C t(l). Since elements of C t(l) are self-normalising, for
each divisor h|k|n there is a unique element in R(l) and in C t(l) containing H . This
is presented in Table 7 and from this we have that μG(H) = −μ(n/h).
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Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – 2× L2(3
h) 1 μ(n/k)

2× L2(3
k) k > h 2× L2(3

h) 1 −μ(n/k)

Table 7: H ∼= 2× L2(3
h) ∈ C t(l)

Lemma 3.9. If H ∼= 2× (3h : 3h−1
2

) ∈ C ω
t (l), then μG(H) = μ(n/h).

Proof. Let H be as in the hypotheses. Since H contains a unique central involution
and since the order of H is divisible by 9 the only maximal subgroups of G contain-
ing H are maximal subfield subgroups, a unique parabolic subgroup and a unique
involution centraliser. By Lemmas 3.2, 3.3 and 3.7 if K ∈ MaxInt contains H , then
K ∈ R(l) ∪P(l) ∪C t(l) ∪C ω

t . Since H is self-normalising in each subgroup which
contains it, the enumeration of overgroups of H contributing to its Möbius function
is as given in Table 8 from which we deduce that μG(H) = μ(n/h).

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – 2× (3h : 3
h−1
2

) 1 μ(n/k)

(3k)1+1+1 : (3k − 1) – 2× (3h : 3
h−1
2

) 1 −μ(n/k)

2× L2(3
k) – 2× (3h : 3

h−1
2

) 1 −μ(n/k)

2× (3k : 3k−1
2

) k > h 2× (3h : 3
h−1
2

) 1 μ(n/k)

Table 8: H ∼= 2× (3h : 3h−1
2

) ∈ C ω
t (l)

Lemma 3.10. If 32 � H < 2× (3k : 3
k−1
2

) ∈ C ω
t (l), then μG(H) = 0.

Proof. Let H � R(3n) be as in the hypotheses. The Sylow 3-subgroup of H has
order 3h where 2 ≤ h ≤ k for h not necessarily dividing k and its non-trivial elements
belong to C∗

3 . If M is a maximal subgroup of G containing H , then M is a maximal
subfield subgroup, an involution centraliser or a unique parabolic subgroup. By
Lemmas 3.2, 3.3 and 3.7, the subgroups which contribute to the Möbius function of
H belong to R(l) ∪ P(l) ∪ C t(l) ∪ C ω

t . In analogy with the proof of Lemma 3.6,
if P ∈ P(l) and Gm ∈ R are such that H � P � Gm, then NP (H) = NGm(H).
Since μG(P ) = −μG(Gm), the contribution from each of these such groups cancel.
A similar argument applies to elements of C t and C ω

t . From this it follows that
μG(H) = 0.

The preceding lemmas give the following corollary which allows us to complete
our analysis of the potential intersections between maximal subfield subgroups.

Corollary 3.11. If H � Pω ∈ P and H /∈ P(l)∪C ω
t (l)∪C 0(l)∪C ∗

6∪C ∗
3∪C 2∪I ,

then μG(H) = 0.
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Lemma 3.12. If H � G is equal to the intersection of two distinct maximal subfield
subgroups and μG(H) �= 0, then H ∈ MaxInt.

Proof. Let Gm �= Gk be maximal subfield subgroups of G and let d = gcd(m, k). Let
H = Gm ∩ Gk and let Ω(m, k) denote the intersection Ω(m) ∩ Ω(k). We suppose
that H /∈ I and determine possible intersections according to |Ω(m, k)|. By Lemma
3.3 it remains to prove the case when |Ω(m, k)| ≤ 2. If Ω(m, k) = ∅, then the order
of any nontrivial elements of H is 2 or k > 2 where k divides q3 + 1. If h ∈ H has
order k, then h is normalised in H by an element of order 6 whose unique fixed point
must belong to Ω(m, k), a contradiction. Hence any nontrivial element of H is an
involution and H is a subgroup of an element of E , all of which belong to MaxInt.
We can now assume that Ω(m, k) �= ∅. If Ω(m, k) = {ω}, then H � Pω and by
Corollary 3.11 H ∈ MaxInt.

Now suppose that |Ω(m, k)| = 2. There is a unique Hall subgroup conjugate to
A0 stabilising Ω(m, k) pointwise and containing H . Note that H does not contain
elements which interchange the points in Ω(m, k) since otherwise H would con-
tain a dihedral subgroup of order 2(3d0 − 1) where d0 divides d. Such subgroups
are contained only in subfield subgroups, involution centralisers or four-group nor-
malisers, and in either case we would have |Ω(m, k)| > 2. We then have that
H ∼= 3d − 1 ∈ C 0(l) ∪C 2 ⊂ MaxInt.

3.2 Intersections with involution centralisers, four-group and Hall sub-
group normalisers

We now determine the intersections between the remaining possible pairs of maximal
subgroups.

Lemma 3.13. The intersection of two distinct involution centralisers belongs to
C V ∪ F ∪V ∪C 2 ∪ I .

