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Abstract

An m-factorization of a graph is a decomposition of its edge set into
edge-disjoint m-regular spanning subgraphs (or factors). In this paper,
we prove the existence of an isomorphic m-factorization of the Cartesian
product of graphs each of which is decomposable into Hamiltonian even
cycles. Moreover, each factor in the m-factorization is m-connected, and
bipancyclic for m ≥ 4 and nearly bipancyclic for m = 3.

1 Introduction

All graphs considered here are simple and undirected. The Cartesian product G1�G2

of two graphs G1 and G2 is a graph with the vertex set V (G1)×V (G2), where (u1, u2)
is adjacent to (v1, v2) in G1�G2 if and only if either u1 = v1 and u2 is adjacent to
v2 in G2, or u2 = v2 and u1 is adjacent to v1 in G1. In what follows by a product we
mean the Cartesian product.

The n-dimensional hypercube Qn is the product of n copies of K2. The hypercube
is a popular interconnection network in parallel computing [15]. A factorization of
the graph G is a decomposition of its edge set into edge-disjoint spanning subgraphs
(or factors). An isomorphic factorization of G is a factorization in which all of the
factors are isomorphic with each other. A factorization is an m-factorization if each
factor is m-regular. A Hamiltonian decomposition of G is a decomposition of its edge
set into Hamiltonian cycles. Therefore, a Hamiltonian decomposition of a graph is a
particular isomorphic 2-factorization.

Factorizations of graphs are well studied in the literature (see [1, 8, 12, 19, 21, 22]).
Harary et al. [12] studied isomorphic factorizations of complete graphs. Bass and
Sudborough [6] obtained an isomorphic (n/2)-factorization of the hypercube Qn, for
even n, where each factor has diameter n+2. As pointed out in [6], m-factorizations
of Qn have potential applications in the area of fault-tolerant computing and can
be used in the construction of adaptive routing algorithms. For regular graphs, 2-
factorizations have been studied for long time. In 1891, Petersen [18] proved that a
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2k-regular graph has a 2-factorization. Kotzig [14], in 1973, proved that the product
of two cycles is decomposable into Hamiltonian cycles while Foregger [10] considered
such a decomposition of the product of three cycles. These results are generalized
by Aubert and Schneider [5] as follows.

Theorem 1.1 Let G be a 4-regular graph that is decomposable into two Hamiltonian
cycles and let Z be a cycle. Then G�Z can be decomposed into three Hamiltonian
cycles.

Alspach et al. [2] obtained the following important consequences of Theorem 1.1.

Corollary 1.2 For n ≥ 1, the product of n cycles has a Hamiltonian decomposition.

Corollary 1.3 For even n, the hypercube Qn has a Hamiltonian decomposition.

Further, using Corollary 1.2, they settled a conjecture of Kotzig [14] by proving that
the graph G1�G2� . . .�Gn has a Hamiltonian decomposition if each Gi is decom-
posable into p Hamiltonian cycles. El-Zanati and Eynden [22] proved the existence
of an isomorphic factorization of the product of cycles each with length a power of 2
such that all components of each factor are cycles of same length.

In this paper, we consider the problem of determining the existence of isomor-
phic m-factorizations of the product of graphs of even orders each of which has a
Hamiltonian decomposition, where the factors are m-connected and satisfy an addi-
tional property of bipancyclicity. We generalize Theorem 1.1 and its consequences
for m-factorizations.

A graph G with even number of vertices is bipancyclic if G is either a cycle or
contains a cycle of every even length from 4 to |V (G)| (see [16]). Some authors use
the term“even pancyclic” for “bipancyclic” (see [4]). We say that a 3-regular graph
G with even number vertices is nearly bipancyclic if it contains a cycle of every even
length from 4 to |V (G)|, except possibly 4 and 8. Bipancyclicity of a given network
is an important factor in determining whether the network topology can simulate
rings of various lengths. Connectivity is one of the fundamental properties for inter-
connection networks. These properties for hypercube networks are well studied in
the literature (see [9, 13, 16]).

