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Abstract

In 1988, Proctor presented a result on plane partitions which implied a
formula for the number of lozenge tilings of a hexagon with side-lengths
a, b, c, a, b, c after removing a “maximal staircase.” More recently, Ciucu
proved a weighted version of Proctor’s result. Here we present weighted
and unweighted formulas for a similar region which has an additional unit
triangle removed. We use Kuo’s graphical condensation method to prove
the results. By applying the factorization theorem of Ciucu, we obtain a
formula for the number of lozenge tilings of a hexagon with three holes
on consecutive edges.

1 Introduction

A region in the triangular lattice is any finite union of unit triangles and a lozenge is
any union of two unit triangles which share an edge. A lozenge tiling of a region R is
any covering of all unit triangles in R by non-overlapping lozenges. It is clear that a
region must have the same number of upward-pointing unit triangles as downward-
pointing ones to have any tilings at all, since a lozenge contains one unit triangle of
each type. We say that such a region is balanced. We can assign to any lozenge that
could be used in a tiling a weight, w, which is a positive real number. An unweighted
region has all weights equal to 1.

The weight of a lozenge tiling of R is the product of all the weights of the lozenges
used in the tiling. We denote by M(R) the tiling generating function of the region
R, which is the sum of the weights of all tilings of R. For an unweighted region, the
tiling generating function simply gives the number of tilings of the region.

MacMahon’s work in [10] proved that for a hexagonal region with side-lengths
a, b, c, a, b, c (in cyclic order), the number of lozenge tilings is given by the formula

H(a)H(b)H(c)H(a+ b+ c)

H(a+ b)H(a+ c)H(b+ c)
, (1.1)
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Figure 1.1: The region Pa,b,c (inside the bold contour) for a = 6, b = 9, and c = 4.

where we define the hyperfactorials H(n) for positive integers n by

H(n) := 0! 1! . . . (n− 1)! .

The simplicity of (1.1) has inspired many to look for generalizations or similar
results. A result of Proctor on plane partitions implies a formula for the number of
lozenge tilings of a hexagon with a “maximal staircase” removed, denoted Pa,b,c (see
Figure 1.1).

Theorem 1.1 (Proctor [11]). For any non-negative integers a, b, and c with a ≤ b,
we have

M(Pa,b,c) =
a∏

i=1

[
b−a+1∏
j=1

c+ i+ j − 1

i+ j − 1

b−a+i∏
j=b−a+2

2c+ i+ j − 1

i+ j − 1

]
,

where empty products are taken to be 1. Further, M(Pb+1,b,c) = M(Pb,b,c).

The following result of Ciucu provides a formula for the tiling generating function
of the same region, but with each of the vertical lozenges on the west side given
weight 1

2
. We denote this region by P ′

a,b,c. In Figure 1.2 (and throughout this paper),

lozenges with ovals have weight 1
2
while those without are unweighted.

Theorem 1.2 (Ciucu [2]). For any non-negative integers a, b, and c with a ≤ b we
have

M(P ′
a,b,c) =

M(Pa,b,c)

2a
·

a∏
i=1

2c+ b− a + i

c+ b− a+ i
.

As in Theorem 1.1, M(P ′
b+1,b,c) = M(P ′

b,b,c).

The main results of this paper, Theorems 2.1 and 2.2, are similar to (but less
general than) work of Ciucu and Krattenthaler in [4].



R. ROHATGI /AUSTRALAS. J. COMBIN. 65 (3) (2016), 220–231 222

c

a

b

a

b

c

Figure 1.2: The region P ′
a,b,c has weighted lozenges along its west side.

