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Abstract

Some mutually quasi-unbiased weighing matrices are constructed from bi-
nary codes satisfying the conditions that the number of non-zero weights
of the code is four and the code contains the first order Reed-Muller
code. Motivated by this, in this note, we study binary codes satisfying
the conditions. The weight distributions of binary codes satisfying the
conditions are determined. We also give a classification of binary codes
of lengths 8,16 and binary maximal codes of length 32 satisfying the
conditions. As an application, sets of 8 mutually quasi-unbiased weigh-
ing matrices for parameters (16, 16,4, 64) and 4 mutually quasi-unbiased
weighing matrices for parameters (32,32, 4, 256) are constructed for the
first time.

1 Introduction

A weighing matrix of order n and weight k£ is an n x n (1, —1,0)-matrix W such
that WWT = kI,,, where I, is the identity matrix of order n and W7 denotes the
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transpose of W. A weighing matrix of order n and weight n is a Hadamard matrix.

Two weighing matrices Wy, W5 of order n and weight £k are said to be unbiased
if (1/vk)W, W is also a weighing matrix of order n and weight k [7] (see also [2]).
Unbiased weighing matrices of order n and weight n are unbiased Hadamard matrices
(see [7]). Weighing (Hadamard) matrices Wy, Ws, ..., Wy are said to be mutually
unbiased if any distinct two of them are unbiased. Generalizing the above concept,
recently the concept “quasi-unbiased” for weighing matrices has been introduced by
Nozaki and the second author [9]. Namely, two weighing matrices Wy, Wy of order n
and weight k are said to be quasi-unbiased for parameters (n, k.1, a) if (1/y/a)W W
is a weighing matrix of weight /. It follows from the definition that | = k?/a. In
addition, weighing matrices Wy, Wy, ..., W} are said to be mutually quasi-unbiased
weighing matrices for parameters (n,k,l,a) if any distinct two of them are quasi-
unbiased for parameters (n, k, [, a). Mutually quasi-unbiased weighing matrices were
defined from the viewpoint of a connection with spherical codes [9]. This notion was
introduced to show that Conjecture 23 in [2] is true. Only quasi-unbiased weighing
matrices are previously known for parameters (n,n,n/2,2n), where n = 2%+ and k
is a positive integer [2, Section 4] and [9, Section 4], and for parameters (n,2,4, 1),
where n is an even positive integer with n > 4 [9, Section 3].

Suppose that n = 2™, where m is an integer with m > 2. Let C' be a binary [n, k]
code satisfying the following two conditions:

{ie{0,1,...,n} | A(C)#0} ={0,n/2+a,n/2,n}, (1)
C' contains the first order Reed-Muller code RM (1, m) as a subcode,  (2)

where A;(C') denotes the number of codewords of weight 7 in C, and «a is a positive
integer with 0 < a < n/2. Then it follows from [9, Proposition 2.3 and Lemma 4.2]
that C' constructs a set of 28~™~1 mutually quasi-unbiased weighing matrices for
parameters (n, n, (n/2a)?, 4a?).

In this note, we study binary [2™, k] codes satisfying the two conditions (1)
and (2). The weight distribution of the above code is determined using an inte-
ger a given in (1). We give a classification of binary codes C satisfying the two
conditions (1) and (2) for lengths 8,16. We also give a classification of binary maxi-
mal codes C' (with respect to the subspace relation) satisfying the two conditions (1)
and (2) for length 32. As an application, sets of 8 mutually quasi-unbiased weighing
matrices for parameters (16,16, 4,64) and 4 mutually quasi-unbiased weighing ma-
trices for parameters (32, 32,4, 256) are constructed for the first time. All computer
calculations in this note were done by MAGMA [4].

2 Mutually quasi-unbiased weighing matrices and codes

We begin with definitions on codes used throughout this note. A binary [n, k] code
C' is a k-dimensional vector subspace of F, where [F; denotes the finite field of
order 2. All codes in this note are binary. A k x n matrix whose rows form a
basis of C' is called a generator matriz of C'. The parameters n and k are called
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the length and the dimension of C, respectively. For a vector = = (z1,...,2,),
the set {i | z; # 0} is called the support of x. The weight wt(x) of a vector z
is the number of non-zero components of x. The minimum non-zero weight of all
codewords in C'is called the minimum weight of C, which is denoted by d(C). Two
codes C' and C" are equivalent if one can be obtained from the other by permuting
the coordinates. A code C' is doubly even (resp. triply even) if all codewords of C
have weight divisible by four (resp. eight). The dual code C* of a code C' of length
n is defined as C+ = {z € F§ | x -y = 0 for all y € C}, where z - y is the standard
inner product. A code C'is called self-orthogonal (resp. self-dual) if C C C* (resp.
C' = C*). A covering radius p(C) of C'is p(C') = maxyepr mingec wt(z —c). The first
order Reed—Muller codes RM (1, m) for all positive integer m are defined recursively
by

