Connected bipancyclic isomorphic m-factorizations of the Cartesian product of graphs

Y.M. Borse A.V. Sonawane S.R. Shaikh
Department of Mathematics
Savitribai Phule Pune University
Pune, 411007
India
ymborse11@gmail.com amolvson@gmail.com shazia_31082@yahoo.co.in

Abstract

An m-factorization of a graph is a decomposition of its edge set into edge-disjoint m-regular spanning subgraphs (or factors). In this paper, we prove the existence of an isomorphic m-factorization of the Cartesian product of graphs each of which is decomposable into Hamiltonian even cycles. Moreover, each factor in the m-factorization is m-connected, and bipancyclic for $m \geq 4$ and nearly bipancyclic for $m=3$.

1 Introduction

All graphs considered here are simple and undirected. The Cartesian product $G_{1} \square G_{2}$ of two graphs G_{1} and G_{2} is a graph with the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, where (u_{1}, u_{2}) is adjacent to $\left(v_{1}, v_{2}\right)$ in $G_{1} \square G_{2}$ if and only if either $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} in G_{2}, or $u_{2}=v_{2}$ and u_{1} is adjacent to v_{1} in G_{1}. In what follows by a product we mean the Cartesian product.

The n-dimensional hypercube Q_{n} is the product of n copies of K_{2}. The hypercube is a popular interconnection network in parallel computing [15]. A factorization of the graph G is a decomposition of its edge set into edge-disjoint spanning subgraphs (or factors). An isomorphic factorization of G is a factorization in which all of the factors are isomorphic with each other. A factorization is an m-factorization if each factor is m-regular. A Hamiltonian decomposition of G is a decomposition of its edge set into Hamiltonian cycles. Therefore, a Hamiltonian decomposition of a graph is a particular isomorphic 2-factorization.

Factorizations of graphs are well studied in the literature (see [1, 8, 12, 19, 21, 22]). Harary et al. [12] studied isomorphic factorizations of complete graphs. Bass and Sudborough [6] obtained an isomorphic ($n / 2$)-factorization of the hypercube Q_{n}, for even n, where each factor has diameter $n+2$. As pointed out in [6], m-factorizations of Q_{n} have potential applications in the area of fault-tolerant computing and can be used in the construction of adaptive routing algorithms. For regular graphs, 2factorizations have been studied for long time. In 1891, Petersen [18] proved that a
$2 k$-regular graph has a 2 -factorization. Kotzig [14], in 1973, proved that the product of two cycles is decomposable into Hamiltonian cycles while Foregger [10] considered such a decomposition of the product of three cycles. These results are generalized by Aubert and Schneider [5] as follows.

Theorem 1.1 Let G be a 4-regular graph that is decomposable into two Hamiltonian cycles and let Z be a cycle. Then $G \square Z$ can be decomposed into three Hamiltonian cycles.
Alspach et al. [2] obtained the following important consequences of Theorem 1.1.
Corollary 1.2 For $n \geq 1$, the product of n cycles has a Hamiltonian decomposition.
Corollary 1.3 For even n, the hypercube Q_{n} has a Hamiltonian decomposition.
Further, using Corollary 1.2, they settled a conjecture of Kotzig [14] by proving that the graph $G_{1} \square G_{2} \square \ldots \square G_{n}$ has a Hamiltonian decomposition if each G_{i} is decomposable into p Hamiltonian cycles. El-Zanati and Eynden [22] proved the existence of an isomorphic factorization of the product of cycles each with length a power of 2 such that all components of each factor are cycles of same length.

In this paper, we consider the problem of determining the existence of isomorphic m-factorizations of the product of graphs of even orders each of which has a Hamiltonian decomposition, where the factors are m-connected and satisfy an additional property of bipancyclicity. We generalize Theorem 1.1 and its consequences for m-factorizations.