2 Main Result

Consider a hexagon with side-lengths a+2, b, c+1, a+1, b+1, c, with both a maximal
staircase and a single upward-pointing unit triangle removed, as in Figure 2.1. The
removed unit triangle is the second from the bottom on the northeast side of the
original hexagon. We call such a region Sa,b,c. We denote the corresponding weighted
version, with all vertical lozenges on the west side with weight 1

2
, by S ′

a,b,c. We give
the formulas for their tiling generating functions below. For ease of notation, define
the Pochhammer symbol (α)k for k ∈ Z:

(α)k :=

⎧⎨
⎩

α(α + 1) . . . (α + k − 1) if k > 0,
1 if k = 0,
1/(α− 1)(α− 2) . . . (α + k) if k < 0.
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Figure 2.1: The regions Sa,b,c and S ′
a,b,c with a = 3, b = 7, and c = 3.
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Theorem 2.1. For any non-negative integers a, b, and c with a ≤ b, we have

M(Sa,b,c) =
(c+ a+ 2)b−a(2c+ b+ 3)a−1[(2b− a+ 2)c+ (b+ 1)(b+ 2)]

(a+ 2)b

×
a∏

i=1

(c+ i)b−a+1(2c+ b− a+ 1 + i)i−1

(i)b−a+i

.

If a = b+ 1, M(Sb+1,b,c) = M(Sb,b,c).

Theorem 2.2. For any non-negative integers a, b, and c with a ≤ b, we have

M(S ′
a,b,c) =

M(Sa,b,c)

2a
· 2c+ b+ 2

c+ b+ 1
·

a∏
i=1

2c+ b+ 1− i

c + b+ 1− i
.

If a = b+ 1, M(S ′
b+1,b,c) = M(S ′

b,b,c).

3 Preliminaries

The dual graph of a region R is the graph comprising one vertex for each unit triangle
in R. Two vertices share an edge in the dual graph if and only if their corresponding
unit triangles are edge-adjacent. For regions on the triangular lattice, we have seen
that each unit triangle is either pointing upwards or downwards - in particular,
there are two types of unit triangles. When creating the dual graph of R, we can
recover this information by coloring the vertices corresponding to upward-pointing
unit triangles one color, and those corresponding to downward-pointing unit triangles
another. The resulting graph is now bipartite, and lozenge tilings of a region R are
clearly in one-to-one correspondence with perfect matchings of the bipartite dual
graph. If a region has weighted lozenges, these correspond to weighted edges in
the dual graph, and the tiling generating functions of the region coincides with the
matching generating function of the graph. We will also use M(G) to denote the
matching generating function of the graph G.

Translating our regions to their dual graphs allows us to make use of the graphical
condensation method of Kuo from [8], which provides an effective way to count
perfect matchings (or matching generating functions) of bipartite graphs. Many
authors have used Kuo’s methods in proving results about enumeration of tilings
(see, for example, [3, 5, 9]). There are several versions; the one we will use is stated
below.

Theorem 3.1 (Kuo Condensation). Let G = (V1, V2, E) be a plane bipartite graph
with |V1|= |V2|+1, and suppose that vertices t, u, v, and w appear cyclically on a face
of G. If t, u, v ∈ V1 and w ∈ V2, then

M(G− u)M(G− {t, v, w}) = M(G− t)M(G− {u, v, w})
+M(G− v)M(G− {t, u, w}).
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In [6], Ciucu and Lai give conditions under which the matching generating func-
tion of a bipartite graph is the product of the matching generating function of two
induced subgraphs. We will need this result for some special cases in the proofs of
Theorems 2.1 and 2.2.

Lemma 3.2 (Graph Splitting Lemma). Let G = (V1, V2, E) be a bipartite graph.
Assume H is an induced subgraph of G that satisfies the following condition:

(i) (Separating condition) There are no edges of G connecting a vertex in V (H)∩V1

and a vertex in V (G−H).

(ii) (Balancing condition) |V (H) ∩ V1|= |V (H) ∩ V2|.
Then

M(G) = M(H)M(G−H).

4 Proofs of Theorems 2.1 and 2.2

We will prove Theorem 2.1 via induction on a using Theorem 3.1. We will apply
Theorem 3.1 to the dual graph of the region Sa,b,c without the unit triangle removed
from the northeast side, as in Figure 4.1. This region is unbalanced, as required by
the theorem, and the locations of the vertices t, u, v, and w are given.

u

v
w

t

Figure 4.1: The region to which we apply Kuo condensation.

Applying Kuo condensation to such a region gives us a recurrence involving six
new regions. They are shown in Figure 4.2. In each subfigure, the triangles corre-
sponding to removed vertices are labelled and any subsequently forced lozenges are
shown. As these forced lozenges must be used in any tiling of the given region, the
number of tilings of the region is unchanged by their removal.