RM(1,1) = FF3,
RM(1,m) = {(u,u), (w,u+1) €F:" |u€ RM(1,m — 1)} for m > 1,

where 1 denotes the all-one vector of suitable length.

Mutually quasi-unbiased weighing matrices for parameters (n, n, (n/2a)?, 4a*) are
constructed from [n, k] codes C satisfying the two conditions (1) and (2), where
n = 2™ and m is a positive integer as follows [9, Proposition 2.3 and Lemma 4.2].
Define ¢ as a map from F} to {+1}" (C Z") by ¥((z;)";) = (a;)", where o; = —1
if z; =1 and a; = 1 if 2; = 0. Note that wt(x — y) = j if and only if the standard
inner product of ¢ (z) and ¥(y) is n — 2j for z,y € Fy. Let {uy,ug, ..., Upk-m-1}
be a set of complete representatives of C'/RM(1,m). Since {i € {0,1,...,n} |
A (RM(1,m)) # 0} ={0,n/2,n}, ¥(u; + RM(1,m)) is antipodal, that is, —t(u; +
RM(1,m)) = ¢¥(u;+RM(1,m)). Hence, there exists a subset X; of ¢(u;+RM (1, m))
such that X; U (—=X;) = ¢(u; + RM(1,m)) and X; N (=X;) = 0. For 1 < i <
2k=m=1"define H; to be an n x n (1, —1)-matrix whose rows consist of the vectors
of X;. Any two different vectors in X; are orthogonal for 1 < i < 2¥"™~1 which
means that the matrix H; is a Hadamard matrix for 1 < ¢ < 2871 Let a;
be a vector in X;. The assumption of (1) implies that wt(¢(z;) — v~ (ay)) =
n/2,n/2 £ a (i # j), namely, the inner product of x; and z; (i # j) is 0,F2a
respectively, where a is the integer given in (1). This shows that for any distinct
6,5 €{1,2,..., 2"} (1/2a)H;H] is a (1, —1,0)-matrix and thus it is a weighing
matrix of weight (n/2a)?. Therefore, Hadamard matrices Hy, Hy, ..., Hopx-m-1 are
mutually quasi-unbiased weighing matrices for parameters (n, n, (n/2a)?, 4a?).

Remark 1. Since n/2a must be an integer, a is a divisor of 2™~

Proposition 2. Suppose that n = 2™, where m is an integer with m > 2. Let C be
an [n, k| code satisfying the two conditions (1) and (2). Then the weight distribution
of C 1is given by
(AO(C)a An/2—a(c)7 An/2(0)7 An/Z—l—a(C)a An(c>>
= (1, 2™ — ), 2n — 24+ (28 — 1) (2n = 20), (28 — 1)1, 1),

where | = (n/2a)?.



M. HARADA AND S. SUDA / AUSTRALAS. J. COMBIN. 66 (1) (2016), 10-22 13

Proof. We denote the set of complete representatives of C/RM (1, m) by {uy, us, ...,
ugk-m—1} described as above, where we assume that u; = 0. In addition, we denote
the mutually quasi-unbiased weighing matrices for parameters (n,n, (n/2a)?, 4a?)
by Hi, Hs, ..., Hym-1 described as above. Since (1/2a)H,H! is a weighing ma-
trix of weight [ for 1 < ¢ < 2F™=1 ( appears n — [ times in the first row of
(1/2a)H H}. Since the first row of H; is the all-one vector, this implies that the
number of codewords of weight n/2 in u; + RM(1,m) for i > 1 is 2n — 2[. Thus,
Appo(C) =2n—2+ (271 —1)(2n — 21) holds. Since C contains the all-one vector,
we have the desired weight distribution. O

Remark 3. The minimum weight of C' determines the weight distribution of C'. In-
deed, the minimum weight determines a, and thus /. Since k£ and m are given, the
weight distribution is determined.