A graph G with even number of vertices is bipancyclic if G is either a cycle or contains a cycle of every even length from 4 to $|V(G)|$ (see [16]). Some authors use the term"even pancyclic" for "bipancyclic" (see [4]). We say that a 3-regular graph G with even number vertices is nearly bipancyclic if it contains a cycle of every even length from 4 to $|V(G)|$, except possibly 4 and 8 . Bipancyclicity of a given network is an important factor in determining whether the network topology can simulate rings of various lengths. Connectivity is one of the fundamental properties for interconnection networks. These properties for hypercube networks are well studied in the literature (see $[9,13,16]$).

The following result is the main theorem of the paper.
Theorem 1.4 Let G be a 4-regular graph with even order that is decomposable into two Hamiltonian cycles and let Z be an even cycle. Then $G \square Z$ has a 3-factorization, where each factor is 3 -connected. Moreover, if G is bipartite, then the factors are isomorphic and nearly bipancyclic.

This result is analogous to Theorem 1.1. We obtain several consequences of Theorem 1.4 for m-factorizations. The following result is analogous to Corollary 1.3 for m-factorizations.

Theorem 1.5 Let $n \geq 2$ be even and $m \geq 2$ divide n. Then Q_{n} has an isomorphic m-factorization, where each factor is m-connected, and bipancyclic for $m \neq 3$ and nearly bipancyclic for $m=3$.

A related result which states that Q_{n}, for $n=n_{1}+n_{2}$ with $n_{i} \geq 2$, has a decomposition into two spanning bipancyclic subgraphs H_{1} and H_{2} such that H_{i} is n_{i}-regular and n_{i}-connected is obtained in [7]. Theorem 1.5 can be compared with the following problem posed by Bass and Sudborough [6].

Open Problem 1.6 Determine the existence of an isomorphic m-factorization of Q_{n}, where m divides $n, m<n / 2$ and the diameter of the factors is n.

We prove Theorem 1.4 in Section 2 and its consequences in Section 3.

2 Proof of Theorem 1.4

Alspach et al. [4] proved that a connected Cayley graph of degree at least 3 on an abelian group is bipancyclic. Since the product of two cycles is a connected Cayley graph of degree 4 on an abelian group, it is bipancyclic. Therefore, we get the following lemma, which also follows from a result of Mane and Waphare [17].

Lemma 2.1 If G_{1} and G_{2} are Hamiltonian graphs, then $G_{1} \square G_{2}$ is bipancyclic.
The following lemma is a consequence of a result from [20].
Lemma 2.2 Let G_{i} be an m_{i}-regular, m_{i}-connected graph for $i=1,2$. Then the graph $G_{1} \square G_{2}$ is $\left(m_{1}+m_{2}\right)$-regular, $\left(m_{1}+m_{2}\right)$-connected.

The next lemma follows from the definition of the product of graphs.
Lemma 2.3 Suppose G_{1} and G_{2} are two graphs such that G_{1} is decomposable into spanning subgraphs $H_{1}, H_{2}, \ldots, H_{r}$, and G_{2} is decomposable into spanning subgraphs $F_{1}, F_{2}, \ldots, F_{r}$. Then the graph $G_{1} \square G_{2}$ is decomposable into spanning subgraphs $H_{1} \square F_{1}, H_{2} \square F_{2}, \ldots, H_{r} \square F_{r}$.

