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Abstract

Given a properly face two-coloured triangulation of the graph Kn in a
surface, a Steiner triple system can be constructed from each of the colour
classes. The two Steiner triple systems obtained in this manner are said
to form a biembedding. If the systems are isomorphic to each other it is
a self-embedding.

In the following, for each k ≥ 2, we construct a self-embedding of the
doubled affine Steiner triple system AG(k, 3) in a nonorientable surface.
We also make use of a construction due to Grannell, Griggs and Širáň to
obtain a biembedding of AG(k, 3) in a nonorientable surface that is not
a self-embedding for k > 2.

1 Introduction

A Steiner triple system of order v, an STS(v), is an ordered pair (V,B) where V
is a set of cardinality v and B is a collection of triples which has the property that
each pair of distinct elements of V occurs in precisely one triple. The necessary and
sufficient condition for the existence of an STS(v) is that v ≡ 1 or 3 (mod 6) [14].
Now consider a triangulation of the complete graph Kn in a surface. Such a

triangulation exists in an orientable surface if and only if n ≡ 0, 3, 4 or 7 (mod 12)
and a nonorientable surface if and only if n ≡ 0, 1, 3 or 4 (mod 6) and n ≥ 9 [15].
Suppose that the triangulation we are considering satisfies the additional property
that its faces can be properly 2-coloured. Then the set of faces of each colour class



T.A. MCCOURT AND J.Z. SCHROEDER/AUSTRALAS. J. COMBIN. 66 (1) (2016), 23–43 24

forms a Steiner triple system of order n, and we say that the two Steiner triple
systems obtained in this manner are biembedded in the surface.
For such a biembedding to exist the number of faces around each vertex (n − 1)

must be even. So if the surface is orientable, a necessary condition is that n ≡
3 or 7 (mod 12), whereas if the surface is nonorientable, a necessary condition is that
n ≡ 1 or 3 (mod 6). These necessary conditions are also sufficient, the orientable case
n ≡ 3 (mod 12) was established in [15]; the orientable case n ≡ 7 (mod 12) in [18]; the
nonorientable case n ≡ 9 (mod 12) in [15] and a remark is made, although no details
are given, that the method described also works for the case n ≡ 3 (mod 12), with
the details made explicit in [1]; finally the nonorientable case n ≡ 1 (mod 6), where
n ≥ 13 was established in [9]. A comprehensive survey of results on biemebeddings
of Steiner triple systems can be found in [6]. For background on topological graph
embeddings we refer the reader to [13].
In this paper we will investigate biembeddings of Steiner triple systems that satisfy

the additional condition that the two systems are isomorphic to each other; such
a biembedding is called a self-embedding of a Steiner triple system. For example
consider the face 2-coloured triangulation of K7 in the torus depicted in Figure 1;
the corresponding Steiner triple systems are S1 = (V,B1) and S2 = (V,B2) where

B1 =
{{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}}

and

B2 =
{{0, 1, 5}, {1, 2, 6}, {2, 3, 0}, {3, 4, 1}, {4, 5, 2}, {5, 6, 3}, {6, 0, 4}}.

The map φ : V → V given by v �→ −v (mod 7) is an isomorphism from S1 to S2.
Thus the biembedding is a self-embedding.
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Figure 1: A biembedding of a pair of STS(7) in the torus.

Steiner triple systems obtained from the Bose construction have self-embeddings
in both orientable and nonorientable surfaces [4, 8]. Further investigation of self-
embeddings of Steiner triple systems was carried out in [10], in which the existence of
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self-embeddings in nonorientable surfaces of Steiner triple systems from a a large and
well-structured class of systems (2-rotational Steiner triple systems) was established.
Self-embeddings of other combinatorial designs have also been studied and infinite

families established [3, 12, 17].
Consider a triangular embedding of the complete tripartite graph Kn,n,n. Such an

embedding is face 2-colourable if and only if the surface is orientable [7]. In this case
the faces in each colour class can be regarded as the triples of a transveral design
with block size three and we say the face 2-coloured embedding is a biembedding
of the two transversal designs; such biembeddings exist for all n [16]. If the two
transversal designs forming a biembedding are isomorphic the biembedding is called
a self-embedding. The existence of self-embeddings of transversal designs has been
studied in [3] and [17].
Next consider a properly face two-coloured embedding of the complete graph Kn

in a surface in which all the faces are cycles of length m. Then the faces of each
colour class form an m-cycle system of order n and we say that the embedding is
a biembedding of the two cycle systems. Necessary and sufficient conditions for the
existence of biembeddings of m-cycle system of order 2m+1 for both orientable and
nonorientable surfaces were established in [12]. In the orientable case the biembed-
dings provided in [12] are self-embeddings (the cycle systems obtained from the face
colour classes are isomorphic).
Recall that in the case of transversal designs self-embeddings are necessarily in

orientable surfaces. Although biembeddings of symmetric cycle systems are not nec-
essarily in orientable surfaces the only known results for self-embeddings of symmetric
systems are for orientable surfaces.
The above results on self-embeddings of transversal designs and symmetric cycle

systems along with many biembedding (and self-embedding) results for Steiner triple
systems rely on the systems (or fixed subsystems) containing a cyclic automorphism,
e.g. the results in [9, 10, 15, 18]. In this paper, rather than using the structure
provided by a cyclic automorphism of a (sub)system, we use the structure of the
subsystems isomorphic to affine Steiner triple systems of order v = 3n (which have
the automorphism group AΣL(n, 3), the affine semilinear group [2]).

2 Steiner triple system constructions

Before establishing the self-embeddings we are concerned with we will discuss some
well known constructions of Steiner triple systems. Details on these and many other
constructions of Steiner triple systems can be found in [2].
Let (V,B) be a Steiner triple system and suppose that {x, y, z} ∈ B; then, for ease

of notation, we will often denote this triple by xyz ∈ B.
Let V = Z

k
3 and let B be the set of triples {x,y, z} where x,y, z ∈ V , x+y+z = 0

and x �= y �= z �= x. Then (V,B) forms an STS(3k) called an affine Steiner triple
system and is denoted by AG(k, 3).
We now consider two recursive constructions of Steiner triple systems.
Let S = (V,B) be a Steiner triple system of order v. LetW = (V ×Z2)∪{∞}. For
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ease of notation, for x ∈ V we will represent the element (x, 0) as x and the element
(x, 1) by x. Let

C =
{
xyz, xyz, xyz, xyz | xyz ∈ B} ∪ {∞xx | x ∈ V

}
.

