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Abstract

It is known that for every nonorientable surface there are infinitely many
(large) snarks that can be polyhedrally embedded on that surface. We
take a dual approach to the embedding of snarks on the Klein bottle,
and investigate edge-colorings of 6-chromatic triangulations of the Klein
bottle. In the process, we discover the smallest snarks that can be poly-
hedrally embedded on the Klein bottle. Additionally, we show that every
triangulation containing certain 6-critical graphs on the Klein bottle must
have a Grünbaum coloring and thus cannot admit a dual embedded snark.

1 Introduction and Summary

We begin by recalling the definition of a snark:

Definition 1.1. A snark is a bridgeless, 3-regular graph G that has edge-chromatic
number χ′(G) = 4, has girth at least 5, and is cyclically 4-edge connected.

Snarks originally arose as potential counterexamples to the Four Color Conjecture
[7] and continue to be of interest in their own right for structural study as well as
because of their role in important conjectures. For example, the Berge-Fulkerson
conjecture [6] states that every 2-connected cubic graph has a double-edge covering
of six perfect matchings. This may be framed in terms of colorings, so that every
2-connected cubic graph has a proper 6-edge coloring in which every edge receives
two colors. More closely related to the current work is Grünbaum’s Conjecture [8],
which generalized the Four Color Conjecture to say that no cubic graph with edge-
chromatic number 4 could be embedded in a particular way (polyhedrally, defined
below) on any orientable surface. For more aspects of the significance of snarks, see
[4]. Our interest here is in the embedding properties of snarks.

An embedding of a graph G into a surface S (as in [14]) is formally an isomorphism
π : G → G′ ⊂ S, where the vertices of G′ are distinct points of S, and the edges
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of G′ are simple arcs in S between vertices of G′ such that the relative interiors of
any two edges are disjoint and the relative interior of any edge is disjoint from all
vertices. Here S is called the embedding surface. The faces of the embedding are the
components of S \G′.

We think of the embedded graph as including its faces, so that combinatorially
we have a vertex set, an edge set (of vertex pairs), and a face set (of facial cycle
lists). We will only consider cellular embeddings, in which every face is equivalent
to a topological disk. In practice, we visualize a cellular embedding by drawing the
graph G on a polygon representation of the embedding surface S. We abuse notation
by referring to the embedded graph together with its faces as π(G). A triangulation
T of a surface is an embedded graph π(G) such that every face is a triangle.

A graph embedding on a surface other than the sphere is polyhedral if G is 3-
connected and any simple noncontractible curve on the embedding surface intersects
at least three points of G. For a 3-regular graph, an embedding is polyhedral if no
face uses an edge twice and no two faces share more than one edge.

The dual of a 3-regular graphG relative to its embedding surface is a triangulation
T of that surface. This gives a correspondence between 3-edge colorings of G and
Grünbaum colorings of T , which are 3-colorings of the edges such that every facial
triangle is incident with three different colors. We will adopt both perspectives here.

The motivation for the present work was a theorem in [15] that shows the exis-
tence of a polyhedrally embedded snark for every nonorientable surface except the
Klein bottle; [15, Problem 5.3] asked whether there exists a snark with a polyhedral
embedding in the Klein bottle. The answer is ‘yes’; our presentation proceeds from
a different perspective than [13], where the authors exploit Kochol’s superposition
technique [10] to exhibit an infinite family of snarks polyhedrally embedded on the
Klein Bottle.

In [1], it was shown that any toroidal triangulation T with χ(T ) �= 5 has a
Grünbaum coloring. There, the cases of χ(T ) ≤ 4, χ(T ) = 7, and χ(T ) = 6 were
treated separately; the last was the most challenging. We will take a similar approach
of analyzing triangulations of the Klein bottle by chromatic number. This is possible
because the chromatic number for the Klein bottle is six [16], and because the 6-
critical graphs for the Klein bottle have been characterized [5, 9].

The bulk of the paper is contained in Section 3, where we analyze triangulations
containing the various 6-critical graphs for the Klein bottle. Some 6-chromatic trian-
gulations have Grünbaum colorings and others do not, depending on which 6-critical
graph(s) the triangulation contains. We find six small snarks that can be polyhe-
drally embedded on the Klein bottle, some of which have duals that contain more
than one of the 6-critical graphs. Among these are the smallest snarks that can be
polyhedrally embedded on the Klein bottle.