The following result is the main theorem of the paper.

Theorem 1.4 Let G be a 4-regular graph with even order that is decomposable into
two Hamiltonian cycles and let Z be an even cycle. Then G�Z has a 3-factorization,
where each factor is 3-connected. Moreover, if G is bipartite, then the factors are
isomorphic and nearly bipancyclic.

This result is analogous to Theorem 1.1. We obtain several consequences of
Theorem 1.4 for m-factorizations. The following result is analogous to Corollary 1.3
for m-factorizations.

Theorem 1.5 Let n ≥ 2 be even and m ≥ 2 divide n. Then Qn has an isomorphic
m-factorization, where each factor is m-connected, and bipancyclic for m �= 3 and
nearly bipancyclic for m = 3.
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A related result which states that Qn, for n = n1 + n2 with ni ≥ 2, has a
decomposition into two spanning bipancyclic subgraphs H1 and H2 such that Hi is
ni-regular and ni-connected is obtained in [7]. Theorem 1.5 can be compared with
the following problem posed by Bass and Sudborough [6].

Open Problem 1.6 Determine the existence of an isomorphic m-factorization of
Qn, where m divides n, m < n/2 and the diameter of the factors is n.

We prove Theorem 1.4 in Section 2 and its consequences in Section 3.

2 Proof of Theorem 1.4

Alspach et al. [4] proved that a connected Cayley graph of degree at least 3 on an
abelian group is bipancyclic. Since the product of two cycles is a connected Cayley
graph of degree 4 on an abelian group, it is bipancyclic. Therefore, we get the
following lemma, which also follows from a result of Mane and Waphare [17].

Lemma 2.1 If G1 and G2 are Hamiltonian graphs, then G1�G2 is bipancyclic.

The following lemma is a consequence of a result from [20].

Lemma 2.2 Let Gi be an mi-regular, mi-connected graph for i = 1, 2. Then the
graph G1�G2 is (m1 +m2)-regular, (m1 +m2)-connected.

The next lemma follows from the definition of the product of graphs.

Lemma 2.3 Suppose G1 and G2 are two graphs such that G1 is decomposable into
spanning subgraphs H1, H2, . . . , Hr, and G2 is decomposable into spanning subgraphs
F1, F2, . . . , Fr. Then the graph G1�G2 is decomposable into spanning subgraphs
H1�F1, H2�F2, . . . , Hr�Fr.

For n ≥ 1, let [n] = {1, 2, . . . , n}. We now prove Theorem 1.4.

Proof: By definition of the product, G�Z is obtained by replacing each vertex of Z
by a copy of G and replacing each edge of Z by a matching between two copies of G
corresponding to the end vertices of that edge. Let |V (G)| = s and |V (Z)| = r. Then
r and s are even and further, s ≥ 6 and r ≥ 4 as G and Z are simple. Let Z have
vertices {1, 2, . . . , r}, where j is adjacent to j + 1 modulo r. Suppose G decomposes
into two Hamiltonian cycles C and D. Then G = C ∪ D. Label the vertices of
G with v1, v2, . . . , vs so that vp is adjacent to vp+1(modulo s) in C. For compactness,
let vjp denote the vertex (vp, j) of G�Z; superscripts are computed modulo r with
representative in [r] and subscripts are modulo s with representative in [s]. For
j ∈ [r], let Gj be the copy of G induced by the set {vjp | p ∈ [s]} and let Cj be the
copy of C in Gj. For convenience, we will denote j + 1 modulo r by j + 1. Let F be
the set of edges of G�Z between the graphs Gj. Then F = {vjpvj+1

p | p ∈ [s]; j ∈ [r]}
and G�Z = G1 ∪G2 · · · ∪Gr ∪ F . Partition the set F into sets F1 and F2 = F \ F1,
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where F1 = {vjpvj+1
p | j = 1, 3, 5, 7, . . . , r−1; p = 1, 3, 5, 7, . . . , s−1}∪{vjpvj+1

p } | j =
2, 4, 6, . . . , r; p = 2, 4, 6, . . . , s}.
Let H1 = C1 ∪ C2 ∪ · · · ∪Cr ∪ F1 (see Figure 1) and let H2 = G�Z −E(H1). Then
H2 = D1∪D2 ∪ · · · ∪Dr ∪F2, where D

j is the copy of the cycle D in Gj. Obviously,
H1 and H2 are 3-regular and spanning edge-disjoint subgraphs of G�Z.
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Figure 1: The graph H1

Claim 1. H1 and H2 are 3-connected.