For $n \geq 1$, let $[n]=\{1,2, \ldots, n\}$. We now prove Theorem 1.4.
Proof: By definition of the product, $G \square Z$ is obtained by replacing each vertex of Z by a copy of G and replacing each edge of Z by a matching between two copies of G corresponding to the end vertices of that edge. Let $|V(G)|=s$ and $|V(Z)|=r$. Then r and s are even and further, $s \geq 6$ and $r \geq 4$ as G and Z are simple. Let Z have vertices $\{1,2, \ldots, r\}$, where j is adjacent to $j+1$ modulo r. Suppose G decomposes into two Hamiltonian cycles C and D. Then $G=C \cup D$. Label the vertices of G with $v_{1}, v_{2}, \ldots, v_{s}$ so that v_{p} is adjacent to $v_{p+1(\text { modulo } s)}$ in C. For compactness, let v_{p}^{j} denote the vertex $\left(v_{p}, j\right)$ of $G \square Z$; superscripts are computed modulo r with representative in $[r]$ and subscripts are modulo s with representative in $[s]$. For $j \in[r]$, let G^{j} be the copy of G induced by the set $\left\{v_{p}^{j} \mid p \in[s]\right\}$ and let C^{j} be the copy of C in G^{j}. For convenience, we will denote $j+1$ modulo r by $j+1$. Let F be the set of edges of $G \square Z$ between the graphs G^{j}. Then $F=\left\{v_{p}^{j} v_{p}^{j+1} \mid p \in[s] ; j \in[r]\right\}$ and $G \square Z=G^{1} \cup G^{2} \cdots \cup G^{r} \cup F$. Partition the set F into sets F_{1} and $F_{2}=F \backslash F_{1}$,
where $F_{1}=\left\{v_{p}^{j} v_{p}^{j+1} \mid j=1,3,5,7, \ldots, r-1 ; p=1,3,5,7, \ldots, s-1\right\} \cup\left\{v_{p}^{j} v_{p}^{j+1}\right\} \mid j=$ $2,4,6, \ldots, r ; p=2,4,6, \ldots, s\}$.
Let $H_{1}=C^{1} \cup C^{2} \cup \cdots \cup C^{r} \cup F_{1}$ (see Figure 1) and let $H_{2}=G \square Z-E\left(H_{1}\right)$. Then $H_{2}=D^{1} \cup D^{2} \cup \cdots \cup D^{r} \cup F_{2}$, where D^{j} is the copy of the cycle D in G^{j}. Obviously, H_{1} and H_{2} are 3-regular and spanning edge-disjoint subgraphs of $G \square Z$.

Figure 1: The graph H_{1}

Claim 1. H_{1} and H_{2} are 3-connected.
First, we prove that H_{2} is 3 -connected. For $j \in[r]$, half of the vertices of D^{j} have distinct neighbours in D^{j-1} and the remaining half have distinct neighbours in D^{j+1} along the edges of F_{2}. Let x and y be two vertices of H_{2}. Then $x \in V\left(D^{j}\right)$ and $y \in V\left(D^{k}\right)$ for some $j, k \in[r]$. Suppose $j=k$. Then $x, y \in V\left(D^{j}\right)$. Clearly, $D^{j}-\{x, y\}$ has at most two components each of which is joined to D^{j-1} or D^{j+1}. Already, $H_{2}-V\left(D^{j}\right)$ is connected and contains D^{j-1} and D^{j+1}. Therefore, $H_{2}-\{x, y\}$ is connected. Suppose $j \neq k$. Then $D^{j}-\{x\}$ and $D^{k}-\{y\}$ are connected. If $k \in\{j-1, j+1\}$, then $H_{2}-V\left(D^{j} \cup D^{k}\right)$ is connected and further, each of $D^{j}-\{x\}$ and $D^{k}-\{y\}$ has a neighbour in $H_{1}-V\left(D^{j} \cup D^{k}\right)$. Therefore, $H_{1}-\{x, y\}$ is connected. Suppose $k \notin\{j-1, j+1\}$. Then $H_{2}-V\left(D^{j} \cup D^{k}\right)$ has two components one of them contains D^{j-1}, D^{k+1}, and the other contains D^{j+1}, D^{k-1}. Therefore, each component of $H_{2}-V\left(D^{j} \cup D^{k}\right)$ contains a neighbour of each of $D^{j}-\{x\}$ and $D^{k}-\{y\}$. Hence, $H_{2}-\{x, y\}$ is connected. Thus H_{2} is 3 -connected.
With similar arguments, one can prove that H_{1} is 3 -connected. However, 3 -connectedness of H_{1} also follows from known results. By a result of Alspach and Dean [3], being the honeycomb toroidal graph $\operatorname{HTG}(r, s, 0), H_{1}$ is a Cayley graph. Hence, H_{1} is a vertex-transitive connected graph of degree 3. It is known that a vertex-transitive connected graph of degree d has connectivity at least $2(d+1) / 3$ (see Theorem 3.4.2, [11]). It follows that the connectivity of H_{1} is 3 and hence, it is 3 -connected. Note that these arguments does not help with H_{2}.
Thus H_{1} and H_{2} are 3-connected.