We examine how removal of each of the labelled unit triangles t, u, v, and w affects
the region in Figure 4.1. If t is removed, only the north-most row is forced. This
causes the length of north side to increase by 1 unit to c + 1 while the northeast
side decreases by 1 unit. If u is removed, we get a region of S-type because there is
a defect of size 1 in the correct position on the northeast side. Removal of v forces
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Figure 4.2: The six regions obtained after applying Kuo condensation.
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one row of lozenges on the southeast side thereby increasing its length by 1 unit
and decreasing the length of the south side by 1 unit. Finally, removal of w forces
the south-most two rows, which increases the length of the south side by 1 unit and
decreases the length of the southeast side by 2 units. In G− {u, v, w}, removal of u
and v forces two rows on the southeast side so we get a region of P -type. It is now
apparent that

M(G− u) = M(Sa,b,c),

M(G− {t, v, w}) = M(Pa,b−1,c+1),

M(G− t) = M(Pa+1,b,c+1),

M(G− {u, v, w}) = M(Pa,b,c),

M(G− v) = M(Pa+1,b+1,c), and

M(G− {t, u, w}) = M(Sa−1,b−2,c+1).

Therefore, we know

M(Sa,b,c)M(Pa,b−1,c+1) = M(Pa+1,b,c+1)M(Pa,b,c)

+M(Pa+1,b+1,c)M(Sa−1,b−2,c+1), (4.1)

as long as a ≥ 1 and b ≥ 2. Theorem 1.1 explicitly gives the tiling generating
functions for the P -type regions, so Equation (4.1) is merely a recurrence between the
tiling generating functions of S-type regions. We will prove Theorem 2.1 by induction
on a. Therefore, it suffices to show that the claimed formula in Theorem 2.1 satisfies
Equation (4.1) and holds for a = 0. For completeness, we will also show that this
formula holds when b = 0 or b = 1.

If a = 0, the formula from Theorem 2.1 implies

M(S0,b,c) =
(c+ 2)b(2c+ b+ 3)−1[(2b+ 2)c+ (b+ 1)(b+ 2)]

(2)b

=

(
b+ c+ 1

b

)
.

On the other hand, if a = 0, then the north-most row is forced and the resulting
region is a hexagon with side-lengths c+1, 1, b, c+1, 1, b as in Figure 4.3. MacMahon’s
formula (1.1) verifies that the number of tilings of this hexagon is indeed

(
b+c+1

b

)
.

We now need to check that Equation (4.1) holds. First, we rewrite Theorem 1.1
as

M(Pa,b,c) =

a∏
i=1

(c+ i)b−a+1(2c+ b− a + 1 + i)i−1

(i)b−a+i
.

Using this formula for the P -type regions and the formula from Theorem 2.1 for the
S-type regions, Equation (4.1) becomes
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b

Figure 4.3: When a = 0, it is clear that the north-most row is forced.

c+1

c

Figure 4.4: The a = b = 1 case.

(c+ a + 2)b−a(2c+ b+ 3)a−1[(2b− a + 2)c+ (b+ 1)(b+ 2)]

(a+ 2)b

×
a∏

i=1

(c+ i)b−a+1(2c+ b− a + 1 + i)i−1

(i)b−a+i

×
a∏

i=1

(c+ 1 + i)b−a(2c+ b− a+ 2 + i)i−1

(i)b−a+i−1

=

a+1∏
i=1

(c+ 1 + i)b−a(2c+ b− a+ 2 + i)i−1

(i)b−a−1+i

×
a∏

i=1

(c+ i)b−a+1(2c+ b− a + 1 + i)i−1

(i)b−a+i

+
(c + a+ 2)b−a−1(2c+ b+ 3)a−2[(2b− a− 1)(c+ 1) + b(b− 1)]

(a + 1)b−2

×
a−1∏
i=1

(c+ 1 + i)b−a(2c+ b− a+ 2 + i)i−1

(i)b−a+i−1

×
a+1∏
i=1

(c+ i)b−a+1(2c+ b− a+ 1 + i)i−1

(i)b−a+i

. (4.2)

Through straightforward algebraic manipulation, one can verify that
Equation (4.2) is true.
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To complete the proof of Theorem 2.1, we need to show the result for b = 0, 1.
As 0 ≤ a ≤ b, the only remaining case is when a = b = 1. In this case, Theorem 2.1
says that M(S1,1,c) = (c+ 1)(c+ 2).