2 Triangulations T of the Klein bottle with χ(T ) < 6

Every graph G on the Klein bottle must have chromatic number χ(G) ≤ 6 by [16,
Theorem 4.12]. The focus of this paper is on the case of triangulations T with
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χ(T ) = 6, but we briefly address lower chromatic-number cases.
Consider first triangulations T of the Klein bottle with χ(T ) ≤ 4.

Lemma 2.1 ([1], Lemma 2.1). If T is a triangulation of any surface and χ(T ) ≤ 4,
then T has a Grünbaum coloring.

The proof uses a homomorphism from T to K4 to produce a Grünbaum coloring
of T .

Corollary 2.2. Any triangulation T of the Klein bottle with χ(T ) ≤ 4 has a Grün-
baum coloring.

The 5-chromatic graphs of the Klein bottle have not been classified (and by [12,
p. 502] no such classification could be finite), so we cannot fully address the case of
χ(T ) = 5. However, the case of even triangulations (those with all vertices of even
degree) of the Klein bottle with χ(T ) = 5 has been resolved:

Theorem 2.3 ([11]). Every even triangulation of the Klein bottle has a Grünbaum
coloring.

3 Triangulations T of the Klein bottle with χ(T ) = 6

Every triangulation T of the Klein bottle with χ(T ) = 6 contains a 6-critical graph.

Theorem 3.1 ([5, 9]). There are nine 6-critical graphs on the Klein bottle, namely
six special graphs L1–L6, K2 +H7, C3 + C5, and K6.

The nine 6-critical graphs of Theorem 3.1 are shown in Figure 1.
There are a range of embedding properties that a 6-critical graph G embedded

on the Klein bottle may have, and these divide embeddings into categories. In order
from no-snark to snark!, these are

Category (1): π(G) is a triangulation with a Grünbaum coloring. By Lemma 3.2, no
triangulation containing it can be dual to a 4-edge chromatic graph
(or, therefore, a snark).

Category (2): π(G) is a near -triangulation and every triangulation containing this
graph has a Grünbaum coloring.

Category (3): Some triangulations containing the near-triangulation π(G) have no
Grünbaum coloring, but none has a dual that is a snark (e.g. the dual
has low girth or low cyclic edge-connectivity).

Category (4): Some triangulations containing the near-triangulation π(G) have no
Grünbaum coloring, but none has a dual that is a polyhedrally em-
bedded snark.

Category (5): A triangulation containing the near-triangulation π(G) has a dual that
is a polyhedrally embedded snark.
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L1 L2 L3

L4 L5 L6

K2+H7 C3+C5 K6

Figure 1: The nine 6-critical graphs on the Klein bottle.

In Section 3.1 we show that L3, L4 are in Category (1) and C3+C5 is in Category
(2); in Section 3.2 we show that K2 + H7 is in Category (4); and, in Section 3.3
we show that L1, L2, L5, and L6 are in Category (5). Note that we do not have an
example of an embedding in Category (3). Our limited results on K6 are given in
Section 3.4.

3.1 Embeddings with, or extending to, triangulations with Grünbaum
colorings

We will use the following result frequently in this section.

Lemma 3.2 ([1], Lemma 2.3). Suppose H is a triangulation of a surface S that has
a Grünbaum coloring. If G is a triangulation of S that contains H as a subgraph,
i.e. G is a refinement of H, then G has a Grünbaum coloring.

Now we can proceed to this section’s main result.

Theorem 3.3. Every triangulation containing L3, L4, or C3 + C5 has a Grünbaum
coloring.
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We treat the cases L3 and L4 separately from C3+C5 because of their embeddings’
structural differences.

Proof of Theorem 3.3, the cases of L3 and L4. Each of L3 and L4 has a unique em-
bedding on the Klein bottle [9], and each embedding is a triangulation. By Lemma
3.2, it suffices to exhibit a Grünbaum coloring for each of these two embeddings;
they are given in Figure 2.
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Figure 2: Grünbaum colorings of L3 (left) and L4 (right) embedded on the Klein
bottle.

We summarize here the technique introduced in [1] for examining near-triangul-
ations. Suppose we have a near-triangulation N of the Klein bottle with a single
non-triangular face P . Triangulating P to produce T (P ) completes N to a triangu-
lation. We may construct a triangulation of the plane by drawing P in the plane
and triangulating both the interior (as T (P )) and the exterior. This resulting trian-
gulation has a Grünbaum coloring by the Four Color Theorem, and this induces an
edge-coloring on P .