3 Codes satisfying the conditions (1) and (2)

In this section, we give a classification of codes C of length 2™ satisfying the two
conditions (1) and (2) for m = 3,4. We also give a classification of maximal codes
C' of length 32 satisfying the two conditions (1) and (2).

3.1 Length 8

The case m = 3 is somewhat trivial, but we only give the result for the sake of
completeness. Note that RM(1,3) is equivalent to the extended Hamming [8, 4, 4]
code eg. The complete coset weight distribution of eg is listed in [8, Example 1.11.7].
From [8, Example 1.11.7], RM (1, 3) has seven (nontrivial) cosets of minimum weight
2. In addition, every [8,5] code C' satisfying the conditions (1) and (2) can be
constructed as (RM (1, 3), z), where x is a coset leader of the seven cosets. We verified
by MAGMA that there exists a unique [8,5] code Cs 5 satisfying the conditions (1)
and (2). This was done by the MAGMA function IsIsomorphic. Similarly, we verified
by MAGMA that Cys has three (nontrivial) cosets of minimum weight 2, and there
exists a unique [8, 6] code Cy ¢ satisfying the conditions (1) and (2). It is trivial that
the even weight [8, 7] code Cy 7 is the unique [8, 7] code satisfying the conditions (1)
and (2). We remark that {i € {0,1,...,8} | A;(C) # 0} ={0,4+2,4,8} for C' = Cy;
(1=5,6,7).
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3.2 Length 16

The next case is m = 4. First we fix the generator matrix of the first order Reed—
Muller [16, 5, 8] code RM(1,4) as follows:

1001011001101001
0101010101010101
0011001100110011
0000111100001111
0000000011111111

Every [16,6] code C satisfying the conditions (1) and (2) can be constructed as
(RM(1,4),z), where x is an element of a set of complete representatives of
F3%/RM(1,4), satisfying that  + RM(1,4) has minimum weight 4 or 6 (see Re-
mark 1). In this way, we found all [16, 6] code C satisfying the conditions (1) and (2),
which must be checked further for equivalences to complete the classification. We
verified by MAGMA that any [16,6] code satisfying the conditions (1) and (2) is
equivalent to one of the two inequivalent codes Cig61 and Cigp2. This was done by
the MAGMA function IsIsomorphic. The minimum weights d(C') and the construc-
tions of the two codes C are listed in Table 1. This table means that Cige;1 and
Cle6,2 can be constructed as (RM(1,4), x1661) and (RM(1,4), z1662), respectively,
where the supports of x1561 and x1662 are listed in Table 2.

Table 1: [16, k] codes satisfying (1) and (2)

k | Codes C | d(C) Vectors

6 | Ciee,1 6 | 216,61
Ci6,6,2 4 | 716,62

7| Cier1 6 | %16,6,1, T16,7,1
C16,7,2 4 | 716,6,2, T16,7,2

81 Ciegs, 4 | 716,6,2, T16,7,25 T16,18,1
C16,8,2 4 | 716,62, T16,7,2, 716,182

Table 2: Vectors in Table 1

Supports Supports
x16,6,1 {1, 8, 12, 14, 15, 16} 1‘16’772 {1, 8, 10, 15}
x16,6,2 {1, 2, 15, 16} CC167871 {2, 3, 13, 16}
1‘16,771 {1, 4, 5, 7, 9, 10} x16,8,2 {4, 5, 12, 13}

Let D be a doubly even [n, k] code satisfying the conditions (1) and (2). Every

[n, k+1] code C satisfying the conditions (1) and (2) with D C C' can be constructed
as (D, ), where z is an element of a set of complete representatives of D*/D,
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satisfying that 0 # wt(x) € {i € {0,1,...,n} | A;(D) # 0}, since D is self-orthogonal
and {i € {0,1,...,n} | A4;,(C) # 0} = {i € {0,1,...,n} | A;(D) # 0}. This
observation reduces the number of codes which need be checked for equivalences. This
observation is applied to doubly even codes Cig62 and Cig72. Using an approach
similar to the previous subsection along with the above observation, we completed
the classification of codes satisfying the conditions (1) and (2) for dimensions 7
and 8. In this case, the only results are listed in Tables 1 and 2. We verified by
MAGMA that Cig 71 has covering radius 4. This was done by the MAGMA function
CoveringRadius. Thus, Cig7, is a maximal code (with respect to the subspace
relation). Since Cigs;1 and Cigs2 are doubly even self-dual codes, there exists no
[16, k] code satisfying the conditions (1) and (2) for £ > 9. Therefore, we have the
following:

Proposition 4. If there exists a [16, k] code satisfying the conditions (1) and (2),
then k € {6,7,8}. Up to equivalence, there exist two [16,k] codes satisfying the
conditions (1) and (2) for k =6,7,8.