Proof. Let t′ �= t be an involution in G. The intersection H = C ∩ CG(t
′) is the the

centraliser CC(t
′) of t′ in C. If t′ ∈ C, then H = CG(〈t, t′〉) ∈ C V .

Now suppose that t′ /∈ C. If there exists ω ∈ Ω such that ω ∈ Ωt ∩ Ωt′ , then
H � Pω and nontrivial elements of H belong to cannot have order dividing (q+1)/2
or order dividing q − 1. Hence, if h ∈ H is nontrivial, then h ∈ C∗

3 and belongs to
the Sylow 3-subgroup of C stabilising ω and so H ∈ F ∪ I . If there is no point
in Ω fixed by both t and t′, then any nontrivial element of H has order dividing
(q + 1)/2. If s ∈ H is an element of order k > 2 dividing (q + 1)/4, then a counting
argument shows there is a unique four-group centralising it in G, implying [t, t′] = 1,
a contradiction. Hence any nontrivial element of H has order 2 and is a subgroup of
a Sylow 2-subgroup of G. Since t is contained in every Sylow 2-subgroup of C, and
similarly for t′, H must be a strict subgroup and so H ∈ V ∪C 2 ∪ I .

Lemma 3.14. The intersection of an involution centraliser with a four-group nor-
maliser belongs to C V ∪C t(1) ∪ E ∪C ∗

6 ∪C ∗
3 ∪C 2 ∪ I .
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Proof. The intersection H = N ∩ C is equal to the centraliser CN(t) of t in N . We
classify possible intersections according to whether t belongs to one of the three N -
conjugacy classes of involutions or whether t /∈ N . The involution centralisers of N
are described in Section 2 and belong either to C V , C t(1) or E . Now suppose that
t /∈ N . Let A denote the Hall subgroup of G contained in N . A counting argument
shows that the centraliser CG(A) ∼= 22 × A is contained in a unique four-group
normaliser, hence H is isomorphic to a subgroup of N/CG(A) ∼= 6.

We are now in a position to prove the following.

Lemma 3.15. If H ∼= 3h − 1 ∈ C 0(l), then μG(H) = 0.

Proof. Let H be as in the hypotheses. If M is a maximal subgroup containing H ,
then M is a maximal subfield subgroup, unique for each divisor k such that h|k|n,
one of two parabolic subgroups or a unique involution centraliser. By Lemmas 3.2,
3.7, 3.12 and 3.13, the subgroups which contribute to the Möbius function of H are
as they appear in Table 9. We see that for each k the contributions from the first
pair of classes cancel with one another, as do the contributions from the second pair
of classes, giving μG(H) = 0.

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – D2(3k−1) 1 μ(n/k)
2× L2(3

k) – D2(3k−1) 1 −μ(n/k)
(3k)1+1+1 : 3k − 1 – 3k − 1 2 −μ(n/k)

2× (3k : 3k−1
2

) – 3k − 1 2 μ(n/k)
3k − 1 k > h 3k − 1 1 0

Table 9: H ∼= 3h − 1 ∈ C 0(l)

We now determine containments between Hall subgroup normalisers of subfield
subgroups. Since 〈h〉 is cyclic we need only prove the following number theoretic
lemma in order to aid the accurate determination of the overgroups of such an inter-
section.

Lemma 3.16. Let l be a positive factor of n > 1 an odd natural number. Then ai(l)
divides one and only one of a1, a2 or a3 for each i = 1, 2, 3.

Proof. Let l and n be as in the hypothesis and 1 ≤ i, j ≤ 3. It is clear that for a fixed
l we have gcd(ai(l), aj(l)) = 1 for i �= j and so the ai(l) divide at most one of the ai.
Also, a1(l) divides a1 and if 3 divides n/l then a1 is divisible by a1(l)a2(l)a3(l), so
assume that i = 2 or 3 and that n/l ≡ ±1 mod 3. Consider the values of a2(l) and
a3(l) modulo a2,3(l) := a2(l)a3(l) = 32l − 3l + 1. We have that a1(l)a2,3(l) = 33l + 1
and so 33l ≡ −1 mod a2,3(l) which gives us the following chain of congruences

3n ≡ (−1)3n−3l ≡ (−1)23n−6l ≡ · · · ≡ (−1)k3n−3kl mod a2,3(l)
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where 0 ≤ n− 3kl < 3l, from which it follows that

3n ≡
{
(−1)

n−l
3l 3l = 3l mod a2,3(l), if (n/l) ≡ 1 mod 3

(−1)
n−2l
3l 32l = −32l mod a2,3(l), if (n/l) ≡ −1 mod 3.

Similarly, we have

3
n+1
2 ≡ · · · ≡ (−1)k3

n+1
2

−3kl mod a2,3(l)

where this time 0 ≤ n+1
2

− 3kl < 3l. Eventually we find

3
n+1
2 ≡

{
(−1)

n−l
6l 3

l+1
2 mod a2,3(l), if (n/l) ≡ 1 mod 3

(−1)
n−5l
6l 3

5l+1
2 mod a2,3(l), if (n/l) ≡ −1 mod 3.