If we enumerate all possible such induced edge-colorings of P , and check that each
can be extended to a Grünbaum coloring of the remainder of N , then we know that
any completion of N to a triangulation has a Grünbaum coloring as well. Together
with Lemma 3.2, this shows that any triangulation containing N has a Grünbaum
coloring.

Lemma 3.4 ([1]). Suppose a near-triangulation N of a surface has a single non-
triangular face P with four sides. Denote edge colors as s (solid), d (dash), and g
(grey). If the edge-colorings ssss, ssdd, and sdds of P each extend to a Grünbaum
coloring of the remainder of the embedding, then every triangulation containing N
has a Grünbaum coloring.

Proof. Draw P in the plane and triangulate the exterior as a 4-wheel (that is, add a
single vertex incident to edges leading to each vertex of P ). It is straightforward to see
that the only possible edge-colorings of P are ssss, ssdd, and sdds (up to global color
permutation). Thus, applying the Four Color Theorem and Tait’s Theorem ([18]) and
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dualizing, any triangulation T (P ) of P must have a Grünbaum coloring compatible
with one of the colorings ssss, ssdd, or sdds on P . Therefore, if each of the colorings
ssss, ssdd, or sdds on P extends to a Grünbaum coloring on the remainder of N ,
any augmentation of N by some T (P ) to a triangulation has a Grünbaum coloring.
Finally, it follows by Lemma 3.2 that any triangulation containing N has a Grünbaum
coloring.

We now apply Lemma 3.4.

Proof of Theorem 3.3, the case of C3 + C5. There are three embeddings of C3 + C5

on the Klein bottle, and each has all faces triangles except for one quadrilateral [9].
By Lemma 3.4, it suffices to show, for each embedding, that each of the edge-colorings
ssss, ssdd, and sdds of the quadrilateral face extends to a Grünbaum coloring of the
remainder of the embedding. Figures 3, 4, and 5 give the required near-Grünbaum
colorings for the three embeddings of C3 + C5 on the Klein bottle.
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Figure 3: Partial Grünbaum colorings of the embedding (C3 + C5)-a.

By Lemma 3.2, this shows that every triangulation containing C3 + C5 has a
Grünbaum coloring.
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Figure 4: Partial Grünbaum colorings of the embedding (C3 + C5)-b.
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Figure 5: Partial Grünbaum colorings of the embedding (C3 + C5)-c.
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3.2 The case of K2 +H7

As in Section 3.1, we will need an auxiliary result. Namely, if a triangulated quadri-
lateral has no diagonal edge, then it has a Grünbaum coloring with the exterior cycle
colored ssss or sdds.

Lemma 3.5. Let π(G) be a near-triangulation of the sphere with outer 4-cycle abce
such that a-c, b-e �∈ E(G). Then there exists a Grünbaum coloring of π(G) such that
the outer 4-cycle is colored ssss or sdds.

Proof, from [2]. Consider a triangulated quadrilateral with exterior vertices labeled
clockwise abce as at left in Figure 6. Identify the vertices b and e to obtain a planar

a b
be

e c

a

c

Figure 6: At left, the quadrilateral abce; at right, the degenerate quadrilateral re-
sulting from identifying vertices b and e.

triangulated degenerate quadrilateral, as at right in Figure 6, which has no loop and
can therefore be vertex-colored. Using the Four Color Theorem, assign vertex colors
from Z2 × Z2, and sum the colors incident to each edge to obtain a color for that
edge. Only three colors are used because (0, 0) could only arise from a non-proper
vertex coloring.

Use this same coloring on the original triangulated quadrilateral. It is a Grün-
baum coloring because each triangle has three distinct vertex colors, and thus three
distinct edge colors. However, edge a-b is the same color as edge a-e, and edge b-c is
the same color as edge c-e. Therefore the exterior of the quadrilateral has coloring
ssss or sdds.

Theorem 3.6. No snark polyhedrally embedded on the Klein bottle can have a dual
triangulation containing K2 +H7 as a subgraph.
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Proof. There are two embeddings ofK2+H7 on the Klein bottle [9]. Each embedding
is a near-triangulation with one quadrilateral face.
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Figure 7: Partial Grünbaum colorings of the embedding (K2 +H7)-a.

For the embedding (K2 +H7)-a, each of the edge-colorings ssss, ssdd, and sdds
of the quadrilateral face extends to a Grünbaum coloring of the remainder of the
embedding (see Figure 7), and so by Lemma 3.2, every triangulation containing
(K2 +H7)-a has a Grünbaum coloring.