Then (W, C) is an STS(2v+1). We say that (W, C) is a doubled Steiner triple system,
more specifically it is a doubling of the system S = (V,B) and we will denote it by
δ(S).
Let S = (V,B) be a Steiner triple system of order v. Let U = V × Z3 and

D =
{
(x, 0)(x, 1)(x, 2), (y, 0)(y, 1)(y, 2), (z, 0)(z, 1)(z, 2),

(x, 0)(y, 0)(z, 0), (x, 0)(y, 1)(z, 2), (x, 0)(y, 2)(z, 1),

(x, 1)(y, 0)(z, 2), (x, 1)(y, 1)(z, 1), (x, 1)(y, 2)(z, 0),

(x, 2)(y, 0)(z, 1), (x, 2)(y, 1)(z, 0), (x, 2)(y, 2)(z, 2) | xyz ∈ B}.
Then (U,D) is an STS(3v); we say that (W, C) is a tripling of the Steiner triple
system S = (V,B). (The version of tripling described here is a particular instance of
the more general singular direct product of triple systems, see [2, pg 39].)
Observe that the tripling of AG(k, 3) yields a Steiner triple system isomorphic to

AG(k+1, 3). Before proving the main result of this paper we use this observation to
prove that for every affine Steiner triple system AG(k, 3) there exists a biembedding
of a pair of Steiner triple systems in which one of the systems is isomorphic to
AG(k, 3). When k ≥ 2 these biembeddings are in nonorientable surfaces and when
k ≥ 3 they are not self-embeddings.
Given a pair of Steiner triple systems of order v, say S = (V,B) and T = (V, C),

construct a pseudo-surface P in the following manner. Each triple xyz ∈ B ∪ C
corresponds to a face with vertices x, y and z and edges between each pair of vertices.
The pseudo-surface is obtained by identifying edges in these triples if they have the
same end-vertices. If the rotation at each vertex, v ∈ V say, is a full rotation, i.e. the
rotation at v consists of a single permutation that contains each vertex in V \ {v}
exactly once, then the pseudo-surface is a surface. See [13] for details.
The following theorem is a special case of the nonorientable analogue of [8, Con-

struction 6]. We provide a simplified proof for this special case.

Theorem 2.1 (Grannell, Griggs & Širáň, [8]). Suppose that S and T are a pair
of STS(n) on the same vertex set V such that S and T form a biembedding in a
nonorientable surface and where T contains a parallel class. Then there exists a
biembedding of a pair of STS(3n) such that one of the STS(3n), S ′ say, can be
obtained by tripling S and the second STS(3n), T ′ say, contains a parallel class.

Proof. First note that for Steiner triple system to contain a parallel class its order
must be 3 modulo 6. Let S = (V,B) and T = (V, C) be Steiner triple systems of
order n = 6m+ 3. Suppose that P ⊂ C is parallel class of triples in T . Define S ′ to
be the tripling of S and define T ′ = (V × Z3, C′) where, denoting (v, i) ∈ V × Z3 as
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vi,

C′ =
{
aibjck | abc ∈ C \ P and i+ j + k ≡ 0 (mod 3)

} ∪{
a0a1c2, a0a2c1, a0b0b2, a0b1c0, a1a2c0, a1b0b1,

a1b2c1, a2b1b2, a2b0c2, b0c0c1, b1c1c2, b2c0c2 | abc ∈ P}
.

Note that the choice of a, b and c for each triple in the parallel class is independent
of the other triples.
Let abc ∈ P; we show that there is a full rotation around each of the vertices in

{a, b, c} × Z3. Note that for any triple def ∈ (B ∪ C) \ P, all of the triples of the
form diejfk for i+ j + k ≡ 0 (mod 3) are in either S ′ or in T ′. Denote the rotations
around a, b and c in the biembedding of S and T as

a : (b x1 x2 x3 . . . x6m c)

b : (c y1 y2 y3 . . . y6m a)

c : (a z1 z2 z3 . . . z6m b)

Then the rotations around each vertex in {a, b, c}×Z3 in the pseudo-surface obtained
from S ′ and T ′ are given below.

a0 : (b0 x01 x
0
2 x

0
3 . . . x

0
6m c

0 b1 x21 x
1
2 x

2
3 . . . x

1
6m c

2 a1 a2 c1 x26m . . . x
1
3 x

2
2 x

1
1 b

2)

a1 : (b1 x11 x
1
2 x

1
3 . . . x

1
6m c

1 b2 x01 x
2
2 x

0
3 . . . x

2
6m c

0 a2 a0 c2 x06m . . . x
2
3 x

0
2 x

2
1 b

0)

a2 : (b2 x21 x
2
2 x

2
3 . . . x

2
6m c

2 b0 x11 x
0
2 x

1
3 . . . x

0
6m c

1 a0 a1 c0 x16m . . . x
0
3 x

1
2 x

0
1 b

1)

b0 : (c1 y21 y
1
2 y

2
3 . . . y

1
6m a

2 c2 y11 y
2
2 y

1
3 . . . y

2
6m a

1 b1 b2 a0 y06m . . . y
0
3 y

0
2 y

0
1 c

0)

b1 : (c2 y01 y
2
2 y

0
3 . . . y

2
6m a

0 c0 y21 y
0
2 y

2
3 . . . y

0
6m a

2 b2 b0 a1 y16m . . . y
1
3 y

1
2 y

1
1 c

1)

b2 : (c0 y11 y
0
2 y

1
3 . . . y

0
6m a

1 c1 y01 y
1
2 y

0
3 . . . y

1
6m a

0 b0 b1 a2 y26m . . . y
2
3 y

2
2 y

2
1 c

2)

c0 : (a2 z11 z
2
2 z

1
3 . . . z

2
6m b

1 a0 z01 z
0
2 z

0
3 . . . z

0
6m b

0 c1 c2 b2 z16m . . . z
2
3 z

1
2 z

2
1 a

1)

c1 : (a0 z21 z
0
2 z

2
3 . . . z

0
6m b

2 a1 z11 z
1
2 z

1
3 . . . z

1
6m b

1 c2 c0 b0 z26m . . . z
0
3 z

2
2 z

0
1 a

2)

c2 : (a1 z01 z
1
2 z

0
3 . . . z

1
6m b

0 a2 z21 z
2
2 z

2
3 . . . z

2
6m b

2 c0 c1 b1 z06m . . . z
1
3 z

0
2 z

1
1 a

0)

As each of these are single cycles, i.e. full rotations, we have that the pseudo-surface
is indeed a surface and hence is a biemebdding of S ′ and T ′.
Note that the collection {a0a1c2, a2b1b2, b0c0c1 | abc ∈ P} is a parallel class of T ′.

Hence, all that remains is to show that the surface we have obtained is nonorientable.
To do so it is sufficient to show that the vertex rotations can not be consistently
directed.
Suppose, for a contradiction, that the surface is orientable, in which case the

surface satisfies Ringel’s Rule Δ∗, see [13]. Without loss of generality we can choose
the orientation of the face with vertices a0, a1 and a2 so that in the facial walk these
vertices appear in the cyclic order (a0, a1, a2). This implies that the rotations at a0,



T.A. MCCOURT AND J.Z. SCHROEDER/AUSTRALAS. J. COMBIN. 66 (1) (2016), 23–43 28

a1 and a2 have the following, consistent, orderings.

a0 : (. . . b2 b0 . . . c0 b1 . . . c2 a1 a2 c1 . . .)

a1 : (. . . b0 b1 . . . c1 b2 . . . c0 a2 a0 c2 . . .)

a2 : (. . . b1 b2 . . . c2 b0 . . . c1 a0 a1 c0 . . .)

The rotation at a2 implies that the facial walk of the face containing vertices a2,
c2 and b0 has the cyclic ordering (a2, c2, b0). So in order to be consistent with the
rotation at a2, the rotation at b0 should be

b0 : (. . . c0 c1 . . . a2 c2 . . . a1 b1 b2 a0 . . .).

Now the rotation at a1 implies that the facial walk of the face containing vertices
a1, b0 and b1 has the cyclic ordering (a1, b0, b1), while the rotation at b0 implies that
facial walk should have cyclic ordering (b0, a1, b1).

Corollary 2.2. For all k ≥ 2 there exists a biembedding of a pair of STS(3k) in a
nonorientable surface in which one of the systems, S say, is isomorphic to AG(k, 3)
and the other system, T say, contains a parallel class. Moreover, T is isomorphic to
AG(k, 3) if and only if k = 2.