It can then be easily verified that

n− l

6l
≡ n− 5l

6l
≡

{
0 mod 2 if (n/l) ≡ 1 mod 4

1 mod 2 if (n/l) ≡ 3 mod 4.

Assembling these results, along with the observation that

∓3
5l+1
2 − 32l + 1 = (3l + 1± 3

l+1
2 )(3l+1 − 3l + 1∓ (3

3l+1
2 + 3

l+3
2 − 2.3

l+1
2 )),

we finally arrive at the following

3n ± 3
n+1
2 + 1 ≡

{
3l ± 3

l+1
2 + 1 mod a2,3(l) if (n/l) ≡ ±1 mod 12

3l ∓ 3
l+1
2 + 1 mod a2,3(l) if (n/l) ≡ ±5 mod 12.

This completes the proof.

Lemma 3.17. The intersection of an element of NV ∪ N2 ∪ N3 with a maximal
subfield subgroup belongs to NV (l) ∪N2(l) ∪N3(l) ∪C ∗

6 ∪C ∗
3 ∪C 2 ∪ I .

Proof. Let Gm be a maximal subfield subgroup, let N ∈ NV ∪ N2 ∪ N3 and let
H = Gm ∩ N . Let a generate any Hall subgroup conjugate to Ai, where i = 1, 2, 3.
If a ∈ Gm, then H is equal to the normaliser in Gm of a which belongs to NV (l) ∪
N2(l)∪N3(l). A counting argument can be used to show that the centraliser in Gm of
〈a〉 is contained in a unique subgroup of G conjugate to Gm. Hence, if a /∈ Gm, then
H is isomorphic to a subgroup of N/CN(a) ∼= 6 and so H ∈ C ∗

6 ∪C ∗
3 ∪C 2 ∪ I .

Lemma 3.18. The intersection of two distinct four-group normalisers belongs to
C t(1) ∪ E ∪C ∗

6 ∪C ∗
3 ∪C 2 ∪ I .

Proof. Recall that the normaliser of a four-group is equal to the normaliser of the
unique Hall subgroup conjugate to A1 with which it commutes and that this Hall
subgroup belongs to a unique four-group normaliser. The quotient of a four-group
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normaliser by its normal Hall subgroup is isomorphic to 2×L2(3) and so the intersec-
tion of two distinct four-group normalisers is isomorphic to a subgroup of 2×L2(3).

Let N be the normaliser of a four-group V in G and let V ′ �= V be a four-group in
G. If V � N then N ∩NG(V

′) is the normaliser of a four-group in N and isomorphic
to 23 or 2 × L2(3). If V is not contained in N then the intersection N ∩ NG(V

′)
is isomorphic to a subgroup of L2(3) not containing a four-group and is hence a
subgroup of a cyclic group of order 6.

Lemma 3.19. Let N ∈ N2 ∪ N3. If M ∈ C t ∪ NV ∪ N2 ∪ N3, then N ∩ M ∈
C ∗

6 ∪C ∗
3 ∪C 2 ∪ I .

Proof. This follows from comparison of the orders of the various groups and since
distinct cyclic Hall subgroups have trivial intersection and belong to a unique Hall
subgroup normaliser in G.

We have now proved the following.

Lemma 3.20. If H � G is equal to the intersection of a pair of maximal subgroups
of G and μG(H) �= 0, then H ∈ MaxInt.

3.3 The proof of Lemma 2.4 and the Möbius function of the remaining
subgroups

We now show that arbitrary intersections of maximal subgroups of G do not yield
new subgroups by proving Lemma 2.4.

Proof of Lemma 2.4. Let H /∈ MaxInt be a subgroup of G that occurs as the in-
tersection of a number of maximal subgroups of G, let μG(H) �= 0 and let M be the
set of maximal subgroups containing H . From the preceding lemmas we can assume
|M| > 2 and by Corollary 3.11 we can assume that H is not contained in a parabolic
subgroup of G and so M ∩P = ∅.

If M contains more than two elements from NV ∪N2∪N3 then, by Lemmas 3.18
and 3.19, H is isomorphic to a subgroup of 2× L2(3) and the only such subgroups
not already contained in MaxInt are isomorphic to L2(3). Hence we can assume
that M ∩ (N2 ∪ N3) = ∅. To show that subgroups isomorphic to L2(3) do not
appear on our list, suppose that M is maximal and contains H ∼= L2(3). Then
M ∈ M ⊂ R ∪ C t ∪ NV . By the argument in the proof of Lemma 3.3, if M
contains at least two maximal subfield subgroups, then their intersection must be
an element of R(l) and so we can assume that M ∩R consists of a single subfield
subgroup isomorphic to R(3). By Lemma 3.13 we can assume that M contains at
most one involution centraliser. By Lemma 3.7 we may assume that H is equal
to the intersection of M0

∼= 2 × L2(3) with a number of elements from NV . Since
the normaliser of a four-group contained in M0 is either M0 or is isomorphic to its
elementary abelian Sylow 2-group of order 8 we have that H /∈ MaxInt.