Note (see Figure 8) that in the embedding (K2 + H7)-b, the quadrilateral face
uses vertices 2, 6, 3, and 4, and the edges 2-3 and 4-6 are present. Therefore if either
diagonal of the quadrilateral face is present in a triangulation containing (K2 +H7)-
b, there are multiple edges and the dual graph cannot be polyhedrally embedded.
If neither diagonal of the quadrilateral face is present in a triangulation containing
(K2 +H7)-b, Lemma 3.5 applies.

As we see in Figure 8, the edge colorings ssss and sdds of the quadrilateral face
extend to a Grünbaum coloring of the remainder of the embedding. Therefore no
triangulation containing (K2+H7)-b can be dual to a polyhedrally embedded snark,
and this completes the proof of the theorem.

However, there does exist a snark embedded on the Klein bottle (not polyhedrally)
whose dual contains K2 +H7 as a subgraph.

Example 3.7. There is an infinite family of snarks of order 18 + 8k that can be
embedded on the Klein bottle. Figure 9 shows (K2 + H7)-b with a second copy of
the edge 4-6 added and the graph dual to this embedding drawn. The dual graph
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Figure 8: Partial ssss Grünbaum coloring of the embedding (K2 +H7)-b. A circle
encloses a vertex around which a Kempe-change will convert the coloring to sdds.
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Figure 9: A Blanuša snark is shown embedded dual to (K2 +H7)-b (left) and drawn
in the plane (right).

is a Blanuša snark; because the associated triangulation has a multiple edge, the
embedding is not polyhedral. A dotted line indicates an orientable non-surface-
separating loop that intersects two snark edges. Therefore, by [3, Theorem 2], we
can use repeated dot product with the Petersen graph to construct an infinite family
of snarks that can be embedded on the Klein bottle. The dual of each snark in this
family contains a subdivision of K2 +H7.

3.3 Embeddings contained in triangulations dual to polyhedrally embed-
ded small snarks

Theorem 3.8. Each of the 6-critical graphs L1, L2, L5, L6 is a subgraph of at least
one simple triangulation that is dual to a snark.

We prove Theorem 3.8 by exhibiting the desired triangulations in Examples 3.9–
3.13. Labelings of the graphs in question used throughout this section are given in
Figure 10.

Note that because these triangulations have no multiple edges, each of the dual
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Figure 10: The labelings of L1, L2, L5, L6 used in this section.

snarks is polyhedrally embedded. Moreover, at 20 vertices, the snarks dual to tri-
angulated embeddings of L1, L2 (see Examples 3.9 and 3.10) are the smallest snarks
that can be polyhedrally embedded on the Klein bottle: neither of the Blanuša snarks
(18 vertices) nor the Petersen graph (10 vertices) embeds polyhedrally on the Klein
bottle. They are also new; Liu and Chen [13] exhibit a family of snarks that can
be polyhedrally embedded on the Klein Bottle with one 22-vertex example that is
included in Example 3.13 as well as members with 24+10k vertices and with 26+10k
vertices (all larger than those given here).

Example 3.9. The graph L1 has a single embedding in the Klein bottle [9], shown in
Figure 11 with non-triangular face(s) shaded. We add edges 1-7 and 5-7 to form L1+;

L1
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7

8
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10

Figure 11: The unique embedding of L1 on the Klein bottle with non-triangular
face(s) shaded.

these do not create multiple edges. Figure 12 shows the dual graph embedded with
L1 and drawn in the plane. A check in Mathematica shows that (L1+)∗ is isomorphic
to the 4th snark with 20 vertices according to Gordon Royle’s enumeration [17].
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Figure 12: Dual graphs L1+ and (L1+)∗ embedded on the Klein bottle (left) and
(L1+)∗ drawn in the plane (right).

Example 3.10. The graph L2 has a single embedding in the Klein bottle [9], shown
in Figure 13 with non-triangular face(s) shaded. We add edges 1-6 and 1-7 to form

L2
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9

Figure 13: The unique embedding of L2 on the Klein bottle with non-triangular
face(s) shaded.

L2+; these do not create multiple edges. Figure 14 shows the dual graph embedded
with L2 and drawn in the plane. A check in Mathematica shows that (L2+)∗ is
isomorphic to the 2nd snark with 20 vertices according to Gordon Royle’s enumeration
[17].

