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Abstract

The Euler characteristic, thought of as a function that assigns a numeri-
cal value to every finite simplicial complex, is locally determined in both
a combinatorial sense and a geometric sense. In this note we show that
not every function that assigns a numerical value to every finite sim-
plicial complex via a linear combination of the numbers of simplices in
each dimension is locally determined in either sense. In particular, the
Charney-Davis quantity A(L) is not locally determined in either sense if
it is defined on a set of simplicial complexes that includes all flag spheres
of a given odd dimension.

1 Introduction

There are a number of contexts in which to consider the notion that a function that
assigns a numerical value to every finite simplicial complex (for example the Euler
characteristic) is locally determined. We discuss two approaches here. The common
idea to both approaches is that if 7 is a set of finite simplicial complexes, and if
A is a real-valued function on 7, the function A is locally determined if there is an
appropriate type of real-valued function ¢ defined at each vertex of each simplicial
complex in 7T such that

UEK(O)

for every K € T, where K is the set of vertices of K.

In the combinatorial approach of [14] and [8], described below in Section 2, the
number ¢(v) depends only upon the combinatorial nature of the link of v in K. For
example, it is observed in those two papers that the Euler characteristic (ordinary, not
reduced) on the set of all simplicial complexes is combinatorially locally determined
by the real valued function with formula ¢(v) = e(link (v, K)), where the function e
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on the set of all simplicial complexes is given by

(M) =1 _1_2 (—1)i+t

i+2 fiM)
for all simplicial complexes M.

There is also a geometric notion of a function on a set of finite simplicial com-
plexes being locally determined, as discussed in [4], and described below in Section 3.
This approach is inspired by the polyhedral analog of the Gauss-Bonnet Theorem,
which is as follows. Let M be a finite polyhedral surface in R3. If v € M© the
angle defect at v is defined to be d, = 2w — > «;, where the a; are the angles of the
polygons containing v. The polyhedral analog of the Gauss-Bonnet Theorem says
Y e dy = 2mx(M). Rather than viewing this formula as stating that the angle
defects at the vertices add up to something nice, it can be viewed as stating that the
Euler characteristic of the surface is locally determined by a geometrically calculated
quantity. The polyhedral Gauss-Bonnet Theorem can be generalized to higher di-
mensions and to non-manifolds in more than one way, as seen, among others, in [2],
[6], [16], [10], [11] and [3]; we take the approach of the latter. For Descartes’ original
work on the angle defect see [7]; for a very accessible treatment of the angle defect
see [1].

In contrast to the combinatorial approach of [14] and [8], where the local calcu-
lation at each vertex of a simplicial complex depends only upon the combinatorial
nature of the link (or star) of the vertex, in the geometric approach the local cal-
culation at a vertex depends upon local geometric information that makes use of
an embedding of the simplicial complex in Euclidean space. Hence, in the geomet-
ric approach, rather than considering simplicial complexes to be the same if they
are combinatorially equivalent (as in [14] and [8]), we consider simplicial complexes
that are embedded in Euclidean space, and view different embeddings of the same
abstract simplicial complex as different.

The Euler characteristic is not only locally determined in both the combinatorial
and geometric senses, but it is the unique function that is locally determined and that
satisfies some additional conditions. In the combinatorial approach, [14] and [8] show
that the Euler characteristic is, up to a scalar multiple, the unique combinatorially
locally determined numerical invariant of finite simplicial complexes that assigns
the same number to every cone; that would hold, in particular, for a numerical
invariant that is a homotopy type invariant. In the geometric approach, [4] shows
in the 2-dimensional case that the Euler characteristic is, up to a scalar multiple,
the unique geometrically locally determined numerical invariant of finite simplicial
surfaces that assigns the same number to every pyramid and bipyramid.

However, whereas the Euler characteristic is a very useful example, there are
combinatorially invariant ways to assign a numerical value to every finite simplicial
complex that are not constant on all cones (not to mention are not homotopy type
invariants). An example of such a function is the Charney-Davis quantity A(K), as
defined in [5].