Proof. Up to isomorphism there is a unique STS(9), and by [15] there exists a biem-
bedding of a pair of STS(9) in a nonorientable surface (no orientable biembedding
can exist as 9 �≡ 3 or 7 (mod 12)). Hence, this biembedding is a self-embedding of
AG(2, 3). Also note that AG(2, 3) contains a parallel class.
Repeated applications of Theorem 2.1 establishes the existence of the desired biem-

beddings. Recall that tripling AG(k−1, 3) yields an STS(3k) isomorphic to AG(k, 3),
so we have that one of the systems, S ′, in the constructed biembedding is isomorphic
to AG(k, 3).
In order to complete the proof we need to show that for k > 2 the second system,

T ′, is not isomorphic to AG(k, 3). To do so we make use of the observation that
AG(k, 3) is a Hall triple system; in particular if U = (V,D) is an STS(3k) isomorphic
to AG(k, 3), then if abc, ade, bdf, ceg ∈ D, so is afg.
For k ≥ 2, let T = (V, C) with parallel class P be the STS(3k−1) that biembeds

with a copy of AG(k − 1, 3) constructed as above. Consider a triple abc ∈ P, then
there exist triples ade, bdf, ceg ∈ C\P. Hence T ′ = (V ×Z3, C′), where C′ is defined as
in Theorem 2.1, contains the triples a0b1c0, a0d0e0, b1d0f 2 and c0e0g0, but not a0f 2g0

(as the subscripts do not sum to zero modulo three). Thus T ′ is not isomorphic to
AG(k, 3).

It is our understanding that in [8] Grannell, Griggs and Širáň were unaware of the
above application of the nonorientable analogue of their Construction 6 [11].
Note that when k is even any biembedding in which one of the systems is isomorphic

to AG(k, 3) must necessarily be in a nonorientable surface (if k is even, then 3k ≡
9 (mod 12)). If a biembedding in an orientable surface in which one of the Steiner
triple systems is isomorphic to AG(3, 3) can be found and the other system contains
a parallel class, then repeated applications of Construction 6 from [8] could be used
to show that there exist biembeddings in orientable surfaces in which one of the
systems is isomorphic to AG(k, 3) for all odd k.
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3 Self-embeddings

In order to construct a family of self-embeddings of Steiner triple systems we will
use the following approach. We start with a well understood system (the affine
system AG(k, 3)). We then take a second copy of the system and perform a simple
derangement (the map φ below) on the point/vertex set to yield a second Steiner
triple system. At this stage, in the manner described above, a pseudo-surface can be
constructed from these two systems.
We then double the first system (the system AG(k, 3)) and perform a variant of

the doubling construction on the second system (which yields a system isomorphic
to the doubled AG(k, 3)). We choose this second doubling so that, together with the
doubling of AG(k, 3), we ‘unpick’ the pinch points of the pseudo-surface and yield
the desired self-embedding.
In order to simplify the proof we express the second system as a doubling of

AG(k, 3) to which a permutation of the point/vertex set has been applied (we do so
in such a manner that this corresponds to the variant of the doubling construction
being applied to the image of AG(k, 3) under φ).
In the following, when no confusion is likely, we will suppress commas when writing

elements of Zk
3; that is if x = (x1, x2, x3, . . . , xk) ∈ Z

k
3 , we write x = x1x2x3 . . . xk.

We also maintain the same notation as established when discussing doubling Steiner
triple systems in Section 2; that is, we will denote

• the element (x, 0) = (x1, x2, x3, . . . , xk, 0) ∈ Z
k
3 × Z2 by x = x1x2x3 . . . xk; and

• the element (x, 1) = (x1, x2, x3, . . . , xk, 1) ∈ Z
k
3 × Z2 by x = x1x2x3 . . . xk.

Consider the group Z
k
3. Let i∗0 = k, and for 0 �= x = x1x2x3 . . . xk ∈ Z

k
3 let

i∗x = min{i | xi �= 0} denote the first non-zero coordinate of x. Define the map
φ : Zk

3 → Z
k
3 by

φ : x �→ (x1 + 1)(x2 + 1) . . . (xi∗x−1 + 1)(xi∗x + 1)xi∗x+1 . . . xk,

where the computations in the brackets are performed modulo three.
Consider the bijection ι : Zk

3 → Z3k where

ι : x �→ (x1 − 1) + (x2 − 1)3 + (x3 − 1)32 + . . .+ (xk − 1)3k−1,

where once again computations within brackets are performed modulo three. Observe
that ι ◦ φ(x) = ι(x) + 1 (mod 3k), and therefore φ is a permutation of length 3k of
the elements of Zk

3.

Example 3.1. Consider the case where k = 2, then under the map φ

11 �→ 21 �→ 01 �→ 12 �→ 22 �→ 02 �→ 10 �→ 20 �→ 00 �→ 11,

and
ι(11) = 0, ι(21) = 1, ι(01) = 2, ι(12) = 3, ι(22) = 4,

ι(02) = 5, ι(10) = 6, ι(20) = 7, ι(00) = 8.
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Let W = (Zk
3 × Z2) ∪ {∞}. We extend the map φ to a map ψ : W →W given by

ψ : x1x2x3 . . . xk0 �→ φ(x1x2x3 . . . xk)1

x1x2x3 . . . xk1 �→ x1x2x3 . . . xk0

∞ �→ ∞.

In a slight abuse of notation we will often write ψ(x) = φ(x).
We are now ready to describe our construction. Let (Zk

3,B) be the affine system
AG(k, 3) and take (W, C) to be the resulting doubled system δ(AG(k, 3)). We will
show that (W, C) has a biembedding with the Steiner triple system (W,D), where
D = {ψ(x)ψ(y)ψ(z) | xyz ∈ C}. Denote the properly face 2-coloured pseudo-surface
generated by (W, C) and (W,D) as S; then, as before, establishing that there is a full
rotation at each vertex would imply that S is a surface. We begin with the rotation
about the vertex ∞.

Lemma 3.1. In the pseudo-surface S there is full rotation about the vertex ∞.

Proof. For each x ∈ Z
k
3, {∞,x,x} ∈ C and {∞,x, φ(x)} ∈ D. As φ is a cycle of

length 3k we have that the rotation

∞ : 0 0 φ(0) φ(0) φ2(0) φ2(0) . . . φ3k−1(0) φ3k−1(0)

is a cycle of length 2(3k).

For a fixed x = x1x2x3 . . . xk ∈ Z
k
3, define the following maps, for 1 ≤ r ≤ k,

γr : Z
r
3 → Z

r
3, and γ : Z3 → Z3 by

γr : y �→ (−x1 − y1)(−x2 − y2)(−x3 − y3) . . . (−xr − yr)

γ : z �→ −xk − z,

where the computations are made modulo three. Note that γr and γ are involutions.
Using these maps we can re-express the subsets C′ and D′ of triples from C and D,

respectively, that do not contain the vertex ∞:

C′ =
{{

x,y, γk(y)
}
,
{
x,y, γk(y)

}
,
{
x,y, γk(y)

}
,
{
x,y, γk(y)

} | x,y ∈ Z
k
3,x �= y

}
;

D′ =
{{
φ(x), φ(y), φ(γk(y))

}
,
{
φ(x),y, γk(y)

}
,
{
x, φ(y), γk(y)

}
,{

x,y, φ(γk(y))
} | x,y ∈ Z

k
3,x �= y

}
.