Fact 3.11. If we add to L1 any one of the edges {1-6, 2-6, 4-10, 5-10}, and add to
L2 any one of the edges {1-6, 2-6, 4-6, 5-7, 5-8, 5-9}, we obtain isomorphic graphs.
Denote such a graph L1,2. Because each of L1, L2 have a single embedding on the
Klein bottle, any embedding π(L1,2) of L1,2 on the Klein bottle is a refinement of
both π(L1), π(L2).



S.-M. BELCASTRO/AUSTRALAS. J. COMBIN. 65 (3) (2016), 232–250 244

L2

1
2

3

4

5

6
7

8 9
10

11 12

13

14
15 16 17

18 19
20

1
2

3

4

5

67

8

9

10

11

12

13

14

15

16
17

18 19

20

Figure 14: Dual graphs L2+ and (L2+)∗ embedded on the Klein bottle (left) and
(L2+)∗ drawn in the plane (right).

Adding edges 1-6 and 1-7, or edges 5-7 and 5-10, to L1, we obtain a triangulation
whose dual graph is isomorphic to the 2nd snark with 20 vertices according to Gordon
Royle’s enumeration [17].

Adding edges 1-7 and 5-7 (or edges 1-6 and 6-10 from Example 3.10) to L2, we
obtain a triangulation whose dual graph is also isomorphic to the 2nd snark with 20
vertices according to Gordon Royle’s enumeration [17].

By Fact 3.11 all four dual embeddings of this snark contain π(L1,2). Because
π(L1,2) has one non-triangular, quadrilateral face, there are exactly two 10-vertex
triangulations that contain it. These triangulations have non-isomorphic dual graphs.
Therefore all four embeddings of the 2nd snark with 20 vertices mentioned above are
isomorphic.

Example 3.12. The graph L5 has a single embedding in the Klein bottle [9], shown
in Figure 15 with non-triangular faces shaded. We add edges 2-9, 2-10, 5-7, and 5-11
to form L5+; these do not create multiple edges. Figure 16 shows the dual graph
embedded with L5 and drawn in the plane. A check in Mathematica shows that
(L5+)∗ is isomorphic to the 13th snark with 22 vertices according to the Combina-
torica enumeration.

If we instead add edges 2-9, 2-10, 5-7, and 6-7 (embedding A); or, add edges
2-9, 6-9, 5-7, and 5-11 (embedding B), we obtain a triangulation L5+

′ whose dual
graph is isomorphic to the 6th snark with 22 vertices according to the Combinatorica
enumeration. The first of these is shown in Figure 17. A manual check of rotation
systems shows that embeddings A and B are equivalent under the vertex map

A vertex label 1 2 3 4 5 6 7 8 9 10 11
B vertex label 6 5 3 4 2 1 9 10 11 7 8

.
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Figure 15: The unique embedding of L5 on the Klein bottle with non-triangular
face(s) shaded.

Example 3.13. The graph L6 has a single embedding in the Klein bottle [9], shown
in Figure 18 with non-triangular faces shaded. We add edges 2-10, 2-11, 5-7, and
5-11 to form L6+; these do not create multiple edges. Figure 19 shows the dual
graph embedded with L6 and drawn in the plane.

A check in Mathematica shows that (L6+)∗ is isomorphic to the 2nd snark with
22 vertices according to the Combinatorica enumeration.

If we instead add edges 2-10, 2-11, 5-7, and 6-7, we obtain a triangulation L6+
′

whose dual graph is isomorphic to the 9th snark with 22 vertices according to the
Combinatorica enumeration; the embedding is shown in Figure 20. This is the same
22-vertex snark as exhibited in [13].

Note: There exist many so-called trivial snarks (that is, cyclically 3-edge con-
nected 4-edge chromatic cubic graphs) that can be polyhedrally embedded on L5

and on L6.

Fact 3.14. If we add to L5 any one of the edges {1-10, 1-11}, and add to L6 any
one of the edges {6-7, 6-8, 6-9, 6-10}, we obtain isomorphic graphs. Denote such a
graph L5,6. Because each of L5, L6 have a single embedding on the Klein bottle, any
embedding π(L5,6) of L5,6 on the Klein bottle is a refinement of both π(L5), π(L6).

Adding edges 2-9, 2-10, 1-11, and 5-11 to L5; or, adding edges 1-10, 2-10, 5-7,
and 5-11 to L5, we obtain a triangulation whose dual graph is isomorphic to the 9th

snark with 22 vertices according to the Combinatorica enumeration.
Adding edges 2-10, 6-10, 5-7, and 5-11 to L6 (or adding edges 2-10, 2-11, 5-7, and

6-7 to L6 as in Example 3.13), we obtain a triangulation whose dual graph is isomor-
phic to the 9th snark with 22 vertices according to the Combinatorica enumeration.