We get a region as in Figure 4.4 when a = b = 1. At this point we apply
Lemma 3.2, and we take H to be the dual subgraph to the top two rows of S1,1,c

(which makes G − H the dual graph to the bottom two rows). It is clear that
M(S1,1,c) is the product of the tiling generating functions of two hexagons - one with
side-lengths c, 1, 1, c, 1, 1 and the other c+ 1, 1, 1, c+ 1, 1, 1. Using (1.1), we see that
the tiling generating functions are c+ 1 and c+ 2 respectively.

The proof of Theorem 2.2 is similar to that of Theorem 2.1. Theorem 3.1 is applied
in exactly the same way, yielding a recurrence identical to that of Equation (4.1) but
with S and P replaced by S ′ and P ′, respectively. Verifying that the formula in
Theorem 2.2 satisfies the new recurrence is done similarly, as are the few special
cases.

5 Symmetric triply-dented hexagons

By symmetrizing our region along the “maximal staircase” we obtain a symmetric
triply-dented hexagon, STDHa,b,c as in Figure 5.1. Notice that the removed triangle
on the north edge is centrally located and that the removed unit triangles on the
northwest and northeast edges are at distance one away from the west and east
corners of the region, respectively.

2c+2

a+2

c b−a c

a+2

bb

Figure 5.1: STDH3,8,3.

We now present Ciucu’s factorization theorem from [1] which allows us to easily
compute the number of tilings of STDHa,b,c using Theorems 2.1 and 2.2.

A planar graph G is a weighted, symmetric graph if their exists an embedding
of G in the plane such that its vertex set, edge set, and edge weight function are
invariant under reflection across some straight line. We call this line the axis of
symmetry. Define the width of a symmetric graph G, written w(G), to be half the



R. ROHATGI /AUSTRALAS. J. COMBIN. 65 (3) (2016), 220–231 229

Figure 5.2: We obtain G by taking the dual graph of the region on the left. All the
white vertices on � are ai and all the black vertices are bi.

number of vertices on its axis of symmetry. The number of vertices on the axis of
symmetry must be even otherwise the total number of vertices in G would be odd
and G would have no perfect matchings.

Let G be a weighted, symmetric, bipartite graph with axis of symmetry �. Sup-
pose that the set of vertices on � separates G – that is, if these vertices (and incident
edges) are removed from G, then G would be disconnected. Let us label the vertices
on the symmetric axis a1, b1, a2, b2, . . . , aw(G), bw(G) in this order from top to bottom.
We color the vertices in the two vertex classes white and black, and without loss of
generality, let the topmost vertex on � be white. See Figure 5.2 for an example.

We will define two subgraphs of G, called G+ and G− as follows:

1. remove edges adjacent to and to the left side of all white ai and black bi,

2. remove edges adjacent to and to the right side of all black ai and white bi,

3. multiply the weights of all edges lying on � by 1
2
.

Given an edge e lying on �, the first two steps remove edges adjacent to and on
the same side of e. Because the vertices on � separate G, we now have two subgraphs
of G (with new weights on any edges along �). We call the one to the right of �, G−,
and the one to the left, G+. We see the results of cutting and weighting the previous
graph in Figure 5.3.

1/2

1/2

1/2

G+G−

Figure 5.3: The three edges on � have weight 1
2
.
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Figure 5.4: STDH3,8,3.

Theorem 5.1 (Ciucu’s Factorization Theorem). Let G be a weighted, symmetric,
bipartite graph separated by its axis of symmetry. Then

M(G) = 2w(G)M(G+)M(G−).

We have the following result in the vein of Eisenkölbl [7] and Lai [9].

Corollary 5.2. For non-negative integers a, b, and c with a ≤ b we have

M(STDHa,b,c) = 2a+1M(S ′
a,b,c)M(Sa,b−1,c).

Proof. When applying the factorization theorem we must cut the region into the two
subregions shown in Figure 5.4. After forcing, we have one region of type S and
another of type S ′. The result follows immediately.
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