For the remainder of the paper we consider x = x1x2x3 . . . xk ∈ Z
k
3 to be a fixed

vertex in the pseudo-surface S. In Subsection 3.1 we prove that the rotation about
vertex x is a single cycle, and in Subsection 3.2 we prove that the rotation about
vertex φ(x) is a single cycle. Together with Lemma 3.1 these results imply that S is
a surface. Finally in Subsection 3.3 we verify that S is nonorientable.
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3.1 The rotation about x

We will write φk−1 and φk to denote the map φ when it is applied to a vector in Z
k−1
3

and a vector in Z
k
3, respectively. The subset of triples from C containing x is

{{
x,y, γk(y)

}
,
{
x,y, γk(y)

} | y ∈ Z
k
3,y �= x

}
∪

{{
x,∞,x

}}
,

and, as γk is an involution, the subset of triples from D containing x is

{{
x,y, φk(γk(y))

} | y ∈ Z
k
3,y �= x

}
∪

{{
x,∞, φk(x)

}}
.

Thus for some j the rotation about x contains the following cycle.

x : ∞ C−→ x = b1
D−→ γk(φ

−1
k (b1))

C−→ φ−1
k (b1)

D−→ φk(γk(φ
−1
k (b1))) = b2

C−→ γk(b2) = b3
D−→ γk(φ

−1
k (b3))

C−→ φ−1
k (b3)

D−→ φk(γk(φ
−1
k (b3))) = b4

C−→ γk(b4) = b5
D−→ · · · C−→ γk(b2j−2) = b2j−1

D−→ γk(φ
−1
k (b2j−1))

C−→ φ−1
k (b2j−1)

D−→ φk(γk(φ
−1
k (b2j−1))) = b2j

C−→ γk(b2j) = b2j+1 = φk(x)

D−→ ∞

Where ‘
C−→’ and ‘

D−→’ indicate from which set of triples the face yielding this part
of the rotation is obtained.
We will prove that the rotation around x consists precisely of this cycle; i.e. that

the cycle has length 2(3k). We will use the following notation, which is introduced
above, for all 2 ≤ 2� ≤ 2j,

b2� = φk(γk(φ
−1
k (b2�−1))) and b2�+1 = γk(b2�).

It suffices to show that πx
k = (∞b1 b2 · · · b2j b2j+1) is a permutation of length

3k +1; we do so by induction (the base case, for AG(2, 3), is easily established). Let
m = 3k−1 and assume that for x′ = x1x2 · · ·xk−1 the permutation πx′

k−1 has length
m+ 1 and denote it as

πx′
k−1 = (∞ φk−1(a1) φk−1(a2) · · · φk−1(am) ) ,

where φk−1(a1) = x′ and am = x′. We now partition the set {2, 3, ..., 3m} into two
disjoint sets I0 and I1 as follows. There is a unique 1 ≤ r ≤ m such that ar = 0;
write r = 2s or r = 2s+1 depending on the parity of r. If r = 1, set I0 = {2m+1};
otherwise, set

I0 = {2s+ 1, 2m+ 2s+ 1, 2m− 2s+ 1}.
In either case, let I1 = {2, 3, ..., 3m} \ I0.
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Claim 3.2. The permutation πx
k is given by the cycle

(∞ φk(a1f1) φk(a2f2) . . . φk(am−1fm−1) φk(amfm)
φk(amfm+1) φk(am−1fm+2) . . . φk(a2f2m−1) φk(a1f2m)
φk(a1f2m+1) φk(a2f2m+2) . . . φk(am−1f3m−1) φk(amf3m)

)
where

f1 =

{
xk if a1 �= 0
xk − 1 if a1 = 0,

and for i > 1

fi =

⎧⎨
⎩

γ(fi−1)− 1 if i ∈ I0 and a1 �= 0
γ(fi−1)− 2 if i ∈ I0 and a1 = 0
γ(fi−1) if i ∈ I1.

The following identities will be useful when establishing the value of each fi in the
permutation πx

k .
From φk−1(a2�) = φk−1(γk−1(φ

−1
k−1(φk−1(a2�−1)))) = φk−1(γk−1(a2�−1)), we obtain,

for 2 ≤ 2� ≤ m− 1,

a2� = γk−1(a2�−1) and γk−1(a2�) = a2�−1. (1)

Similarly, for 2 ≤ 2� ≤ m− 1,

φk−1(a2�+1) = γk−1(φk−1(a2�)) and γk−1(φk−1(a2�+1)) = φk−1(a2�). (2)

Finally, we note that −xi − xi = −2xi = xi for all xi ∈ Z3, so we have

γk−1(x
′) = x′ and γ(xk) = xk. (3)

We proceed by induction on i. First note that if a1 �= 0, then b1 = x = x′xk =
φk−1(a1)xk = φk(a1xk), so f1 = xk; and if a1 = 0, then b1 = x = x′xk =
φk−1(a1)xk = φk(a1(xk − 1)), so f1 = xk − 1. Assume now that Claim 3.2 holds
for all 1 ≤ i ≤ n− 1; we will show the claim holds for i = n.

Lemma 3.3. Suppose that n ∈ I0. Then

fn =

{
γ(fn−1)− 1; if a1 �= 0
γ(fn−1)− 2; if a1 = 0.

Proof. Recall that r is the unique index such that ar = 0. We will consider three
cases, when r = 1, when r is even (r = 2s), and when r is odd (r = 2s+ 1) and not
equal to one.

Case 1: r = 1. Then n = 2m+ 1 and

b2m+1 = γk(b2m) = γk(φk(a1f2m)) = γk(φk−1(a1)(f2m + 1)) = γk−1(x
′)γ(f2m + 1)

(3)
= x′(γ(f2m)− 1) = φk−1(a1)(γ(f2m)− 1) = φk(a1(γ(f2m)− 2)).

Which implies that f2m+1 = γ(f2m)− 2.
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Case 2: r = 2s; that is a2s = 0. So a2s+1 �= 0. First assume that n ∈ {2s+ 1, 2m+
2s+ 1}. Then

bn = γk(bn−1) = γk(φk(a2sfn−1)) = γk(φk−1(a2s)(fn−1 + 1))

= γk−1(φk−1(a2s))γ(fn−1 + 1)
(2)
= φk−1(a2s+1)(γ(fn−1)− 1)

= φk(a2s+1(γ(fn−1)− 1)).

Which implies that fn = γ(fn−1)− 1.
So now assume that n = 2m− 2s+ 1; then

bn = γk(bn−1) = γk(φk(a2s+1fn−1)) = γk(φk−1(a2s+1)fn−1)

= γk−1(φk−1(a2s+1))γ(fn−1)
(2)
= φk−1(a2s)γ(fn−1) = φk(a2s(γ(fn−1)− 1)).

Hence, fn = γ(fn−1)− 1.

Case 3: r = 2s + 1 and r �= 1; that is a2s+1 = 0. So a2s �= 0. First assume that
n ∈ {2s+ 1, 2m+ 2s+ 1}. Then

bn = γk(bn−1) = γk(φk(a2sfn−1)) = γk(φk−1(a2s)fn−1) = γk−1(φk−1(a2s))γ(fn−1)
(2)
= φk−1(a2s+1)γ(fn−1) = φk(a2s+1(γ(fn−1)− 1)).

Thus, fn = γ(fn−1)− 1.
Now assume that n = 2m− 2s+ 1. Then

bn = γk(bn−1) = γk(φk(a2s+1fn−1)) = γk(φk−1(a2s+1)(fn−1 + 1))

= γk−1(φk−1(a2s+1))γ(fn−1 + 1)
(2)
= φk−1(a2s)(γ(fn−1)− 1)

= φk(a2s(γ(fn−1)− 1)).

Hence, fn = γ(fn−1)− 1.

Lemma 3.4. Suppose that n ∈ I1. Then fn = γ(fn−1).