To define the Charney-Davis quantity and state our result about it, we start with
some notation and a definition. (For basic definitions regarding simplicial complexes,
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see for example [13] and [15].) Throughout this note, all simplicial complexes are
assumed to be finite. Let K be a finite simplicial complex. Let |K| denote the under-
lying space of K, and let K(©) denote the set of vertices of K. Let f;(K) denote the
number of i-simplices of K for each ¢ € {0,1,...,dim K}; we also use the standard
convention that f_;(K) =1, and f;(K) =0 for each i € Z — {—1,0,1,...,dim K}.
If v € KO let star (v, K) and link (v, K) denote the star and link of v in K, respec-
tively.

Definition. Let K be a simplicial complex. The simplicial complex K is a flag
complex if for any subset T C K©) | if every two distinct vertices of T" are joined by
an edge then T is the set of vertices of a face of K. A

The Charney-Davis quantity A(K) is defined to be

dim K

ME) =" (-9 ).

i=—1

If a function such as the Charney-Davis quantity were locally defined in either
the combinatorial or the geometric approach, that might provide a useful tool for its
study. Unfortunately, as seen in Corollaries 2.2 and 3.2, the Charney-Davis quantity
defined on odd-dimensional simplicial flag spheres is not locally determined in either
sense. The requirement of odd-dimensional simplicial flag spheres here is appropriate,
because the Charney-Davis Conjecture, stated in Conjecture D of [5], concerns the
value of the Charney-Davis quantity on odd-dimensional simplicial flag generalized
homology spheres.

The Charney-Davis quantity is an example of a real-valued function A on a set

of finite simplicial complexes 7 that has the form A(K) = S5, f,(K) for all
K € T, for some b_1,by,b1,... € R. We ask which such functions A are locally
determined.

Our main result, stated in the combinatorial case in Theorem 2.1 and in the
geometric case in Theorem 3.1, gives some criteria under which functions are locally
determined in either sense. Our result regarding the Charney-Davis quantity follows

immediately from these two theorems.

2 Combinatorially Locally Determined Functions

For the combinatorial approach of [14] and [8], we need the following notation. If 7
is a set of simplicial complexes, let

LI(T) = {link (v, K) | K € T and v € K},

The idea of a function on a set of simplicial complexes being locally determined is
that the value of the function of a simplicial complex equals the sum of the values of
some other function calculated in a “neighborhood” of each vertex of the simplicial
complex. The standard notion of neighborhood of a vertex in a simplicial complex
is the star of the vertex, but the star of the vertex is determined by the link of the
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vertex, and in the following definition, which is from [14] and [8], it is convenient to
use the link rather than the star.

Definition. Let 7 be a set of simplicial complexes, and let A be a real-valued
function on 7. The function A is combinatorially locally determined by a real-
valued function ¢ on LI(T) if § is invariant under combinatorial equivalence and

if
AK) =) (link (v, K))
)

veK(©

for every K € T. A

The adverb “combinatorially” in the above definition is not used in [14] and [8],
but for the sake of clarity it seems appropriate to use it at present.
Our result in the combinatorial setting is the following.

Theorem 2.1. Let T be a set of finite simplicial complexes, and let A be a real-
valued function on T. Suppose that A has the form A(K) = S0 b, f,(K) for all
K €T, for some b_1,bg,by,... € R.

1. If all the simplicial complezes in T have the same non-zero Euler characteristic,
then A is combinatorially locally determined.

2. If by =0, then A is combinatorially locally determined.

3. Ifb_1 #0, and if T contains all flag d-spheres for some odd integer d such that
d > 3, then A is not combinatorially locally determined.

Proof. Parts (1) and (2) are very simple. For each case, we will define a sequence
a_i,ap,a,... € R, and we will define a real-valued function ¢ on LI(7") that has the
form 6(M) = S a; f;(M) for each M € LI(T).