If M ⊂ R ∪C t ∪N2 or M ⊂ R ∪C t ∪N3, then by Lemmas 3.7, 3.17 and 3.19
H ∈ MaxInt. Hence, we can assume that M ⊂ R ∪C t ∪NV contains at most one
element from R and at most one element from NV . Moreover, by Lemma 3.17 again
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we can assume M ⊂ C t ∪NV (l). Finally, by Lemmas 3.13 and 3.14, H ∈ MaxInt,
a contradiction. This completes the proof.

It remains to determine the Möbius function for elements of the remaining classes.

Lemma 3.21. If H ∼= (22 ×D(3h+1)/2) : 3 ∈ NV (l), then μG(H) = −μ(n/h).

Proof. Let H be as in the hypothesis. The only maximal subgroups of G containing
H are maximal subfield subgroups, and the normaliser of the normal four-group in
H . From the calculations in Table 10 we find that μG(H) = −μ(n/k).

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – (22 ×D(3h+1)/2) : 3 1 μ(n/k)
(22 ×D(3k+1)/2) : 3 k > h (22 ×D(3h+1)/2) : 3 1 −μ(n/k)

Table 10: H ∼= (22 ×D(3h+1)/2) : 3 ∈ NV (l)

Lemma 3.22. If H ∼= 3h − 3
h+1
2 + 1: 6 or 3h + 3

h+1
2 + 1: 6 ∈ N2(l) ∪ N3(l), then

μG(H) = −μ(n/h).

Proof. Let H be as in the hypothesis. By Lemma 3.16, for each divisor k such that
h|k|n there is a unique element from NV (l)∪N2(l)∪N3(l) containing H . Similarly,
there is a unique element from R(l) for each such k. These contributions cancel and
we present the calculations for H ∈ N2(l) in Table 11, the calculations for H ∈ N3(l)
are similar. We are then left with μG(H) = −μG(R(3h)) = −μ(n/h).

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – H 1 μ(n/k)
(22 ×D(3k+1)/2) : 3

k
h
≡ 0 mod 3 H 1 −μ(n/k)

3k +
√
3k+1 + 1: 6 k

h
≡ ±5 mod 12 H 1 −μ(n/k)

3k −
√
3k+1 + 1: 6 k > h, k

h
≡ ±1 mod 12 H 1 −μ(n/k)

Table 11: H ∼= 3h − 3
h+1
2 + 1: 6 ∈ N2(l)

Lemma 3.23. If H ∼= 22 ×D(3h+1)/2 ∈ C V (l), then μG(H) = 3μ(n/h).

Proof. Let H be as in the hypotheses. For each divisor k such that h|k|n, H belongs
to a unique element ofR(l) and to a unique element ofNv(l). The contributions from
each of these groups cancel, as shown in Table 12, and the remaining contributions
from the involution centralisers give μG(H) = 3μ(n/h).

Lemma 3.24. If H ∼= D2a2(h) or D2a3(h) ∈ D2(l) ∪D3(l), then μG(H) = 0.
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Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – (22 ×D(3h+1)/2) : 3 1 μ(n/k)
(22 ×D(3k+1)/2) : 3 – (22 ×D(3h+1)/2) : 3 1 −μ(n/k)

2× L2(3
k) – 22 ×D(3h+1)/2 3 −μ(n/k)

22 ×D(3k+1)/2 k > h 22 ×D(3h+1)/2 1 3μ(n/k)

Table 12: H ∼= 22 ×D(3h+1)/2 ∈ C V (l)

Proof. Let H be as in the hypotheses and note that these subgroups arise when h is
such that 3h|n. The overgroups of H for a divisor k such that h|k|n are dependent
on the parity of k

h
modulo 3. We present the case H ∈ D2(l) in Table 13, the

case H ∈ D3(l) is similar. From the table it is clear that for each divisor k, the
contributions to μG(H) cancel with one another and so μG(H) = 0.

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) k
h
≡ 0 mod 3 (22 ×H) : 3 1 μ(n/k)

(22 ×D(3k+1)/2) : 3
k
h
≡ 0 mod 3 (22 ×H) : 3 1 −μ(n/k)

2× L2(3
k) k

h
≡ 0 mod 3 22 ×H 3 −μ(n/k)

22 ×D(3k+1)/2
k
h
≡ 0 mod 3 22 ×H 1 3μ(n/k)

R(3k) k
h
≡ ±1 mod 3 H : 3 4 μ(n/k)

3k +
√
3k+1 + 1: 6 k

h
≡ ±5 mod 12 H : 3 4 −μ(n/k)

3k −
√
3k+1 + 1: 6 k

h
≡ ±1 mod 12 H : 3 4 −μ(n/k)

Table 13: H ∼= D2a2(h) ∈ D2(l)

Lemma 3.25. If H ∼= 2× L2(3), then μG(H) = −2μ(n).