Proof. We consider three cases, when n is even and n �= m+ 1, when n is odd, and
when n = m+ 1.

Case 1: n is even and n �= m + 1. First assume that n = 2� or n = 2m + 2� for
2 ≤ 2� ≤ m− 1. Then

bn = φk(γk(φ
−1
k (bn−1))) = φk(γk(φ

−1
k (φk(a2�−1fn−1)))) = φk(γk(a2�−1fn−1))

= φk(γk−1(a2�−1)γ(fn−1))
(1)
= φk(a2�γ(fn−1)).

Hence, fn = γ(fn−1).
Now assume that n = 2m− 2�+ 2 for 2 ≤ 2� ≤ m− 1. Then

bn = φk(γk(φ
−1
k (bn−1))) = φk(γk(φ

−1
k (φk(a2�fn−1)))) = φk(γk(a2�fn−1))

= φk(γk−1(a2�)γ(fn−1))
(1)
= φk(a2�−1γ(fn−1)).

Thus fn = γ(fn−1).
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Case 2: n is odd. First assume that n = 2�+1 or n = 2m+2�+1 for 2 ≤ 2� ≤ m−1.
Note that, as n ∈ I1, � �= s, so a2�+1 �= 0 and a2� �= 0. So,

bn = γk(bn−1) = γk(φk(a2�fn−1)) = γk(φk−1(a2�)fn−1) = γk−1(φk−1(a2�))γ(fn−1)
(2)
= φk−1(a2�+1)γ(fn−1) = φk(a2�+1γ(fn−1)).

Hence, fn = γ(fn−1).
Next assume that n = 2m − 2� + 1 for 2 ≤ 2� ≤ m − 1. Again, as n ∈ I1, � �= s,

so a2�+1 �= 0 and a2� �= 0. Hence,

bn = γk(bn−1) = γk(φk(a2�+1fn−1)) = γk(φk−1(a2�+1)fn−1)

= γk−1(φk−1(a2�+1))γ(fn−1)
(2)
= φk−1(a2�)γ(fn−1) = φk(a2�γ(fn−1)).

So, fn = γ(fn−1).
Finally assume that n = 2m+ 1. Then, as a1 �= 0,

b2m+1 = γk(b2m) = γk(φk(a1f2m)) = γk(φk−1(a1)f2m) = γk−1(x
′)γ(f2m)

(3)
= x′γ(f2m) = φk−1(a1)γ(f2m) = φk(a1γ(f2m)).

We have that f2m+1 = γ(f2m).

Case 3: n = m+ 1. If fm = xk, then amfm = x and ∞ follows bm = φk(x) in the
rotation around x. Thus, we first show that fm �= xk. Note that γ(y) = xk if and
only if y = xk. Recall that r is the unique index such that ar = 0, and set r∗ = r if r
is odd and set r∗ = r + 1 if r is even (note that, as m = 3k−1, r∗ ≤ m). From above
we have that fi = γ(fi−1) for all 2 ≤ i ≤ m, i �= r∗. Thus, fi = xk for 1 ≤ i ≤ r∗ − 1
and fi �= xk for r∗ ≤ i ≤ m. Recall that am = x′; then

bm+1 = φk(γk(φ
−1
k (bm))) = φk(γk(φ

−1
k (φk(x

′fm)))) = φk(γk(x
′fm))

= φk(γk−1(x
′)γ(fm))

(3)
= φk(x

′γ(fm)).

Hence, fm+1 = γ(fm).

From Lemmas 3.3 and 3.4, we know πx
k is a permutation of length at least 3m +

1 = 3k + 1. Since (W, C) and (W,D) are Steiner triple systems, we know πx
k is a

permutation of length at most 3k + 1. Thus, Claim 3.2 is established, and the next
result follows immediately.

Corollary 3.5. There is a full rotation around the vertex x.

3.2 The rotation about φ(x)

The argument for the rotation about φ(x) is of the same style as that for x. We
continue to use γ, γk, φk−1, and φk as in Subsection 3.1. We will also denote φ(x) =
φk(x) by x̂1x̂2 · · · x̂k.
Define the following maps, for 1 ≤ r ≤ k, γ̂r : Z

r
3 → Z

r
3; and γ̂ : Z3 → Z3 by

γ̂r : y �→ (−x̂1 − y1,−x̂2 − y2, ...,−x̂r − yr)

γ̂ : z �→ −x̂k − z,
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where the computations are made modulo three. Note that γ̂r and γ̂ are involutions.
As γ̂k is an involution, the subset of triples from C containing φk(x) is{{

φk(x),y, γ̂k(y)
} | y ∈ Z

k
3,y �= φk(x)

}
∪
{{
φk(x),∞, φk(x)

}}
,

and, as z = φk(y) implies that φk(γk(z)) = φk(γk(φ
−1
k (y))), the subset of triples from

D containing φk(x) is

{{
φk(x),y, γk(y)

}
,
{
φk(x),y, φk(γk(φ

−1
k (y)))

} | y ∈ Z
k
3,y �= φk(x)

}
∪

{{
φk(x),∞,x

}}
.

Hence, the rotation around φk(x) contains the following cycle.

φk(x) : ∞ C−→ φk(x) = b1
D−→ γk(b1) = b2

C−→ γ̂k(b2)
D−→ φk(γk(φ

−1
k (γ̂k(b2))))

C−→ γ̂k(φk(γk(φ
−1
k (γ̂k(b2))))) = b3

D−→ γk(b3) = b4
C−→ γ̂k(b4)

D−→ φk(γk(φ
−1
k (γ̂k(b4))))

C−→ γ̂k(φk(γk(φ
−1
k (γ̂k(b4))))) = b5

D−→ · · ·
C−→ γ̂k(φk(γk(φ

−1
k (γ̂k(b2j−2))))) = b2j−1

D−→ γk(b2j−1) = b2j
C−→ γ̂k(b2j)

D−→ φk(γk(φ
−1
k (γ̂k(b2j))))

C−→ γ̂k(φk(γk(φ
−1
k (γ̂k(b2j))))) = x

D−→ ∞

We will prove that the rotation around φk(x) consists precisely of this cycle. We
will use the following notation, which is introduced above, for all 2 ≤ 2� ≤ 2j,

b2� = γk(b2�−1) and b2�+1 = γ̂k(φk(γk(φ
−1
k (γ̂k(b2�))))).

It suffices to show that ω
φk(x)
k = (∞b1 b2 · · · b2j b2j+1) is a permutation of length

3k+1; we do so by induction (once again, the base case, for AG(2, 3), is easily estab-
lished). Let m = 3k−1 and assume that for φk−1(x

′) = x̂1x̂2 · · · x̂k−1 the permutation

ω
φk−1(x′)
k−1 has length m+ 1 and denote it as

ω
φk−1(x′)
k−1 = (∞ γ̂k−1(φk−1(a1)) γ̂k−1(φk−1(a2)) . . . γ̂k−1(φk−1(am)) ) ,

where γ̂k−1(φk−1(a1)) = φk−1(x
′) and γ̂k−1(φk−1(am)) = x′.

We now partition the set {2, 3, ..., 3m} into two disjoint sets J0 and J1 as follows.
There is a unique 1 ≤ r ≤ m such that ar = 0; write r = 2s or r = 2s− 1 depending
on the parity of r. If r = m, set J0 = {m+ 1}; otherwise, set

J0 = {2s, 2m+ 2s, 2m− 2s+ 2}.