By the construction of quasi-unbiased weighing matrices described in Section 2,
we have the following:

Corollary 5. There exists a set of at least 8 mutually quasi-unbiased weighing ma-
trices for parameters (16,16,4,64).

A set of four mutually quasi-unbiased weighing matrices for parameters
(16,16, 16, 16) is also constructed. It is known that the maximum size among sets of
mutually quasi-unbiased weighing matrices for the parameters is 8 [5, Proposition 6]
and [6, Theorem 5.2].

3.3 Length 32

For the next case m = 5, the classification of maximal codes satisfying the con-
ditions (1) and (2) was done by a method similar to that for the cases (n,k) =
(16,7),(16,8).

Proposition 6. If there exists a maximal [32,k] code satisfying the conditions (1)
and (2), then k € {9,10,11}. Up to equivalence, there exist 92 maximal [32,9] codes
satisfying the conditions (1) and (2), there exist 102 mazimal [32,10] codes satisfying
the conditions (1) and (2), and there exist two maximal [32,11] codes satisfying the
conditions (1) and (2).

By the construction of quasi-unbiased weighing matrices described in Section 2,
we have the following:

Corollary 7. There exists a set of at least 4 mutually quasi-unbiased weighing ma-
trices for parameters (32,32, 4,256).
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A set of eight mutually quasi-unbiased weighing matrices for parameters
(32,32,16,64) is also constructed. It is known that the maximum size among sets of

mutually quasi-unbiased weighing matrices for the parameters is 32 [9, Theorems 4.1,
4.4].

Table 3: Maximal [32, k] codes satisfying (1) and (2)

k Codes C d(C)
9 | C329.1,---,C329091 12
C32,9.92 8
10 | Cs2,10,15---,C32,10,101 | 12
CU32,10,102 8
11 | C32,11,1,C32,11,2 12

We denote the 92 inequivalent maximal [32,9] codes given in Proposition 6 by
Cs204 (1 = 1,2,...,92). We denote the 102 inequivalent maximal [32,10] codes
given in Proposition 6 by Cse 10, (1 =1,2,...,102). We denote the two inequivalent
maximal [32,11] codes given in Proposition 6 by Cso11; (i = 1,2). The minimum
weights of the codes given in Proposition 6 are listed in Table 3.

Table 4: Maximal [32, 9] codes satisfying (1) and (2)

Codes Vectors
x7 | C329.1,---,C32900 32,71
CU32,9,91 32,72
C32,9,92 73273
rg | C329.1,.--,0329.15 732,81
C32.9,165---,C32.9.22 232,82
C32,9,23,---,C329.51 732,83
C32.952,---,C32976 232,84

C32,9,77,C32,9,78, C32,9,79 | 732,85
(329,80, C32,981, 32,982 | 32,86
C32,9.83,C32,984,C32,985 | 732,87

C32,9.86, C32,9.87 732,88
C32,9,88 732,89
C32,9.89, C32,9,90 232,810
C32,9.91 32,811
CU32,9,92 732,812

xg | C329, (1=1,2,...,92) | w309,

To describe the codes given in Proposition 6, we fix the generator matrix of the
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Table 5: Maximal [32, 10] codes satisfying (1) and (2)