First, we prove that H2 is 3-connected. For j ∈ [r], half of the vertices of Dj

have distinct neighbours in Dj−1 and the remaining half have distinct neighbours in
Dj+1 along the edges of F2. Let x and y be two vertices of H2. Then x ∈ V (Dj)
and y ∈ V (Dk) for some j, k ∈ [r]. Suppose j = k. Then x, y ∈ V (Dj). Clearly,
Dj − {x, y} has at most two components each of which is joined to Dj−1 or Dj+1.
Already, H2−V (Dj) is connected and contains Dj−1 andDj+1. Therefore, H2−{x, y}
is connected. Suppose j �= k. Then Dj − {x} and Dk − {y} are connected. If
k ∈ {j− 1, j+1}, then H2− V (Dj ∪Dk) is connected and further, each of Dj −{x}
andDk−{y} has a neighbour inH1−V (Dj∪Dk). Therefore, H1−{x, y} is connected.
Suppose k /∈ {j− 1, j+1}. Then H2−V (Dj ∪Dk) has two components one of them
contains Dj−1, Dk+1, and the other contains Dj+1, Dk−1. Therefore, each component
of H2 − V (Dj ∪Dk) contains a neighbour of each of Dj −{x} and Dk −{y}. Hence,
H2 − {x, y} is connected. Thus H2 is 3-connected.

With similar arguments, one can prove that H1 is 3-connected. However, 3-connect-
edness of H1 also follows from known results. By a result of Alspach and Dean [3],
being the honeycomb toroidal graph HTG(r, s, 0), H1 is a Cayley graph. Hence, H1 is
a vertex-transitive connected graph of degree 3. It is known that a vertex-transitive
connected graph of degree d has connectivity at least 2(d+1)/3 (see Theorem 3.4.2,
[11]). It follows that the connectivity of H1 is 3 and hence, it is 3-connected. Note
that these arguments does not help with H2.

Thus H1 and H2 are 3-connected.
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Therefore, G�Z has a 3-factorization with 3-connected factors H1 and H2.

Suppose G is a bipartite graph. We claim that H1 and H2 are isomorphic and nearly
bipancyclic.

Claim 2. H1 and H2 are isomorphic.

Let X and Y be the bipartite sets of G, and for j ∈ [r] let Xj and Y j be the
copies of X and Y in Gj , respectively. Clearly, the vertices of both Cj and Dj are
alternately in Xj and Y j. We may assume that vjp ∈ Xj if and only if p is odd. In

H2, relabel the vertices of Gj with the labels uj
1, u

j
2, . . . , u

j
s so that uj

1 = vj1, and uj
p

is adjacent to uj
p+1 for all p ∈ [s]. Then uj

p ∈ Xj if and only if p is odd. Note that
F2 = {uj

pu
j+1
p | j odd; uj

p ∈ Y j} ∪ {uj
pu

j+1
p | j even; uj

p ∈ Xj}.
Now, define a map f : V (H1) → V (H2) by f(vjp) = uj+1

p for j ∈ [r]. Clearly, f is
bijective. It is easy to see that f maps the cycle Cj onto the cycle Dj+1 for j ∈ [r]
and also it maps F1 onto F2. This implies that f is an isomorphism between the
graphs H1 and H2.

Claim 3. H1 and H2 are nearly bipancyclic.

It suffices to prove the claim for the graph H1 as H2 is isomorphic to H1. Let l be
an even integer such that 6 ≤ l ≤ rs. We prove the claim by constructing a cycle of
length l in H1 except possibly for l = 8.