By Fact 3.14, all four dual embeddings of this snark contain π(L5,6), which has
one quadrilateral face and one pentagonal face that share two nonadjacent vertices
v, w. Each dual embedding includes three additional edges; examination shows that
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Figure 16: Dual graphs L5+ and (L5+)∗ embedded on the Klein bottle (left) and
(L5+)∗ drawn in the plane (right).

none of these edges is incident to v or w. Thus, the triangulations of the two faces are
the same for each dual embedding. Therefore all four embeddings of the 9th snark
with 22 vertices described above are isomorphic.

Adding edges 1-10, 2-10, 5-7, and 6-7 to L5 (embedding C); or, adding edges 2-9,
6-9, 5-7, and 6-7 to L5 (embedding D); or, adding edges 2-9, 6-9, 1-11, and 5-11 to
L5 (embedding E), we obtain a triangulation whose dual graph is isomorphic to the
2nd snark with 22 vertices according to the Combinatorica enumeration.

Adding edges 2-10, 6-10, 5-7, and 6-7 to L6 (embedding F ), or adding add edges
2-10, 2-11, 5-7, and 5-11 to L6 as in Example 3.13 (embedding G), we obtain a trian-
gulation whose dual graph is isomorphic to the 2nd snark with 22 vertices according
to the Combinatorica enumeration.

By Fact 3.14, dual embeddings C, E, and F of this snark contain π(L5,6), which
has one quadrilateral face and one pentagonal face that share two nonadjacent ver-
tices v, w. Each dual embedding includes three additional edges; examination shows
that one edge (in the pentagonal face) is incident to v but not w, and the other two
edges are incident to neither v or w. Thus, the triangulations of the two faces are
the same for each dual embedding. Therefore dual embeddings C, E, and F of the
2nd snark with 22 vertices described above are isomorphic.

A manual check of rotation systems shows that embeddings C, D, and G are
equivalent under the vertex maps

C vertex label 1 2 3 4 5 6 7 8 9 10 11
D vertex label 6 5 3 4 2 1 9 10 11 7 8
G vertex label 1 7 9 8 10 11 2 4 3 5 6

.

(Note that the A-B map is the same as the C-D map.)
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Figure 17: Dual graphs L5+
′ and (L5+

′)∗ embedded on the Klein bottle (left) and
(L5+

′)∗ drawn in the plane (right).
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Figure 18: The unique embedding of L6 on the Klein bottle with non-triangular
face(s) shaded.

3.4 Commentary on K6

There are seven 2-cell embeddings of K6 on the Klein bottle [9], and one non-2-cell
embedding in which K6 sits in one of the two cross-caps of the Klein bottle. The
non-2-cell embedding is unique (by symmetry of K6).

There are several triangulations that contain the non-2-cell embedding ofK6 (and
the embedding of L1 or L2 or L5 or L6) and are dual to polyhedral embeddings of
4-edge chromatic, girth 5, cyclically 3-edge connected cubic graphs.

Analysis of the 2-cell embeddings of K6 is highly complex. Four have three four-
sided faces (in different configurations); two have a single six-sided face (one where
two edges are identified); one has one five-sided and one four-sided face. We have
verified that for two of the 2-cell embeddings, there exists at least one precoloring of
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Figure 19: Dual graphs L6+ and (L6+)∗ embedded on the Klein bottle (left) and
(L6+)∗ drawn in the plane (right).
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Figure 20: Dual graphs L6+
′ and (L6+

′)∗ embedded on the Klein bottle (left) and
(L6+

′)∗ drawn in the plane (right).

the non-triangular face edges that does not extend to a partial Grünbaum coloring
of the remainder of the embedding. (These precolorings correspond to compatible
colorings of common triangulations of the faces.) However, we have so far been
unable to produce a triangulation containing a 2-cell embedding of K6 that is dual
to a 4-edge-chromatic cubic graph.

4 Conclusion

In this paper, we have completely analyzed triangulations containing eight of the
nine 6-critical graphs for the Klein bottle. We have shown that every triangulation
containing any of three of the 6-critical graphs has a Grünbaum coloring, that no
triangulation containing a fourth of the 6-critical graphs can be dual to a polyhedrally
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embedded snark, and that each of the remaining 6-critical graphs is contained in at
least one triangulation dual to a polyhedrally embedded snark. Among these are the
smallest snarks that polyhedrally embed on the Klein bottle.
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