Codes Vectors Codes Vectors
7 | C32,10,1,---,C32,10,101 x32,71 | C32,10,102 32,7,3
xg | C32,10,1,---,C32,10,30 x32.81 | C32,10,31,---,C32,10,73 232,82
C32,10,74, - - -, C32,10,89 32,83 | C32,10,90,---,C32,10,98 232,84
C32,10,99, C32,10,100 x32,85 | C32,10,101 Y32,8,1
Cs2,10,102 232,812
x9 | C32,10,1 ¥32,9.1 | C32,10,2,C32,10,3 Y32,9,2
C32,10,9, C32,10,10, C32,10,11 | ¥32,9.3 | C32,10,4 Y32,0,4
C32,10,5, C32,10,6 ¥32,9.5 | C32,10,7,C32,10,8 Y32,9.6
C32,10,12, C32,10,13 ¥32,0,7 | U32,10,14,C32,10,15, C32,10,16 | ¥32,9,8
C32,10,17, C32,10,18 132,9,9 C32,10,19, C32,10,20 932,9,10
032,10,21 Y32,9,11 032,10,22 Y32,9,12
C32,10,23, C32,10,24 ¥32,9,13 | C32,10,25,C32,10,26 Y32,9,14
C32,10,27 ¥32,9,15 | C32,10,28 32,9,16
C32,10,29 ¥32,0,17 | C32,10,30 Y32,9,18
C32,10,31, C32,10,32 ¥32,0,19 | C32,10,33 32,9,20
C32,10,34; - - -, U32,10,37 Y32,0.21 | C32,10,38 Y32,9,22
C32,10,39, C32,10,40 ¥32,9.23 | C32,10,41 Y32,9,24
C32,10,42, C32,10,43 ¥32,9.25 | C32,10,44 132,9,26
C32,10,45, C32,10,46, C32,10,47 | ¥32,9,27 | C32,10,48 132,928
C32,10,49, C32,10,50 ¥32,9,29 | Cs2,10,51, C32,10,52 32,930
C32,10,53; - - -, U32,10,57 ¥32,0,31 | C32,10,58 32,9,32
C32,10,59, C32,10,60 ¥32,9.33 | C32,10,61 Y32,9,34
C32,10,62, C32,10,63, C32,10,64 | ¥32,9,35 | C32,10,65 132,9,36
C32,10,66 ¥32,9,37 | C32,10,67, C32,10,99 32,9,38
Cs2,10,68 ¥32,0,39 | C32,10,69 132,940
Cs2.10,70 y32,941 | Cs2,10,71, C32,10,72 132,9,42
C32,10,73 Y32,9,43 | C32,10,74 Y32,9,44
C32,10,75 Y32,9,45 | C32,10,76, C32,10,77 32,9,46
C32,10,78, C32,10,79, C32,10,80 | ¥32,9,47 | C32,10,81 Y32,9,48
Cs2,10,82 Y32,0,49 | C32,10,83 32,950
C32,10,84 Y32,0,51 | C32,10,85 32,952
Cs2,10,86 ¥32,0,53 | C32,10,87 Y32,9,54
C32,10,88 ¥32,9,55 | C32,10,89 132,9,56
C32,10,90 Y32,9,57 | C32,10,91 32,9,58
C32,10,92, C32,10,93 Y32,0,59 | C32,10,94 132,9,60
C32,10,95 y32,0,61 | C32,10,96 132,9,62
Cs2.10,97 Y32,0,63 | C32,10,98 132,9,64
C32,10,100 ¥32,9,65 | C32,10,101 132,9,66
C32,10,102 1Y32,9,67
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first order Reed—Muller [32, 6, 16] code RM(1,5) as follows:

10010110011010010110100110010110
01010101010101010101010101010101
00110011001100110011001100110011
00001111000011110000111100001111
00000000111111110000000011111111
00000000000000001111111111111111

The codes Cs9, (1 = 1,2,...,92) are constructed as (RM(1,5), x7, xs, x9), where
Table 4 indicates z7, g, v9 and the supports are listed in Table 6. The codes Cs 10,
(1 =1,2,...,102) are constructed as (RM(1,5), z7, xs, g, T19), where Table 5 indi-
cates x7, rs, Ty, T19 and the supports are listed in Table 6. The codes Cs511; (i = 1, 2)
are constructed as follows:

032,11,1 :<RM(1, 5), X32,7,2, 32,8,15 ©32,9,1, £32,10,1, Z32,11,1>,

032,11,2 =<RM(1, 5)7 L3272, 232,8,1, £32,9,25 £32,10,2, 232,11,2>,

where the supports of the vectors are listed in Table 6.

Finally, we compare our codes with some known codes and we discuss the max-
imality of our codes. It follows from the weight distributions that Cjs992 (resp.
C32.10.102) 1s equivalent to the unique maximal triply even [32, 9] (resp. [32, 10]) code,
which is given in [3, Table 2]. It follows that Csp990 and Csz10102 are maximal.
We verified by MAGMA that Cs91,C329.2, ..., Cs29090 have covering radius < 11,
03271071, 03271072, ey 0327107101 have Covering radius 10 and 03271171, 03271172 have cover-
ing radius 8. This shows that these codes are maximal. We verified by MAGMA that
C32.112 1s equivalent to the extended BCH [32,11, 12] code.

Postscript

After this work, we continued the study of quasi-unbiased weighing matrices obtained
from (not necessary linear) codes in [1].
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