Case (i). l is a multiple of 4.

A Hamiltonian cycle, that is, a cycle of length rs in H1 is shown in Figure 2(a). In
this cycle, replacing the path P5 of length 5 consisting of the vertices v11, v

1
2, v

1
3 of

C1, and v21, v
2
2, v

2
3 of C2, by the chord v13v

2
3 produces a new cycle of length rs − 4

which is given in Figure 2(b). Now, replacing a P5, as before, by the chord joining
the end points of P5 in the new cycle creates a cycle of length rs − 8. Continuing
this process of obtaining a new cycle from the previous cycle by replacing a P5 with
a chord, as shown in Figure 2, we get cycles of length l for every l, a multiple of 4
with 2r ≤ l ≤ rs.
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Figure 2. Cycle of length l, where l is a multiple of 4 and 2r ≤ l ≤ rs

Recall that r, s are even and r ≥ 4, s ≥ 6. Note that if r = 4, then we get a cycle
in H1 of length 8 from Figure 2(d). Suppose r ≥ 6. Figure 3(a) depicts a cycle of
length 12 in H1. For 16 ≤ l ≤ 2r − 4, the cycles of length l are constructed from
the cycles C1, C2, . . . , C l/4 of H1 as shown in Figure 3(b) and (c) by considering two
cases depending on whether l/4 is even or odd.
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Figure 3: Cycle of length l, where l is a multiple of 4 and 12 ≤ l ≤ 2r − 4

Case (ii). l is not a multiple of 4.

Obviously, 6 ≤ l ≤ rs − 2. A cycle of length rs − 2 is given in Figure 4(a). In this
cycle, we replace a P5 consisting of vertices v11, v

1
2, v

1
3, v

2
1, v

2
2, v

2
3 with the chord v13v

2
3

to produce a new cycle of length rs − 6 which is given in Figure 4(b). Recursively,
we construct the cycles of length l, as in Case (i), shown in Figure 4. This proves
the claim.
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Figure 4: Cycle of length l, where l is not a multiple of 4 and 6 ≤ l ≤ rs− 2

By Claims 1, 2 and 3, H1 and H2 give a 3-factorization of the graph G�Z, as desired.

�

3 Consequences of Theorem 1.4

We get the following result that is more general than Theorem 1.4.

Theorem 3.1 Let G1 and G2 be graphs with even orders that are decomposable
into 2n and n Hamiltonian cycles, respectively. Then G1�G2 has a 3-factorization,
where each factor is 3-connected. Moreover, if G1 is bipartite, then the factors are
isomorphic and nearly bipancyclic.

Proof: Suppose G1 is decomposable into Hamiltonian cycles C1, C2, . . . , C2n, and G2

is decomposable into Hamiltonian cycles Z1, Z2, . . . , Zn. Then G1 = C1∪C2∪. . .∪C2n

and G2 = Z1 ∪ Z2 ∪ . . . ∪ Zn. Suppose |V (G1)| = s and |V (G2)| = r. For i ∈ [n],
let Wi = (C2i−1 ∪ C2i)�Zi. Then Wi is a spanning 6-regular subgraph of G1�G2.
By Lemma 2.3, G1�G2 has a 6-factorization into n factors W1,W2, . . . ,Wn. As in
the proof of Theorem 1.4, we get a 3-factorization of each Wi into two 3-connected
factors W ′

i and W ′′
i . Suppose G1 is bipartite. Then, for every i ∈ [n], the factors

W ′
i and W ′′

i are nearly bipancyclic and each is isomorphic to the graph shown in
Figure 1. Thus W ′

1,W
′
2, . . . ,W

′
n and W ′′

1 ,W
′′
2 , . . . ,W

′′
n give a desired 3-factorization

of G1�G2. �
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Theorem 3.2 Let m ≥ 2 divide n and let C1, C2, . . . , Cn be even cycles. Then the
product C1�C2� . . .�Cn has an isomorphic m-factorization, where each factor is
m-connected, and bipancyclic if m �= 3 and nearly bipancyclic if m = 3.