Proof. Subgroups isomorphic to H are self-normalising in G and so for each k such
that k divides n belong to a unique element of each of R(l), C t(l) and NV (l). Since
n > 1, the summation over the R(3k) is equal to the summation over positive divisors
of k which is equal to 0. For the same reason the remainder of the remaining two
classes, as shown in Table 14, give μG(H) = −2μ(n).

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – 2× L2(3) 1 μ(n/k)
2× L2(3

k) h > 1 2× L2(3) 1 −μ(n/k)
(22 ×D(3k+1)/2) : 3 h > 1 2× L2(3) 1 −μ(n/k)

Table 14: H ∼= 2× L2(3) ∈ C t(1)



E. PIERRO /AUSTRALAS. J. COMBIN. 66 (2) (2016), 142–176 166

Lemma 3.26. If H ∼= 23 ∈ E , then μG(H) = 21μ(n).

Proof. As presented in Table 15, the summation over the R(3k) equates to 0, as does
the total summation of the succeeding three lines. From the final line we then have
that μG(2

3) = 21μ(n).

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – 23 : 7 : 3 1 μ(n/k)
2× L2(3

k) k > 1 2× L2(3) 7 −μ(n/k)
(22 ×D(3k+1)/2) : 3 k > 1 2× L2(3) 7 −μ(n/k)

2× L2(3) – 2× L2(3) 7 −2μ(n)
22 ×D(3k+1)/2 k > 1 23 7 3μ(n/k)

Table 15: H ∼= 23 ∈ E

Lemma 3.27. If H ∼= 22 ∈ V, then μG(H) = 0.

Proof. Four-groups are conjugate in G but not necessarily conjugate in subgroups
of G. Where this is the case, in the NK(H) column in Table 16 the number in
parentheses denotes the number of conjugacy classes of V whose normaliser in K is
of the specified isomorphism type. This quantity is incorporated into the entry in
the νK(H) column. In order to make verification of the arithmetic a little easier, we
have separated contributions from overgroups isomorphic to K according to whether
the contribution depends on k or not. In the cases where there is no dependence on
k the usual properties of the classical Möbius function leave us a few terms to tidy
up and we eventually find that μG(2

2) = 0.

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – (22 ×D(3k+1)/2) : 3 (3n + 1)/(3k + 1) μ(n/k)

(22 ×D(3k+1)/2) : 3 k > 1 (22 ×D(3k+1)/2) : 3 (3n + 1)/(3k + 1) −μ(n/k)

22 ×D(3k+1)/2 k > 1 22 ×D(3k+1)/2 (3n + 1)/(3k + 1) 3μ(n/k)

2× L2(3
k) k > 1 22 ×D(3k+1)/2 3(3n + 1)/(3k + 1) −μ(n/k)

(22 ×D(3k+1)/2) : 3 k > 1 (2) 23 3(3n + 1)/2 −μ(n/k)

22 ×D(3k+1)/2 k > 1 (6) 23 3(3n + 1)/2 3μ(n/k)

2× L2(3
k) k > 1 (1) 23, (1) 2× L2(3) 3n + 1 −μ(n/k)

2× L2(3) – (2) 23, (1) 2× L2(3) 7(3n + 1)/4 −2μ(n)
23 – (7) 23 (3n + 1)/4 21μ(n)

Table 16: H ∼= 22 ∈ V

Lemma 3.28. If H ∈ C 6 ∪C ∗
3 ∪C 2 ∪ I , then μG(H) = 0.
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Proof. In the case H ∈ C ∗
6 ∪C ∗

3 it is clear, but tedious, from the enumerations in
Tables 17 and 18 that μG(H) = 0. In the case thatH ∈ C 2, where in some subgroups
the elements of order 2 split into multiple conjugacy classes, we present this in Table
19 in such a way as to make the calculations easier to check. Eventually, as in the
case H ∈ I in Table 20. Again, after some calculation we see that μG(H) = 0 in
both of these cases.

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – 2× 3k 3n−k μ(n/k)
(3k)1+1+1 : 3k − 1 – 2× 3k 3n−k −μ(n/k)

2× L2(3
k) k > 1 2× 3k 3n−k −μ(n/k)

2× (3k : 3k−1
2

) k > 1 2× 3k 3n−k μ(n/k)

3k +
√
3k+1 + 1: 6 – 6 3n−1 −μ(n/k)

3k −
√
3k+1 + 1: 6 k > 1 6 3n−1 −μ(n/k)

(22 ×D(3k+1)/2) : 3 k > 1 6 3n−1 −μ(n/k)
2× L2(3) – 6 3n−1 −2μ(n)

Table 17: H ∼= 〈tu〉 ∈ C ∗
6

Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – 3k × (3k : 2) 32(n−k) μ(n/k)
(3k)1+1+1 : (3k − 1) – 3k × (3k : 2) 32(n−k) −μ(n/k)

2× L2(3
k) k > 1 2× 3k 32n−k −μ(n/k)

2× (3k : 3
k−1
2

) k > 1 2× 3k 32n−k μ(n/k)

3k +
√
3k+1 + 1: 6 – 6 32n−1 −μ(n/k)

3k −
√
3k+1 + 1: 6 k > 1 6 32n−1 −μ(n/k)

(22 ×D(3k+1)/2) : 3 k > 1 6 32n−1 −μ(n/k)
2× L2(3) – 6 32n−1 −2μ(n)

Table 18: H ∼= 〈u〉 ∈ C ∗
3

Remark 3.29. It follows that the Möbius number of a simple small Ree group is 0.
This is consistent with Theorem 1.10.