Therefore, $G \square Z$ has a 3-factorization with 3-connected factors H_{1} and H_{2}.
Suppose G is a bipartite graph. We claim that H_{1} and H_{2} are isomorphic and nearly bipancyclic.

Claim 2. H_{1} and H_{2} are isomorphic.
Let X and Y be the bipartite sets of G, and for $j \in[r]$ let X^{j} and Y^{j} be the copies of X and Y in G^{j}, respectively. Clearly, the vertices of both C^{j} and D^{j} are alternately in X^{j} and Y^{j}. We may assume that $v_{p}^{j} \in X^{j}$ if and only if p is odd. In H_{2}, relabel the vertices of G^{j} with the labels $u_{1}^{j}, u_{2}^{j}, \ldots, u_{s}^{j}$ so that $u_{1}^{j}=v_{1}^{j}$, and u_{p}^{j} is adjacent to u_{p+1}^{j} for all $p \in[s]$. Then $u_{p}^{j} \in X^{j}$ if and only if p is odd. Note that $F_{2}=\left\{u_{p}^{j} u_{p}^{j+1} \mid j\right.$ odd; $\left.u_{p}^{j} \in Y^{j}\right\} \cup\left\{u_{p}^{j} u_{p}^{j+1} \mid j\right.$ even; $\left.u_{p}^{j} \in X^{j}\right\}$.
Now, define a map $f: V\left(H_{1}\right) \rightarrow V\left(H_{2}\right)$ by $f\left(v_{p}^{j}\right)=u_{p}^{j+1}$ for $j \in[r]$. Clearly, f is bijective. It is easy to see that f maps the cycle C^{j} onto the cycle D^{j+1} for $j \in[r]$ and also it maps F_{1} onto F_{2}. This implies that f is an isomorphism between the graphs H_{1} and H_{2}.

Claim 3. H_{1} and H_{2} are nearly bipancyclic.
It suffices to prove the claim for the graph H_{1} as H_{2} is isomorphic to H_{1}. Let l be an even integer such that $6 \leq l \leq r s$. We prove the claim by constructing a cycle of length l in H_{1} except possibly for $l=8$.
Case (i). l is a multiple of 4 .
A Hamiltonian cycle, that is, a cycle of length $r s$ in H_{1} is shown in Figure 2(a). In this cycle, replacing the path P_{5} of length 5 consisting of the vertices $v_{1}^{1}, v_{2}^{1}, v_{3}^{1}$ of C^{1}, and $v_{1}^{2}, v_{2}^{2}, v_{3}^{2}$ of C^{2}, by the chord $v_{3}^{1} v_{3}^{2}$ produces a new cycle of length $r s-4$ which is given in Figure 2(b). Now, replacing a P_{5}, as before, by the chord joining the end points of P_{5} in the new cycle creates a cycle of length rs - 8. Continuing this process of obtaining a new cycle from the previous cycle by replacing a P_{5} with a chord, as shown in Figure 2, we get cycles of length l for every l, a multiple of 4 with $2 r \leq l \leq r s$.

Figure 2. Cycle of length l, where l is a multiple of 4 and $2 r \leq l \leq r s$

Recall that r, s are even and $r \geq 4, s \geq 6$. Note that if $r=4$, then we get a cycle in H_{1} of length 8 from Figure 2(d). Suppose $r \geq 6$. Figure 3(a) depicts a cycle of length 12 in H_{1}. For $16 \leq l \leq 2 r-4$, the cycles of length l are constructed from the cycles $C^{1}, C^{2}, \ldots, C^{l / 4}$ of \bar{H}_{1} as shown in Figure 3(b) and (c) by considering two cases depending on whether $l / 4$ is even or odd.

a) $l=12$

b) $l / 4$ is even

c) $l / 4$ is odd

Figure 3: Cycle of length l, where l is a multiple of 4 and $12 \leq l \leq 2 r-4$