First, we make the following observation. Let K € T, let v € K© and let
i€ {-1,...,dim K — 1}. It is straightforward to see that ) _,« fi(link (v, K)) =

(Z —+ 2)f1+1(K) Then

dim K—1

> S(link (0, K)) = > Y aifi(link (v, K))

veK (0) veK(0) 1=-—1
dim K—1
= Y @ Y fillink(v,K)) (1)
i=—1 veK (0
dim K—1
= Y ali+2)fia(K).
i=—1

For Part (1), where we assume that all the simplicial complexes in 7 have Eu-

. . b; i b_ .
ler characteristic F, for some E # 0, let a; = 5 + (—1) “E(i;m for all i €

{-1,0,1,...}. For Part (2), where we assume that that b_; = 0, let a; = % for
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all i € {—1,0,1,...}. In both cases, it is straightforward to verify that Equation (1)
implies Y,y 0(link (v, K)) = S D fi(K) = A(K); the details are omitted.

For Part (3), suppose that b_; # 0, and that there is some odd integer d such
that d > 3 and that 7 contains all flag d-spheres. Suppose further that A is locally
determined by a real-valued function ¢ on LI(T).

We need the following basic facts about joins of simplicial complexes. Let K and
L be finite simplicial complexes, and let K % L denote the join of K and L. Then
dim(K % L) = dim K + dim L + 1, and

T

i=—1
for each r € Z. Additionally, if v € K@ then
link (v, K % L) = link (v, K') % L. (3)

Let n,m € N be such that n,m > 4 and n # m. Let C,, denote the cycle with n
vertices (that is, the graph).
Let s,t € NU{0}. Let

To1=Cpx--xCpxCpyx---xCpy .
NS s O\ g

NV NV
s times t times

Then Ty is a (2(s + t) — 1)-dimensional simplicial complex. We note that T, is
a flag complex because C,, and C,, are flag complexes (because n,m > 4), and the
join of flag complexes is a flag complex (Item 2.7.1 of [5]). We also see that T}, is a
sphere, because the join of spheres is a sphere (Lemma 1.13 of [13]).

It can be verified that

s

fi(Ts,O) = Z (j) (Qj_jz‘_l)nj

J=0

foralli € Z; ifi € {—1,0,...,2s—1}, count the ways i-dimensional simplices in this
join can be formed, and if ¢ ¢ {—1,0,...,2s — 1}, then the formula correctly yields
fi(Ts0) = 0. A similar formula holds for f;(75:). Then, using Equation (2), we see
that .

fr(Ts,t) = fr(Ts,O * TO,t) = Z frfifl(TsD)fz’(TO,t)

i=—1

DNt IR

i=—1 j=0 k=0

(4)

for all r € Z.

Let v € (T&t)(o). Then v is either in a copy of C, or a copy of C,,. Let SY denote a
two-element set. If v is in a copy of C,,, then by Equation (3) we see that link (v, T ;)
is isomorphic to S® * Ty 1,, and we let Ay 1, = d(link (v, Ts;)) = 6(S° * Ts_1,4);
similarly, if v is in a copy of C,,, we let A;; 1 = 0(link (v, Ts4)) = 6(S° * Ts4—1).
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Let p € N be such that d = 2p — 1. Then p > 2. Let v € {0,1,...,p}. Then

Tp—uu is a (2p — 1)-dimensional simplicial flag sphere, and hence 7T},_,,, € 7. Using

tﬁe fact that A is locally determined by d, we have
2p—1
Z br fr(Tp—uu) = AT p—u) = Z o (link (v, Tp—uu))
r=—1 VE(Tp— )@ (Eu>
= fo(Tp-u.0)Ap—u—1,u + fo(Tou) Ap—uu—1-
Next, we take Equations (Ey), (E4), ..., (E,), and form the linear combination
P o(=1)"(2) ()P~ E,, which, after rearranging, yields
-1 p
2 02 0 G S (T)
r=—1  w=0 ) (5)
=) =05 (=) o Tpmw0) Ap—w—ro + fo(Tow) Ap—waw—]
w=0