This completes the proof of Theorem 1.11. In the case when G = R(27) the full
subgroup lattice and Möbius function has been determined by Connor and Leemans
[5] and, from personal correspondence with Leemans in October 2014, it was noted
that apart from a few errors, such as their μG(2 × (33 : 13)) = 0, their calculations
agree with ours.
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Isomorphism type for h|k|n
of overgroup K and s.t. NK(H) νK(H) μG(K)

R(3k) – 2× L2(3
k) 3n(32n − 1)/3k(32k − 1) μ(n/k)

2× L2(3
k) k > 1 2× L2(3

k) 3n(32n − 1)/3k(32k − 1) −μ(n/k)

(3k)1+1+1 : (3k − 1) – 2× (3k : 3k−1
2 ) 3n(32n − 1)/3k(3k − 1) −μ(n/k)

2× (3k : 3k−1
2 ) k > 1 2× (3k : 3k−1

2 ) 3n(32n − 1)/3k(3k − 1) μ(n/k)
(22 ×D(3k+1)/2) : 3 k > 1 22 ×D(3k+1)/2 3n(32n − 1)/2(3k + 1) −μ(n/k)
22 ×D(3k+1)/2 k > 1 (3) 22 ×D(3k+1)/2 3n(32n − 1)/2(3k + 1) 3μ(n/k)
2× L2(3

k) k > 1 (2) 22 ×D(3k+1)/2 3n(32n − 1)/(3k + 1) −μ(n/k)

3k +
√
3k+1 + 1: 6 – 6 3n−1(32n − 1)/2 −μ(n/k)

3k −
√
3k+1 + 1: 6 k > 1 6 3n−1(32n − 1)/2 −μ(n/k)

(22 ×D(3k+1)/2) : 3 k > 1 (1) 23, (1) 2× L2(3) 3n−1(32n − 1)/2 −μ(n/k)
22 ×D(3k+1)/2 k > 1 (4) 23 3n−1(32n − 1)/2 3μ(n/k)

2× L2(3) – (2) 23, (1) 2× L2(3) 7.3n−1(32n − 1)/8 −2μ(n)
23 – (7) 23 3n−1(32n − 1)/8 21μ(n)

Table 19: H ∼= 〈t〉 ∈ C 2

Isomorphism type for h|k|n
of overgroup K and s.t. νK(H) μG(K)

R(3k) – |G|/33k(33k + 1)(3k − 1) μ(n/k)

3k +
√
3k+1 + 1: 6 – |G|/6(3k +

√
3k+1 + 1) −μ(n/k)

3k −
√
3k+1 + 1: 6 k > 1 |G|/6(3k −

√
3k+1 + 1) −μ(n/k)

(3k)1+1+1 : (3k − 1) – |G|/33k(3k − 1) −μ(n/k)
2× L2(3

k) k > 1 |G|/3k(32k − 1) −μ(n/k)

2× (3k : 3k−1
2

) k > 1 |G|/3k(3k − 1) μ(n/k)
(22 ×D(3k+1)/2) : 3 k > 1 |G|/6(3k + 1) −μ(n/k)
22 ×D(3k+1)/2 k > 1 |G|/6(3k + 1) 3μ(n/k)
2× L2(3) – |G|/24 −2μ(n)

23 – |G|/168 21μ(n)

Table 20: H ∈ I

4 Eulerian functions of the small Ree groups

In this section we determine various Eulerian functions associated with the small
Ree groups and use them to prove a number of results regarding their generation
and asymptotic generation. We introduce a number of summatory functions and
their corresponding Eulerian functions.

Definition 4.1. Let G be a finite group and (k1, . . . , kn) be an ordered n-tuple of
elements from N>0. We define

σk1,...,kn(G) = {(x1, . . . , xn) ∈ Gn | o(xi) = ki for 1 ≤ i ≤ n}.

By abuse of notation we may write ki = ∞ to mean we do not specify the order of xi.
The corresponding Eulerian function is φk1,...,kn(G). We say that G is (k1, . . . , kn)-
generated if φk1,...,kn �= 0.
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Remark 4.2. Let Γ be the group

Γ = 〈x1, . . . , xn | xk1
1 = · · · = xkn

n = 1〉,

where any relation x∞
i = 1 for 1 ≤ i ≤ n is ignored. For a finite group G the quantity

φk1,...,kn(G) corresponds to the number of smooth epimorphisms from Γ to G.