In either case let J1 = {2, 3, ..., 3m} \ J0.
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Claim 3.6. The permutation ω
φk(x)
k is given by the cycle(∞ γ̂k(φk(a1f1)) γ̂k(φk(a2f2)) . . . γ̂k(φk(am−1fm−1)) γ̂k(φk(amfm))

γ̂k(φk(amfm+1)) γ̂k(φk(am−1fm+2)) . . . γ̂k(φk(a2f2m−1)) γ̂k(φk(a1f2m))
γ̂k(φk(a1f2m+1)) γ̂k(φk(a2f2m+2)) . . . γ̂k(φk(am−1f3m−1)) γ̂k(φk(amf3m))

)
where

f1 =

{
x̂k if a1 �= 0
x̂k − 1 if a1 = 0,

and for i > 1

fi =

⎧⎪⎪⎨
⎪⎪⎩

γ(fi−1)− 1 if i ∈ J0,x
′ �= 0, and am �= 0

γ(fi−1)− 2 if i ∈ J0,x
′ �= 0, and am = 0

γ(fi−1) + 1 if i ∈ J1, i is even, and x′ = 0
γ(fi−1) otherwise.

We again make use of Equation (3) from Subsection 3.1; additionally, the following
new identities will be useful when establishing the value of each fi in the permutation

ω
φk(x)
k . From

γ̂k−1(φk−1(a2�+1) = γ̂k−1(φk−1(γk−1(φ
−1
k−1(γ̂k−1(γ̂k−1(φk−1(a2�)))))))

= γ̂k−1(φk−1(γk−1(a2�))),

we obtain, for 2 ≤ 2� ≤ m− 1,

a2�+1 = γk−1(a2�) and γk−1(a2�+1) = a2�. (4)

Similarly, we obtain, for 2 ≤ 2� ≤ m− 1,

γ̂k−1(φk−1(a2�)) = γk−1(γ̂k−1(φk−1(a2�−1))) and

γk−1(γ̂k−1(φk−1(a2�))) = γ̂k−1(φk−1(a2�−1)). (5)

Finally, we note that −x̂i − x̂i = −2x̂i = x̂i for all x̂i ∈ Z3, so

γ̂k−1(φk−1(x
′)) = φk−1(x

′) and γ̂(x̂k) = x̂k. (6)

Recall that γ̂k−1(φk−1(a1)) = φk−1(x
′), so γ̂k−1(γ̂k−1(φk−1(a1))) = γ̂k−1(φk−1(x

′)).
Hence, by Equation (6), φk−1(a1) = φk−1(x

′), and therefore a1 = x′.
We proceed by induction on i.
If a1 �= 0, then

b1 = φk(x) = φk−1(x
′)x̂k

(6)
= γ̂k−1(φk−1(a1))γ̂(x̂k) = γ̂k(φk−1(a1)x̂k) = γ̂k(φk(a1x̂k)),

so f1 = x̂k.
If a1 = 0, then

b1 = φk(x) = φk−1(x
′)x̂k

(6)
= γ̂k−1(φk−1(a1))γ̂(x̂k)

= γ̂k(φk−1(a1)x̂k) = γ̂k(φk(a1(x̂k − 1))),

so f1 = x̂k − 1.
Assume now that Claim 3.6 holds for all 1 ≤ i ≤ n − 1; we will show the claim

holds for n.
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Lemma 3.7. Suppose that n ∈ J0 and x′ �= 0. Then

fn =

{
γ(fn−1)− 1 if am �= 0
γ(fn−1)− 2 if am = 0.

Proof. Recall that r is the unique index such that ar = 0; since a1 = x′ �= 0, we
know r > 1 and φk(x) = φk−1(x

′)xk, so x̂k = xk. From this we obtain, for all y ∈ Z3,

γ(γ̂(y)) = γ(−x̂k − y) = −xk + x̂k + y = y and

γ̂(γ(y)) = γ̂(−xk − y) = −x̂k + xk + y = y,

so γ and γ̂ commute.
We consider three cases, when r = m, when r is even (r = 2s), and when r is odd

(r = 2s− 1) and not equal to m.

Case 1: r = m. Then n = m+ 1 and

bm+1 = γk(bm) = γk(γ̂k(φk(amfm))) = γk(γ̂k(φk−1(am)(fm + 1))))

= γk(γ̂k−1(φk−1(am))γ̂(fm + 1)) = γk−1(x
′)γ(γ̂(fm + 1))

(3)
= x′γ̂(γ(fm + 1))

= γ̂k−1(φk−1(a1))γ̂(γ(fm)− 1) = γk(φk(a1(γ(fm)− 2))).

Thus, fn = γ(fn−1)− 2.

Case 2: r = 2s; that is a2s = 0. So, a2s−1 �= 0. First assume that n ∈ {2s, 2m+2s}.
Then

bn = γk(bn−1) = γk(γ̂k(φk(a2s−1fn−1))) = γk(γ̂k(φk−1(a2s−1)fn−1))

= γk−1(γ̂k−1(φk−1(a2s−1)))γ(γ̂(fn−1))
(5)
= γ̂k−1(φk−1(a2s))γ̂(γ(fn−1))

= γ̂k(φk−1(a2s)(γ(fn−1))) = γ̂k(φk(a2s(γ(fn−1)− 1))).

Hence, fn = γ(fn−1)− 1.
Now assume that n = 2m− 2s+ 2; then

bn = γk(bn−1) = γk(γ̂k(φk(a2sfn−1))) = γk(γ̂k(φk−1(a2s)(fn−1 + 1)))

= γk−1(γ̂k−1(φk−1(a2s)))γ(γ̂(fn−1 + 1))
(5)
= γ̂k−1(φk−1(a2s−1))γ̂(γ(fn−1 + 1))

= γ̂k(φk−1(a2s−1)(γ(fn−1 + 1))) = γ̂k(φk(a2s−1(γ(fn−1)− 1))).

So, fn = γ(fn−1)− 1.

Case 3: r = 2s − 1 and r �= m; that is a2s−1 = 0. So, a2s �= 0. First assume that
n ∈ {2s, 2m+ 2s}. Then

bn = γk(bn−1) = γk(γ̂k(φk(a2s−1fn−1))) = γk(γ̂k(φk−1(a2s−1)(fn−1 + 1)))

= γk−1(γ̂k−1(φk−1(a2s−1)))γ(γ̂(fn−1 + 1))
(5)
= γ̂k−1(φk−1(a2s))γ̂(γ(fn−1 + 1))

= γ̂k(φk−1(a2s)(γ(fn−1 + 1))) = γ̂k(φk(a2s(γ(fn−1)− 1))).

Hence, fn = γ(fn−1)− 1.
Now assume that n = 2m− 2s+ 2; then

bn = γk(bn−1) = γk(γ̂k(φk(a2sfn−1))) = γk(γ̂k(φk−1(a2s)fn−1))

= γk−1(γ̂k−1(φk−1(a2s)))γ(γ̂(fn−1))
(5)
= γ̂k−1(φk−1(a2s−1))γ̂(γ(fn−1))

= γ̂k(φk−1(a2s−1(γ(fn−1))) = γ̂k(φk(a2s−1(γ(fn−1)− 1))).

Thus, fn = γ(fn−1)− 1.
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Lemma 3.8. Suppose that n ∈ J1 and x′ �= 0. Then fn = γ(fn−1).

Proof. Since x′ �= 0, following the same argument as that given at the beginning of
the proof of Lemma 3.7, we have that γ and γ̂ commute. Once again, we will consider
three cases, when n is even and n �= m+ 1, when n is odd, and when n = m+ 1.