We now simplify Equation (5), starting with the right-hand side of the equation,
which is a linear combination of terms of the form A,_, 1, where v € {0,1,...,p+
1}. Each such term appears twice, once in each of Equations (E,_1) and (E,). (It
might be thought that each of A, _; and A_;, appear only once, in Equations (Ej)
and (E,), respectively, but each of A, _; and A_; , has coefficient fy(T0,), which is
zero, and so we can ignore these terms.) The sum of the two coefficients of A, ,—1
from Equations (F,_1) and (E,) is

(=112 ()7 o Tmtumno) + (1 () (2)" folTow)

= (=" ()" 02D () (o —u+ D= (Fum]
=0,

where the last equality can be verified easily. We deduce that the right-hand side of
Equation (5) is zero.

Next, let r € {—1,0,...,2p — 1}, and let G, denote the coefficient of b, in the
left-hand side of Equation (5).

Because f_1(Tp_ww) = 1for allw € {0,1,...,p}, we see that

p

G = Y1) () = (2 1)

w=0
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Now suppose that r ## —1. Then, using Equation (4), we see that

G = 31"

S [3

) e (Tpmww)

p r o p—w w

= Z(_l)w (5;) ( )p_w Z Z Z (p;w) (2j+jz'—r) (q]g) (2kfifl)njmk‘

=0 i=—1 j=0 k=0

313

r p—w w

S S S ) ) 0 ) () () ©)

w=04i=—1 j=0 k=0

Observe that G, is a Laurent polynomial in m and n. Let w € {0,1,...,p}, and
j€4{0,1,...,p—w}and k € {0,1,...,w}. We will use the substitution a = p—w+k
andb=p—w—7. Itisseenthat 0 <a <p,and0<b<p,anda—(p—w)=k>0
and (p —w) —b=j > 0. It is evident that a > b. In fact, there is no term in G,
that has ’Z—Z with @ = b. Suppose the contrary. Because k,j > 0, the only values
of k and j that would yield a = b are k = 0 = j. If that were the case, then
(2j+ji_r) (219—]2‘—1) = (Z.ET) (—2‘0—1)‘ Note that i € {—1,0,...,r}. If i < r, then (i_OT) =0,
and if ¢ > —1, then (—1‘0—1) = 0. Hence, the coefficients of ’Z—: with a = b are all zero,
and we may therefore restrict our attention to the case where a > b.

Let D, ; denote the coefficient of YZ—Z in Equation (6). For each possible value of
w, there is one choice of each of k and j that yield the desired powers of m and n.

Specifically, it is seen that

p r

Dap =Y (=" () (" wr0) () D op i) Gt P i) (1)

w=0 i=—1

Recalling that a — (p —w) > 0 and (p —w) —b > 0, we observe that if i € Z, then
. . . a—(p—w . . . —w)—b
i < —1 implies (2a72(p(fw)f)l.fl) = 0, and ¢ > r implies (2(p7(1;)7%b+i4) = 0. Hence,
in Equation (7), we can replace the upper and lower limits of the inner sum, which
are © = —1 and ¢ = r, with any lower limit less than —1 and any upper limit greater
than r. By doing so if needed, we can apply Vandermonde’s Convolution Formula

to deduce, as the reader can verify, that

T

D G tin) Gasoori) = (e tes)- (8)

i=—1

Next, using the definition of binomial coefficients, it is easy to verify that

—w w —(a—b a—b
(5}) ((pliw)—b) (a—(p—w)) = (al—jb) (p (b )) (a—(p—w))' (9)
Combining Equations (7), (9) and (8), using the substitution z = a — (p — w),
and doing some rearranging yields

a

Doy = () ) G t) S0 (—1rem (o),

z=a—p
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Observe that a —p < 0 < a — b < a. Hence, the only values of z for which (a;b) is
non-zero are z € {0,...,a —b}. Then

o

a a—

> (eI ) = (1 () = (=) =

z=a—p

N
Il
o

Therefore Dy = 0.