Case (ii). l is not a multiple of 4 .
Obviously, $6 \leq l \leq r s-2$. A cycle of length $r s-2$ is given in Figure 4(a). In this cycle, we replace a P_{5} consisting of vertices $v_{1}^{1}, v_{2}^{1}, v_{3}^{1}, v_{1}^{2}, v_{2}^{2}, v_{3}^{2}$ with the chord $v_{3}^{1} v_{3}^{2}$ to produce a new cycle of length $r s-6$ which is given in Figure 4(b). Recursively, we construct the cycles of length l, as in Case (i), shown in Figure 4. This proves the claim.

Figure 4: Cycle of length l, where l is not a multiple of 4 and $6 \leq l \leq r s-2$
By Claims 1, 2 and 3, H_{1} and H_{2} give a 3-factorization of the graph $G \square Z$, as desired.

3 Consequences of Theorem 1.4

We get the following result that is more general than Theorem 1.4.
Theorem 3.1 Let G_{1} and G_{2} be graphs with even orders that are decomposable into $2 n$ and n Hamiltonian cycles, respectively. Then $G_{1} \square G_{2}$ has a 3-factorization, where each factor is 3 -connected. Moreover, if G_{1} is bipartite, then the factors are isomorphic and nearly bipancyclic.

Proof: Suppose G_{1} is decomposable into Hamiltonian cycles $C_{1}, C_{2}, \ldots, C_{2 n}$, and G_{2} is decomposable into Hamiltonian cycles $Z_{1}, Z_{2}, \ldots, Z_{n}$. Then $G_{1}=C_{1} \cup C_{2} \cup \ldots \cup C_{2 n}$ and $G_{2}=Z_{1} \cup Z_{2} \cup \ldots \cup Z_{n}$. Suppose $\left|V\left(G_{1}\right)\right|=s$ and $\left|V\left(G_{2}\right)\right|=r$. For $i \in[n]$, let $W_{i}=\left(C_{2 i-1} \cup C_{2 i}\right) \square Z_{i}$. Then W_{i} is a spanning 6-regular subgraph of $G_{1} \square G_{2}$. By Lemma 2.3, $G_{1} \square G_{2}$ has a 6 -factorization into n factors $W_{1}, W_{2}, \ldots, W_{n}$. As in the proof of Theorem 1.4, we get a 3 -factorization of each W_{i} into two 3-connected factors W_{i}^{\prime} and $W_{i}^{\prime \prime}$. Suppose G_{1} is bipartite. Then, for every $i \in[n]$, the factors W_{i}^{\prime} and $W_{i}^{\prime \prime}$ are nearly bipancyclic and each is isomorphic to the graph shown in Figure 1. Thus $W_{1}^{\prime}, W_{2}^{\prime}, \ldots, W_{n}^{\prime}$ and $W_{1}^{\prime \prime}, W_{2}^{\prime \prime}, \ldots, W_{n}^{\prime \prime}$ give a desired 3-factorization of $G_{1} \square G_{2}$.

Theorem 3.2 Let $m \geq 2$ divide n and let $C_{1}, C_{2}, \ldots, C_{n}$ be even cycles. Then the product $C_{1} \square C_{2} \square \ldots \square C_{n}$ has an isomorphic m-factorization, where each factor is m-connected, and bipancyclic if $m \neq 3$ and nearly bipancyclic if $m=3$.