Case 1: n is even and n �= m + 1. First assume that n = 2� or n = 2m + 2� for
2 ≤ 2� ≤ m− 1. Note that, as n ∈ J1, � �= s, so a2�−1 �= 0 and a2� �= 0. So

bn = γk(bn−1) = γk(γ̂k(φk(a2�−1fn−1))) = γk(γ̂k(φk−1(a2�−1)fn−1))

= γk−1(γ̂k−1(φk−1(a2�−1)))γ(γ̂(fn−1))
(5)
= γ̂k−1(φk−1(a2�))γ̂(γ(fn−1))

= γ̂k(φk(a2�γ(fn−1))).

Hence, fn = γ(fn−1).
Now assume that n = 2m − 2� + 2. Again, as n ∈ J1, � �= s, so a2�−1 �= 0 and

a2� �= 0. Hence

bn = γk(bn−1) = γk(γ̂k(φk(a2�fn−1))) = γk(γ̂k(φk−1(a2�)fn−1))

= γk−1(γ̂k−1(φk−1(a2�)))γ(γ̂(fn−1))
(5)
= γ̂k−1(φk−1(a2�−1))γ̂(γ(fn−1))

= γ̂k(φk(a2�−1γ(fn−1))).

Thus, fn = γ(fn−1).

Case 2: n is odd. First assume that n = 2�+ 1 or n = 2m+ 2�+ 1. Then

bn = γ̂k(φk(γk(φ
−1
k (γ̂k(bn−1))))) = γ̂k(φk(γk(φ

−1
k (γ̂k(γ̂k(φk(a2�fn−1)))))))

= γ̂k(φk(γk(a2�fn−1))) = γ̂k(φk(γk−1(a2�)γ(fn−1)))
(4)
= γ̂k(φk(a2�+1γ(fn−1))).

So, fn = γ(fn−1).
Next, assume that n = 2m− 2�+ 1. Then

bn = γ̂k(φk(γk(φ
−1
k (γ̂k(bn−1))))) = γ̂k(φk(γk(φ

−1
k (γ̂k(γ̂k(φk(a2�+1fn−1)))))))

= γ̂k(φk(γk(a2�+1fn−1))) = γ̂k(φk(γk−1(a2�+1)γ(fn−1)))
(4)
= γ̂k(φk(a2�γ(fn−1))).

Thus, fn = γ(fn−1).
Finally, assume that n = 2m+ 1. Then, recalling that a1 = x′,

b2m+1 = γ̂k(φk(γk(φ
−1
k (γ̂k(b2m))))) = γ̂k(φk(γk(φ

−1
k (γ̂k(γ̂k(φk(a1f2m)))))))

= γ̂k(φk(γk(a1f2m))) = γ̂k(φk(γk−1(x
′)γ(f2m)))

(3)
= γ̂k(φk(x

′γ(f2m)))
= γ̂k(φk(a1γ(f2m))).

Hence, f2m+1 = γ(f2m).

Case 3: n = m+ 1. If γ̂(fm) = xk, then

γ̂k(φk(amfm)) = γ̂k−1(φk−1(am))γ̂(f2m) = x′xk = x.

However, this implies ∞ follows bm = x in the rotation around φk(x). Thus, we
first show that γ̂(fm) �= xk. Since x′ �= 0, xk = x̂k and it suffices to show fm �= x̂k.
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Note that γ(y) = γ̂(y) = x̂k if and only if y = x̂k. Recall that r is the unique
index such that ar = 0, and set r∗ = r − 1 if r is odd and set r∗ = r if r is even.
From above we have that fi = γ(fi−1) for all 2 ≤ i ≤ m, i �= r∗. Thus, fi = x̂k
for 1 ≤ i ≤ r∗ − 1 and fi �= x̂k for r∗ ≤ i ≤ m. As am �= x′ and recalling that
x′ = γk−1(x

′) = γ̂k−1(φk−1(am)), we have that

bm+1 = γk(bm) = γk(γ̂k(φk(amfm))) = γk(γ̂k−1(φk−1(am))γ̂(fm)) = γk(x
′γ̂(fm))

= γk−1(x
′)γ(γ̂(fm))

(3)
= x′γ̂(γ(fm)) = γ̂k−1(φk−1(am))γ̂(γ(fm))

= γ̂k(φk(amγ(fm))).

Hence, fm+1 = γ(fm).

Lemma 3.9. Suppose that n ∈ J0 and x′ = 0. Then fn = γ(fn−1).

Proof. We have that a1 = x′, so r = 1 and J0 = {2, 2m+ 2, 2m}. Since x′ = 0, we
have φk(x) = φk−1(x

′)(xk + 1), so x̂k = xk + 1. From this we obtain, for all y ∈ Z3,

γ(γ̂(y)) = γ(−x̂k − y) = −xk + x̂k + y = y + 1 and

γ̂(γ(y) + 1) = γ̂(−xk − y + 1) = −x̂k + xk + y − 1 = y − 2 = y + 1,

so γ(γ̂(y)) = γ̂(γ(y) + 1).
Note that a2 �= 0. First assume that n ∈ {2, 2m+ 2}. Then, as 0 = x′ = a1,

bn = γk(bn−1) = γk(γ̂k(φk(a1fn−1))) = γk(γ̂k(φk−1(a1)(fn−1 + 1)))

= γk−1(γ̂k−1(φk−1(a1)))γ(γ̂(fn−1 + 1))
(5)
= γ̂k−1(φk−1(a2))γ̂(γ(fn−1 + 1) + 1)

= γ̂k−1(φk−1(a2))γ̂(−xk − fn−1 − 1 + 1) = γ̂k−1(φk−1(a2))γ̂(γ(fn−1)
= γ̂k(φk(a2(γ(fn−1)))).

Hence, fn = γ(fn−1).
So assume that n = 2m; then

b2m = γk(b2m−1) = γk(γ̂k(φk(a2f2m−1))) = γk(γ̂k(φk−1(a2)f2m−1))

= γk−1(γ̂k−1(φk−1(a2)))γ(γ̂(f2m−1))
(5)
= γ̂k−1(φk−1(a1))γ̂(γ(f2m−1) + 1)

= γ̂k(φk(a1(γ(f2m−1)))).

Thus f2m = γ(f2m−1).

Lemma 3.10. Suppose that n ∈ J1 and x′ = 0. Then

fn =

{
γ(fn−1) + 1 if n is even
γ(fn−1) if n is odd.

Proof. Since x′ = 0, as in the proof Lemma 3.9, we have that x̂k = xk + 1 and
γ(γ̂(y)) = γ̂(γ(y)+1). We consider three cases, when n is even and n �= m+1, when
n is odd and when n = m+ 1.



T.A. MCCOURT AND J.Z. SCHROEDER/AUSTRALAS. J. COMBIN. 66 (1) (2016), 23–43 40

Case 1: n is even and n �= m+ 1. First assume that n = 2� or n = 2m+ 2�. Note
that, as 0 = x′ = a1 and n ∈ J1, � �= s = 1, so a2�−1 �= 0 and a2� �= 0. Hence

bn = γk(bn−1) = γk(γ̂k(φk(a2�−1fn−1))) = γk(γ̂k(φk−1(a2�−1)fn−1))

= γk−1(γ̂k−1(φk−1(a2�−1)))γ(γ̂(fn−1))
(5)
= γ̂k−1(φk−1(a2�))(γ̂(γ(fn−1) + 1))

= γ̂k(φk(a2�(γ(fn−1) + 1))).