Putting the above together, we see that Equation (5) reduces to the very simple
equation (% — 1)pb,1 = 0. Given that m # n and b_; # 0, we have reached a
contradiction, from which we deduce that A is not locally determined. O

Part (1) of Theorem 2.1 would occur, for example, when the set 7 is the set of
all m-spheres for some even m € N.

We note that whereas in Part (3) of the theorem it is hypothesized that T contains
all flag d-spheres for some odd integer d such that d > 3, it is seen in the proof of
the theorem that not all flag d-spheres are needed, but rather, by using n = 4 and
m = 5, it would suffice to include only those flag d-spheres with up to 5(d2+ U vertices.
The proof of the theorem was given with arbitrary n and m, rather than only n =4
and m = 5, because it is easier to see what is going on by treating the more general
case.

The three cases in Theorem 2.1 do not exhaust all possibilities. However, Part (3)
suffices to treat both the reduced Euler characteristic, which is

dim K

UE) = 3 (1) fi(K),

i=—1
and the Charney-Davis quantity, as we now state.

Corollary 2.2. Let T be a set of finite simplicial complexes that contains all flag
d-spheres for some odd integer d such that d > 3. Then both the reduced Fuler
characteristic X and the Charney-Davis function X on T are not combinatorially
locally determined.

3 Geometrically Locally Determined Functions

For the geometric approach of [4], we need the following definitions (which, in con-
trast to the original, are given here for arbitrary dimensions). Recall that in this ap-
proach, we consider geometric simplicial complexes that are embedded in Euclidean
space, where each simplex is the convex hull of its vertices, and hence the embedding
is determined by the locations of its vertices. We view different embeddings of the
same abstract simplicial complex as different simplicial complexes.

Definition. Let 7 be a set of simplicial complexes. A real-valued vertex-supp-
orted on 7 is a function ¢ that assigns to every K € T, and every v € K a real
number ¢(v, K). A
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For the following definition, suppose that K and {K,},>, are combinatorially
equivalent simplicial complexes, and all are embedded in the same Euclidean space.
We can think of these simplicial complexes as embeddings of the same abstract
simplicial complex. We write lim, ., K, = K to denote pointwise convergence of
these embeddings; it suffices to verify convergence at the vertices of the abstract
simplicial complex.

Definition. Let 7 be a set of simplicial complexes, and let ¢ be a real-valued vertex-
supported function on 7.

1. The function ¢ is invariant under subdivision if the following condition
holds. If K,J € T, where J is a subdivision of K, and if v € K© then

gb(”? K) = gb(”? ‘])

2. The function ¢ is invariant under simplicial isometries of stars if the
following condition holds. If K,L € T, if v € K© and w € L and if there
is a simplicial isometry |star (v, K)| — |star (w, L)| that takes v to w, then

(b(U, K) = (b(w? L)'

3. The function ¢ is continuous if the following condition holds. Let K and
{K,}:2 | be combinatorially equivalent simplicial complexes in 7, all embedded
in the same Euclidean space. Suppose lim,_,, K, = K. If v € K (0), and if the
corresponding vertex of K, is labeled v,,, then lim,,_,, ¢(v,,, K,) = ¢(v, K). A

Definition. Let 7 be a set of simplicial complexes, and let A be a real-valued
function on 7. The function A is geometrically locally determined by a real-
valued vertex-supported function ¢ on T if ¢ is invariant under simplicial isometries
of stars, is invariant under subdivision and is continuous, and if

AK)= ) (v, K)

ng(O)
for every K € T. A

For the proof of Part (1) of Theorem 3.1 below, which is a simple variation of
an argument in [3], we adopt the convention that all angles are normalized so that
the volume of the unit (n — 1)-sphere in (n — 1)-measure is 1 in all dimensions. For
any n-simplex ¢" in Euclidean space, and any i-face ' of 0", let a(n',0") denote
the solid angle in o™ along 7, where by normalization such an angle is a number in
0, 1].

We make use here of a lemma, found in many places and stated as Lemma 3.1
in [3], which generalizes the fact that the angles of a planar triangle add up to 7 (or
1/2 when normalized); the lemma reduces to that result when n = 2. A simple proof
of this lemma appears on p. 24 of [12]; for historical remarks, see p. 312 of [9].