Proof: We prove the result by the induction on m. For m = 2, the result follows from
Corollary 1.2. Suppose m = 3. Then n = 3k for some k. Let G1 = C1�C2� . . .�C2k

and let G2 = C2k+1�C2k+2� . . .�C3k. By Corollary 1.2, G1 can be decomposed into
2k Hamiltonian cycles and G2 can be decomposed into k Hamiltonian cycles. Since
the cycles Ci, 1 ≤ i ≤ 3k have even length, G1 and G2 are bipartite and so Hamil-
tonian cycles of G1 and G2 are even. By Theorem 3.1, G1�G2 = C1�C2� . . .�C3k

has an isomorphic 3-factorization, where each factor is 3-connected and nearly bi-
pancyclic.

Suppose m ≥ 4. Then m − 2 ≥ 2. Let G1 = C1�C2� . . .�C(m−2)k and let G2 =
C(m−2)k+1�C(m−2)k+2� . . .�Cmk. Then G1 and G2 are bipartite. By the induction,
G1 has an isomorphic (m − 2)-factorization, where factors say W1,W2, . . . ,W2k are
(m − 2)-connected and bipancyclic or nearly bipancyclic. Therefore, each Wi con-
tains a Hamiltonian cycle. Since G2 is a product of 2k cycles, by Corollary 1.2, it
can be decomposed into Hamiltonian cycles Z1, Z2, . . . , Z2k. Let Hi = Wi�Zi for
i = 1, 2, . . . , 2k. By Lemmas 2.1 and 2.2, each Hi is m-regular, m-connected and
bipancyclic. By Lemma 2.3, the graphs Hi, 1 ≤ i ≤ 2k are spanning edge-disjoint
subgraphs of G1�G2 such that G1�G2 = H1 ∪H2 . . . ∪H2k. Moreover, for i �= j, Hi

is isomorphic to Hj because Wi is isomorphic to Wj , and Zi is isomorphic to Zj . �

The following result is a consequence of Theorem 3.2 and Lemma 2.3.

Corollary 3.3 Let m ≥ 2 divide n and let G1, G2, . . . , Gn be graphs of even orders
each of which is decomposable into p Hamiltonian cycles. Then G1�G2� . . .�Gn has
an isomorphic m-factorization, where each factor is m-connected, and bipancyclic if
m �= 3 and nearly bipancyclic if m = 3.

We now prove Theorem 1.5 which is restated here.

Theorem 3.4 Let n ≥ 2 be even and m ≥ 2 divide n. Then Qn has an isomorphic
m-factorization, where each factor is m-connected, and bipancyclic for m �= 3 and
nearly bipancyclic for m = 3.

Proof: Let n = mk for some k. As n is even, k is even or m is even. Further, Qn is
the product of n/2 cycles of length four each. If k is even, then m divides n/2 and
hence, the result follows from Theorem 3.2.

Suppose m is even. We prove the result by the induction on m. The result holds
for m = 2 as, by Corollary 1.2, Q2k can be decomposed into k Hamiltonian cycles
say Z1, Z2, . . . , Zk. Suppose m ≥ 4. Then m − 2 ≥ 2 is even. By the induction,
Q(m−2)k has an isomorphic (m − 2)-factorization with factors W1,W2, . . . ,Wk such
that each Wi is (m−2)-connected and bipancyclic. Write Qn as Qn = Q(m−2)k�Q2k.
Let Hi = Wi�Zi for i = 1, 2, . . . , k. By Lemma 2.3, the subgraphs Hi, for 1 ≤ i ≤ k,
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are spanning edge-disjoint subgraphs of Qn such that Qn = H1 ∪H2 ∪ . . . ∪Hk. By
Lemmas 2.1 and 2.2, eachHi ism-regular, m-connected and bipancyclic. Further, the
subgraphs Hi are isomorphic, as the subgraphs Wi are isomorphic. Thus Qn has an
isomorphic m-factorization into the m-connected bipancyclic factors H1, H2, . . . , Hk.
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