Definition 4.3. The Hecke group Hn, for n ∈ N>0∪{∞}, is the group generated by
one element of order 2, one element of order n and no other relations. In particular,
the Hecke group H3 is isomorphic to the modular group PSL2(Z). We write ηn(G) =
φ2,n(G) for their corresponding Eulerian function.

Definition 4.4. Let Γ = C2∗V be the free product of an involution with a four-group

Γ = 〈x1, x2, x3 | x2
1 = x2

2 = x2
3 = [x2, x3] = 1〉.

We denote the Eulerian function of Γ as φ2,V (G).

Definition 4.5. We use the following to denote the number of torsion-free normal
subgroups of the appropriate finitely presented group whose quotient is isomorphic
to G.

dn(G) =
φn(G)

|Aut(G)| , dk1,...,kn =
φk1,...,kn

|Aut(G)| , d2,V (G) =
φ2,V (G)

|Aut(G)| and hn =
ηn

|Aut(G)| .

In order to determine these Eulerian functions we require the following definition.

Definition 4.6. Let G be a finite group and n a positive integer. We write |G|n
for the number of elements of G having order n. By abuse of notation we write
|G|∞ = |G|. We then have the relation

σk1,...,kn(G) =

n∏
i=1

|G|ki.

4.1 Some Eulerian functions of R(q)

In Tables 21 and 22 we present the values of |H|n for n ∈ {2, 3, 6, 7, 9} and H � G
with μG(H) �= 0. These are easily determined from the conjugacy classes of G.

From these values it is routine, but tedious, to determine a number of Eulerian
functions for a simple small Ree group. We present a number of such functions as
the following corollary to Theorem 1.11.
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Isomorphism
type of H � G |H|2 |H|3 |H|6

R(3h) 32h(32h − 3h + 1) (33h + 1)(32h − 1) 32h(33h + 1)(3h − 1)

3h +
√
3h+1 + 1: 6 3h +

√
3h+1 + 1 2(3h +

√
3h+1 + 1) 2(3h +

√
3h+1 + 1)

3h −
√
3h+1 + 1: 6 3h −

√
3h+1 + 1 2(3h −

√
3h+1 + 1) 2(3h −

√
3h+1 + 1)

(3h)1+1+1 : 3h − 1 32h 32h − 1 32h(3h − 1)
2× L2(3

h) 32h − 3h + 1 32h − 1 32h − 1

2× (3h : 3
h−1
2

) 1 3h − 1 3h − 1
(22 ×D(3h+1)/2) : 3 3h + 4 2(3h + 1) 2(3h + 1)
22 ×D(3h+1)/2 3h + 4 – –
2× L2(3) 7 8 8

23 7 – –

Table 21: Values of |H|n for n = 2, 3 or 6.

Isomorphism |H|7
type of H � G 7|a1(h) 7|a2(h) 7|a3(h) |H|9

R(3h) |H|/a1(h) |H|/a2(h) |H|/a3(h) 32h(33h + 1)(3h − 1)
(3h)1+1+1 : 3h − 1 – – – 32h(3h − 1)

2× L2(3
h) 3h+1(3h − 1) – – –

(22 ×D(3h+1)/2) : 3 6 – – –
22 ×D(3h+1)/2 6 – – –

3h −
√
3h+1 + 1: 6 – 6 – –

3h +
√
3h+1 + 1: 6 – – 6 –

Table 22: Values of |H|n for n = 7 or 9.

Corollary 4.7. Let G = R(3n) be a simple small Ree group. Then,

φ2(G) = |G|
∑
l|n

μ
(n
l

)
(3l − 1)(36l−32l−16),φ2,2,2(G) = |G|

∑
l|n

μ
(n
l

)
3l(32l−3l+1)2,

φ2,∞(G) = |G|
∑
l|n

μ
(n
l

)
(3l − 1)(33l − 3l − 2), φ3,3(G) = |G|

∑
l|n

μ
(n
l

)
3l(32l+3l−4),

φ3,∞(G) = |G|
∑
l|n

μ
(n
l

)
(3l − 1)(34l−33l−3l−4), η3(G) = |G|

∑
l|n

μ
(n
l

)
(3l − 1)2,

φ6,∞(G) = |G|
∑
l|n

μ
(n
l

)
(3l − 1)(35l − 3l − 6), η6(G) = |G|

∑
l|n

μ
(n
l

)
3l(32l−3l−2),

φ9,∞(G) = |G|
∑
l|n

μ
(n
l

)
35l(3l − 1), η9(G) = |G|

∑
l|n

μ
(n
l

)
32l(3l − 1),

for the Hecke group H7 we have

η7(G) = |G|
∑
l|n

μ
(n
l

)
g(l) where g(l) =

⎧⎪⎨
⎪⎩
32la2(l)− 1 if l ≡ ±1 mod 12

33l − 2.32l + 5 if l ≡ ±3 mod 12

32la3(l)− 1 if l ≡ ±5 mod 12.
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and, for the free product C2 ∗ V , we have

φ2,V (G) = |G|
∑
l|n

μ
(n
l

)
(32l + 4)(3l − 3).