Proof: We prove the result by the induction on m. For $m=2$, the result follows from Corollary 1.2. Suppose $m=3$. Then $n=3 k$ for some k. Let $G_{1}=C_{1} \square C_{2} \square \ldots \square C_{2 k}$ and let $G_{2}=C_{2 k+1} \square C_{2 k+2} \square \ldots \square C_{3 k}$. By Corollary 1.2, G_{1} can be decomposed into $2 k$ Hamiltonian cycles and G_{2} can be decomposed into k Hamiltonian cycles. Since the cycles $C_{i}, 1 \leq i \leq 3 k$ have even length, G_{1} and G_{2} are bipartite and so Hamiltonian cycles of G_{1} and G_{2} are even. By Theorem 3.1, $G_{1} \square G_{2}=C_{1} \square C_{2} \square \ldots \square C_{3 k}$ has an isomorphic 3 -factorization, where each factor is 3 -connected and nearly bipancyclic.
Suppose $m \geq 4$. Then $m-2 \geq 2$. Let $G_{1}=C_{1} \square C_{2} \square \ldots \square C_{(m-2) k}$ and let $G_{2}=$ $C_{(m-2) k+1} \square C_{(m-2) k+2} \square \ldots \square C_{m k}$. Then G_{1} and G_{2} are bipartite. By the induction, G_{1} has an isomorphic $(m-2)$-factorization, where factors say $W_{1}, W_{2}, \ldots, W_{2 k}$ are ($m-2$)-connected and bipancyclic or nearly bipancyclic. Therefore, each W_{i} contains a Hamiltonian cycle. Since G_{2} is a product of $2 k$ cycles, by Corollary 1.2, it can be decomposed into Hamiltonian cycles $Z_{1}, Z_{2}, \ldots, Z_{2 k}$. Let $H_{i}=W_{i} \square Z_{i}$ for $i=1,2, \ldots, 2 k$. By Lemmas 2.1 and 2.2 , each H_{i} is m-regular, m-connected and bipancyclic. By Lemma 2.3, the graphs $H_{i}, 1 \leq i \leq 2 k$ are spanning edge-disjoint subgraphs of $G_{1} \square G_{2}$ such that $G_{1} \square G_{2}=H_{1} \cup H_{2} \ldots \cup H_{2 k}$. Moreover, for $i \neq j, H_{i}$ is isomorphic to H_{j} because W_{i} is isomorphic to W_{j}, and Z_{i} is isomorphic to Z_{j}.

The following result is a consequence of Theorem 3.2 and Lemma 2.3.
Corollary 3.3 Let $m \geq 2$ divide n and let $G_{1}, G_{2}, \ldots, G_{n}$ be graphs of even orders each of which is decomposable into p Hamiltonian cycles. Then $G_{1} \square G_{2} \square \ldots \square G_{n}$ has an isomorphic m-factorization, where each factor is m-connected, and bipancyclic if $m \neq 3$ and nearly bipancyclic if $m=3$.

We now prove Theorem 1.5 which is restated here.
Theorem 3.4 Let $n \geq 2$ be even and $m \geq 2$ divide n. Then Q_{n} has an isomorphic m-factorization, where each factor is m-connected, and bipancyclic for $m \neq 3$ and nearly bipancyclic for $m=3$.

Proof: Let $n=m k$ for some k. As n is even, k is even or m is even. Further, Q_{n} is the product of $n / 2$ cycles of length four each. If k is even, then m divides $n / 2$ and hence, the result follows from Theorem 3.2.
Suppose m is even. We prove the result by the induction on m. The result holds for $m=2$ as, by Corollary $1.2, Q_{2 k}$ can be decomposed into k Hamiltonian cycles say $Z_{1}, Z_{2}, \ldots, Z_{k}$. Suppose $m \geq 4$. Then $m-2 \geq 2$ is even. By the induction, $Q_{(m-2) k}$ has an isomorphic $(m-2)$-factorization with factors $W_{1}, W_{2}, \ldots, W_{k}$ such that each W_{i} is $(m-2)$-connected and bipancyclic. Write Q_{n} as $Q_{n}=Q_{(m-2) k} \square Q_{2 k}$. Let $H_{i}=W_{i} \square Z_{i}$ for $i=1,2, \ldots, k$. By Lemma 2.3, the subgraphs H_{i}, for $1 \leq i \leq k$,
are spanning edge-disjoint subgraphs of Q_{n} such that $Q_{n}=H_{1} \cup H_{2} \cup \ldots \cup H_{k}$. By Lemmas 2.1 and 2.2, each H_{i} is m-regular, m-connected and bipancyclic. Further, the subgraphs H_{i} are isomorphic, as the subgraphs W_{i} are isomorphic. Thus Q_{n} has an isomorphic m-factorization into the m-connected bipancyclic factors $H_{1}, H_{2}, \ldots, H_{k}$.