Our result in the geometric setting is the following.

Theorem 3.1. Let T be a set of finite simplicial complexes, and let A be a real-
valued function on T. Suppose that A has the form A(K) = Z?;Hj{ bifi(K) for all
K €T, for some b_1,by,by,... € R,
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1. Ifb_y =0, and if T is a set of n-dimensional pseudomanifolds for some integer
n such that n > 2, then A is geometrically locally determined.

2. Ifb_1 # 0, and if T contains all flag d-spheres for some odd integer d such that
d > 3, then A is not geometrically locally determined.

Proof. For Part (1), let K € T. Because K is an n-dimensional pseudomanifold, we
have (n+ 1) fo(K) = 2f,—1(K).

We use the notation 7° to denote an i-simplex of K. Let

2(—1)" [(n—i— 1)

P=

For each v € K© , let

o(v, K) = ; zilz b+ (—=1)'P Z a(n, o™ | .

( n*Sv o -nt

[\

Il
=)

Because ¢ is determined by angle sums of the form ZJ">—ni a(n',o™), it is invariant
under simplicial isometries of stars, is invariant under subdivision and is continuous.
We compute

2 9 ZZ [ [t (FDP ) a

veK () veK(0) =0 ED) on=nt
= Z Z Z bi+(-1)')P > a
n teK ven? on -
n—2
=> Y |+ ()P > a
1=0 nicK on-nt

because 1 has i 4 1 vertices

= > bfiK) + Pi > > (aly o)

i=0 nicK on-nt

:ibifi(K)JrPZ Y. (=aly,e")

oneK T]i-<0'n
0<i<n—2

:nibifi( +PZ n_l)
1=0

oneK

by Lemma 3.1 of [3]

= o)+ PEEE )
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_ gbimm D) + b fu8)

= Zbifz-(K»

Hence A is geometrically locally determined by ¢.

For Part (2), we simply need to modify the proof of Part (3) of Theorem 2.1 very
slightly, as follows. First, embed each copy of C, or C,, in R? by having the vertices
be on the unit circle in R?, equally spaced, and then construct 7)., in (R?)? = R?.
It is then seen that all the vertices in 7},_,, that are in copies of (), have isometric
stars, and similarly for all the vertices in 7},_,, that are in copies of C,,. Hence, if A
were geometrically locally determined by a real-valued vertex-supported function ¢,
and if ¢ is assumed to be invariant under simplicial isometries of stars (it does not
even have to satisfy the other two conditions in the definition of geometrically locally
determined), then the same example used in the proof of Part (3) of Theorem 2.1,
but with h(link (v, T} ,)) replaced by ¢ (v, Ts.), will yield the same contradiction. [

The following corollary is immediate.

Corollary 3.2. Let T be a set of finite simplicial complexes that contains all flag
d-spheres for some odd integer d such that d > 3. Then both the reduced Fuler
characteristic X and the Charney-Davis function X\ on T are not geometrically locally
determined.

The proof of Part (1) of Theorem 3.1 works for n-dimensional pseudomanifolds
but not for all simplicial complexes. We note, however, that it is possible to modify
the definition of ¢(v, K) in the proof in such a way that it works for all pure finite
n-dimensional simplicial complexes, though at the cost that instead of obtaining
expressions of the form )"  b;f;(K), each number f;(K) would be replaced by a
variant of it that is weighted by the extent to which K is not a pseudomanifold,
using the methodology of [3]. We omit the details.

Finally, we note that in Section 2 of [4], it was mistakenly claimed that the
function A on the set of all 2-dimensional simplicial complexes defined by A(K) =
fo(K) for all K is not geometrically locally determined. It is seen by Part (1) of
Theorem 3.1 that this function A is geometrically locally determined on the set of all
finite 2-dimensional pseudomanifolds, and, using the ideas of the above remark, it can
be verified that A is geometrically locally determined on the set of all 2-dimensional
simplicial complexes.
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