So, fn = γ(fn−1) + 1.
Now assume that n = 2m− 2�+ 2. Again, as n ∈ J1, � �= s = 1, so a2�−1 �= 0 and

a2� �= 0. Hence

bn = γk(bn−1) = γk(γ̂k(φk(a2�fn−1))) = γk(γ̂k(φk−1(a2�)fn−1))

= γk−1(γ̂k−1(φk−1(a2�)))γ(γ̂(fn−1))
(5)
= γ̂k−1(φk−1(a2�−1))γ̂(γ(fn−1) + 1)

= γ̂k(φk(a2�−1(γ(fn−1) + 1))).

Hence, fn = γ(fn−1) + 1.

Case 2: n is odd. The proof is identical to Case 2 in the proof of Lemma 3.8.

Case 3: n = m+ 1. If γ̂(fm) = xk, then

γ̂k(φk(amfm)) = γ̂k−1(φk−1(am))γ̂(fm) = x′xk = x.

However this implies that ∞ follows bm = x in the rotation around φk(x). Thus,
we first show that γ̂(fm) �= xk. Since m ≡ 3 (mod 6), it suffices to show that
γ̂(fi) = xk + 1 for all 3 ≤ i ≤ m satisfying i ≡ 3 (mod 6). We note that a1 = 0, so
f1 = x̂k − 1 = xk and J0 = {2, 2m+ 2, 2m}. Thus, by Lemma 3.9 f2 = γ(f1) = xk,
and, from the above, for all 3 ≤ i ≤ m, fi = γ(fi−1) + 1 if i is even and fi = γ(fi−1)
if i is odd. We compute as a base case that f3 = γ(f2) = xk. If i is odd, then

fi = γ(fi−1) = γ(γ(fi−2) + 1) = γ(−xk − fi−2 + 1) = −xk + xk + fi−2 − 1 = fi−2 − 1.

Now assume that fi = xk for all 3 ≤ i ≤ m′ (where m′ < m) satisfying i ≡ 3 (mod 6).
We obtain the sequence

fi+2 = fi − 1 = xk − 1
fi+4 = fi+2 − 1 = xk − 2
fi+6 = fi+4 − 1 = xk.

Thus, for all 3 ≤ i ≤ m satisfying i ≡ 3 (mod 6), we have that fi = xk and γ̂(fi) =
−x̂k − xk = −xk + 1− xk = −2xk + 1 = xk + 1. Therefore γ̂(fm) �= xk.
Hence, as γ̂k−1(φk−1(am)) = x′ and am �= 0,

bm+1 = γk(bm) = γk(γ̂k(φk(amfm))) = γk(γ̂k−1(φk−1(am))γ̂(fm)) = γk(x
′γ̂(fm))

= γk−1(x
′)γ(γ̂(fm))

(3)
= x′γ̂(γ(fm) + 1) = γ̂k−1(φk−1(am))γ̂(γ(fm) + 1)

= γ̂k(φk(am(γ(fm) + 1))).

Thus fm+1 = γ(fm) + 1.
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From Lemmas 3.7, 3.8, 3.9 and 3.10, we know ω
φk(x)
k is a permutation of length at

least 3m+ 1 = 3k + 1. Since (W, C) and (W,D) are Steiner triple systems, we know

ω
φk(x)
k is a permutation of length at most 3k +1. Thus, Claim 3.6 is established, and

the next result follows immediately.

Corollary 3.11. There is a full rotation around the vertex φ(x).

3.3 Nonorientability of S
Theorem 3.12. For all k ≥ 2, δ(AG(k, 3)) has a self-embedding in a nonorientable
surface.

Proof. The construction of the pseudo-surface S is from two Steiner triple systems
isomorphic to δ(AG(k, 3)). By Lemma 3.1 and Corollaries 3.5 and 3.11, S is a surface
and hence the accompanying face 2-coloured triangulation is a self-embedding of
δ(AG(k, 3)).
It remains to show that this embedding is in a nonorientable surface. Assume to the

contrary, so that Ringel’s Rule Δ∗ holds. Let 0k−1 = 00 . . . 0, 1k−1 = 11 . . . 1, 2k−1 =
22 . . . 2 ∈ Z

k−1
3 , and take the rotation around∞ to be orientated as written in Lemma

3.1, that is
∞ : 0k−10 0k−10 ... 1k−12 1k−12 ... .

For x = 0k−10, let bi, ai, and fi be defined as in Section 3.1. The triples

{0k−10, 0k−11, 0k−12} ∈ C and {0k−10, 0k−11, 1k−10}, {0k−10, 0k−12, 1k−12} ∈ D
imply that the rotation around 0k−10 is either

0k−10 : ... 1k−10 0k−11 0k−12 1k−12 ... or

0k−10 : ... 1k−12 0k−12 0k−11 1k−10 ... .

Recall that am = x′ = 0k−1. So, by Claim 3.2, we have that f1 = 0, fi = γ(fi−1) =
0 for all 2 ≤ i ≤ m − 1 and fm = γ(fm−1) − 1 = 2. Hence, again by Claim 3.2,
bm = φ(am2) = 1k−10 and bm+1 = φ(amγ(2)) = 1k−12.
With the rotation around∞ orientated as above, in order to satisfy Δ∗ the rotation

from Claim 3.2 must be oriented so that 0k−10 : ∞ 0k−10 . . . . As bm = 1k−10 and
bm+1 = 1k−12, it follows that

0k−10 : ∞ 0k−10 . . . 1k−10 0k−11 0k−12 1k−12 . . . .

Now let bi, ai, and fi be defined as in Subsection 3.2 for φk(x), where x = 0k−11
and φk(0k−11) = 1k−12. Observe that {0k−10, 0k−12, 1k−12} ∈ D. Hence, either

1k−12 : ... 0k−10 0k−12 ... or

1k−12 : ... 0k−12 0k−10 ... .

From Case 3 in the proof of Lemma 3.10 we have that fm = xk = 1. By Claim 3.6,
bm = γ̂k(φk(amfm)). Also recall that γ̂k−1(φk−1(am)) = x = 0k−1, hence φk−1(am) =
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2k−1, so am = 12 . . . 2. Hence, bm = γ̂k(φk(12 . . . 21)) = γ̂k(2k−11) = 0k−10. As
b1 = 1k−12, it follows that a1 = 0k−1. So, by Claim 3.6 and as m+1 is even, bm+1 =
γ̂k(φk(amfm+1)) = γ̂k(φk(12 . . . 2(γ(fm) + 1))) = γ̂k(φk(12 . . . 22)) = γ̂k(2k−12) =
0k−12. So the rotation at 1k−12 is either

1k−12 : ∞ 1k−12 ... 0k−10 0k−12 ... or

1k−12 : 1k−12 ∞ ... 0k−12 0k−10 ... .

The rotation about 0k−10 implies that the facial walk of the face containing the
vertices 0k−10, 0k−12 and 1k−12 has the cyclic ordering (0k−10, 0k−12, 1k−12); hence
the first option for the rotation at 1k−12 must hold.
The rotation about ∞ implies that the facial walk of the face containing ∞, 1k−12

and 1k−12 has the cyclic ordering (∞, 1k−12, 1k−12); so the second option for the
rotation at 1k−12 must hold.
This contradicts Δ∗, so the constructed self-embedding of δ(AG(k, 3)) is in a

nonorientable surface.

Note that the system δ(AG(1, 3)) is isomorphic to the unique STS(7), which has
a self-embedding only in an orientable surface (there is no triangulation of K7 in
a nonorientable surface [5] and Figure 1 illustrates a self-embedding on the torus).
Following the above construction, with k = 1, produces the toroidal biembedding.
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