Acknowledgements

The authors would like to thank the referees for their valuable comments which improved the quality of the paper. The research of the first author is supported by DST-SERB, Government of India, under the project SR/S4/MS:750/12.

References

[1] J. Akiyama and M. Kano, Factors and factorizations of graphs-a survey, J. Graph Theory 9 (1985), 1-42.
[2] B. Alspach, J.-C. Bermond and D. Sotteau, Decomposition into cycles I: Hamilton decompositions, Proc. NATO Adv. Research Workshop on Cycles and Rays, (1990), 9-18.
[3] B. Alspach and M. Dean, Honeycomb toroidal graphs are Cayley graphs, Inform. Process. Lett. 109 (2009), 705-708.
[4] B. Alspach, T. Bendit and C. Maitland, Pancyclicity and Cayley graphs on abelian groups, J. Graph Theory 74 (2013), 260-274.
[5] J. Aubert and B. Schneider, Décompositions de la somme cartéienne d'un cycle et de l'union de deuux cycles Hamitoniens, Discrete Math. 37 (1982), 7-16.
[6] D.W. Bass and I.H. Sudborough, Hamiltonian decompositions and ($n / 2$)factorizations of hypercubes, J. Graph Algorithms Appl. 7 (1) (2003), 79-98.
[7] Y.M. Borse and S.A. Kandekar, Decomposition of hypercubes into regular connected bipancyclic subgraphs, Discrete Math. Algorithms Appl. 7 (3) (2015) 1550033 (10 pp.).
[8] J. Bosák, Decompositions of Graphs, Kluwer Academic Publishers Group, Dordrecht, 1990.
[9] N.-W. Chang and S.-Y. Hsieh, Fault-Tolerant bipancyclicity of faulty hypercubes under the generalized conditional-fault model, IEEE Trans. Commun. 59 (12) (2011), 3400-3409.
[10] M.F. Foregger, Hamiltonian decompositions of product of cycles, Discrete Math. 24 (1978), 251-260.
[11] C. Godsil and G. Royle, Algebraic Graph Theory, Springer Verlag, 2001.
[12] F. Harary, R.W. Robinson and N.C. Warmald, Isomorphic factorizations I: Complete graphs, Trans. Amer. Math. Soc. 242 (1978), 243-260.
[13] S.-Y. Hsieh and T.-H. Shen, Edge-Bipancyclicity of a hypercube with faulty vertices and edges, Discrete Appl. Math. 156 (10) (2008), 1802-1808.
[14] A. Kotzig, Every Cartesian product of two circuits is decomposable into two Hamiltonian circuits, Rapport 233, Centre de Recherche Mathématiques, Montréal, 1973.
[15] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, 1992.
[16] T.-K. Li, C.-H. Tsai, J.J.-M. Tan and L.-H. Hsu, Bipanconnected and edge fault-tolerant bipancyclicity of hypercubes, Inform. Process. Lett. 87 (2003), 107-110.
[17] S.A. Mane and B.N. Waphare, Regular connected bipancyclic spanning subgraphs of hypercubes, Comput. Math. Appl. 62 (2011), 3551-3554.
[18] J. Petersen, Die Theorie der regulären graphs, Acta Mathematica 15 (1891), 193-220.
[19] M.D. Plummer, Graph factors and factorization: 1985-2003: A survey, Discrete Math. 307 (2007), 791-821.
[20] S. Spacapan, Connectivity of Cartesian products of graphs, Appl. Math. Lett. 21 (2008), 682-685.
[21] L. Volkmann, Regular graphs, regular factors, and the impact of Petersen's theorems, Jahresber. Deutsch. Math.-Verein. 97 (1995), 19-42.
[22] S. El-Zanati and C.Vanden Eynden, Cycle factorizations of cycle products, Discrete Math. 189 (1998), 267-275.