Remark 4.8. The automorphism group of G = R(3n) has order n|G| from which
the values of d2(G), etc. can easily be determined.

Remark 4.9. The quantity d2(G) has a number of other interpretations, a few of
which we mention here.

• If G is simple, this is equal to the largest positive integer, d, such that Gd can
be 2-generated [17].

• In Grothendieck’s theory of dessins d’enfants [16] this is equal to the number
of distinct regular dessins with automorphism group isomorphic to G.

• It is the number of oriented hypermaps having automorphism group isomorphic
to G [13].

We evaluate d2(R(3n)) for the first few values of n and give these in Table 23.
The value d2(R(3)) can be found in [31] or determined in GAP.

G d2(G)
R(3) 1 136
R(33) 3 357 637 312
R(35) 9 965 130 790 521 984
R(37) 34 169 987 177 353 651 660 608
R(39) 127 166 774 444 890 319 085 083 766 720

Table 23: Values of d2(G) for R(q), q ≤ 39.

Remark 4.10. The quantities d2(G), d2,∞(G), d2,2,2(G), d2,V (G) and h3(G) are of
interest in the study of regular maps as they correspond to various classes of maps
on surfaces having automorphism group isomorphic to G. We refer the reader to
[13, 14] for more details.

It is known that the simple small Ree groups are quotients of the modular group
PSL2(Z) [19, 28]; with the Möbius function we can say a little more.

Corollary 4.11. Let G = R(3n) be a simple small Ree group. If d is a positive
integer such that

d ≤ h3(G) =
η3(G)

|Aut(G)| =
1

n

∑
l|n

μ
(n
l

)
(3l − 1)2,

then Gd can be (2, 3)-generated.
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G h3(G)
R(3) 2
R(33) 224
R(35) 11 712
R(37) 682 656
R(39) 43 042 272

Table 24: Values of h3(G) for R(q), q ≤ 39.

We evaluate h3(R(3n)) for the first few values of n and give these in Table 24.
The value of h3(R(3)) can be found in [31] or determined in GAP.

Remark 4.12. We note that the Möbius function can also be used to determine the
number of Hurwitz triples of G, that is generating sets {x, y, z} such that x2 = y3 =
z7 = xyz = 1. From this, the number of distinct Hurwitz curves with automorphism
group isomorphic to R(3n) can also be found. Groups for which such a generating
set occurs are known as Hurwitz groups and their study is well documented, see [3, 4]
for Conder’s surveys of this area. We shall say no more about them here since it
was proven by Malle [28] and independently by Jones [19] using a restricted form of
Möbius inversion that the simple small Ree groups are Hurwitz groups.

4.2 Asymptotic results

The Möbius function can also be used to prove results on asymptotic generation of
groups. In the case of probabilistic generation of finite simple groups we direct the
interested reader to the recent survey by Liebeck [25]. We begin with the following
definition.

Definition 4.13. Let G be a group. We denote by Pa,b(G) the probability that a ran-
domly chosen element of order a and a randomly chosen element of order b generate
G. More generally we define

Pk1,...,kn(G) =
φk1,...,kn(G)

σk1,...,kn(G)

where k1, . . . , kn ∈ N>0 ∪ {∞}. We define P2,V (G) analogously.

The following result due to Kantor and Lubotzky [20, Proposition 4] was proved
using probabilistic arguments to enumerate pairs of elements which are contained in
a maximal subgroup. We present an independent proof using the Möbius function.

Corollary 4.14 (Kantor–Lubotzky ’90). Let G = R(3n) be a small Ree group. Then
P∞,∞ → 1 as |G| → ∞.

Proof. From Corollary 4.7 we have that

P∞,∞(G) =
φ2(G)

|G|2 =
1

|G|
∑
l|n

μ
(n
l

)
(3l − 1)(36l − 32l − 16).

Since this tends to 1 as |G| → ∞, we have the desired result.
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The following results due to Liebeck and Shalev [26, Theorems 1.1 and 1.2] can
be proven using a similar argument.

Corollary 4.15 (Liebeck–Shalev, ’96). Let G = R(3n) be a simple small Ree group.
Then

1. P2,∞(G) → 1 as |G| → ∞ and

2. P3,∞(G) → 1 as |G| → ∞.

We can prove a number of additional results on asymptotic results using Tables
21 and 22 and the results in Corollary 4.7.

Corollary 4.16. Let G = R(3n) be a simple small Ree group and (k1, . . . , kn) an
n-tuple of positive integers. Then, each of

P2,3(G), P2,6(G), P2,7(G),

P2,9(G), P2,2,2(G), P2,V (G),

P3,3(G), P6,∞(G) and P9,∞(G),

tend to 1 as |G| → ∞.
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