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Abstract

For a simple graph G = (V,E) with the vertex set V and the edge set E ,
a vertex irregular total k -labeling f : V ∪E → {1, 2, . . . , k} is a labeling
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of vertices and edges of G in such a way that for any two different
vertices x and x′ , their weights wtf(x) = f(x) +

∑
xy∈E f(xy) and

wtf(x′) = f(x′)+
∑

x′y′∈E f(x′y′) are distinct. A smallest positive integer
k for which G admits a vertex irregular total k -labeling is defined as
a total vertex irregularity strength of graph G , denoted by tvs(G) . In
this paper, we determine the exact value of the total vertex irregularity
strength for generalized helm graphs and for prisms with outer pendant
edges.

1 Introduction

Let us consider a connected and undirected graph G = (V,E) without loops and
parallel edges. The set of vertices and edges of this graph are denoted by V (G) and
E(G) , respectively. Wallis [11] (see also [12]) defined a labeling of G as a mapping
that carries a set of graph elements into a set of integers, called labels. If the domain
of the mapping is either a vertex set, or an edge set, or a union of vertex and edge
sets, then the labeling is called a vertex labelingi , edge labelingi , or total labeling ,
respectively. In his survey, Gallian [6] shows that there are various kinds of labelings
on graphs, and one of them is a vertex irregular total labeling.

For a graph G , Bača et al. [5] define a labeling f : V (G) ∪ E(G) → {1, 2, . . . , k}
to be a vertex irregular total k -labeling if for every two different vertices x and
y the vertex-weights satisfy wtf(x) �= wtf(y) , where the vertex-weight wtf(x) =
f(x) +

∑
xz∈E f(xz) . The minimum k for which G has a vertex irregular total

k -labeling is defined as the total vertex irregularity strength of G and is denoted by
tvs(G) .

For a graph G with p vertices and q edges, Bača et al. [5] gave a lower and an
upper bound of the total vertex irregularity strength of G by the form⌈

p+δ
Δ+1

⌉ ≤ tvs(G) ≤ p + Δ − 2δ + 1, (1)

where δ and Δ are the minimum and the maximum degree of G , respectively.
They also determined the exact values of the total vertex irregularity strength for
cycles, stars, complete graphs and prisms.

Nurdin et al. [10] proved that for connected graph having ni vertices of degree i ,
i = δ, δ + 1, . . . ,Δ , the lower bound on the tvs(G) is given by the form

tvs(G) ≥ max
{⌈

δ+nδ
δ+1

⌉
, i
⌈
δ+nδ+nδ+1

δ+2

⌉
, . . . ,

⌈
δ+

∑Δ
i=δ ni

Δ+1

⌉}
. (2)

Furthermore, they posed a conjecture that for any connected graph its total vertex
irregularity strength is equal to the lower bound from (2).

The conjecture by Nurdin et al. has been verified for flowers, disjoint union of helm
graphs, generalized friendship graphs and web graphs in [1], for quadtrees and banana
trees in [9] and for convex polytope graphs in [2]. Anholcer et al. [3] proved that for
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any tree T with n1 pendant vertices, no vertex of degree 2 and no isolated vertex,
the tvs(T) = �(n1 + 1)/2	 . Further results can be found in [4] and [8].

Motivated by the results on the total vertex irregularity strength of helm graphs (see
[1]), we investigate the total vertex irregularity strength of generalized helm graphs
Hm

n , n,m ≥ 3 . For m = 1 and 2, the total vertex irregularity strength of generalized
helm graphs can be found in [7]. Also we investigate the total vertex irregularity
strength of prisms with outer pendant edges.

2 Generalized helm graphs

A generalized helm graph, Hm
n , is a graph obtained by inserting m vertices to

every pendant edge of helm Hn . A generalized helm graph Hm
n has (m + 2)n + 1

vertices and (m + 3)n edges. Let the vertex set of Hm
n be V (Hm

n ) = {vi,j : 1 ≤
i ≤ n, 1 ≤ j ≤ m + 1} ∪ {ui : 1 ≤ i ≤ n} ∪ {w} and the edge set of Hm

n be
E(Hm

n ) = {(vi,jvi,j+1) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪{(vi,m+1ui) : 1 ≤ i ≤ n}∪{(uiui+1) :
1 ≤ i ≤ n}∪{(wui) : 1 ≤ i ≤ n} , where the indices are taken modulo n . In order to
obtain the total vertex irregularity strength of Hm

n , firstly we prove the lower bound
of this parameter as follows.

Lemma 2.1. Let Hm
n , n,m ≥ 3 , be the generalized helm graph. Then

tvs(Hm
n ) ≥

⌈
(m+1)n+1

3

⌉
.

Proof. The graph Hm
n , n,m ≥ 3 , contains n pendant vertices, mn vertices of

degree 2 , n vertices of degree 4 and one vertex of degree n . For m ≥ 3 , according
to (2), we have

tvs(Hm
3 ) ≥ max

{
2,
⌈
3m+4

3

⌉
,
⌈
3m+5

4

⌉
,
⌈
3m+8

5

⌉}
=

⌈
3m+4

3

⌉
,

tvs(Hm
4 ) ≥ max

{⌈
5
2

⌉
,
⌈
4m+5

3

⌉
,
⌈
4m+10

5

⌉}
=

⌈
4m+5

3

⌉
and for n ≥ 5 we get

tvs(Hm
n ) ≥ max

{⌈
n+1
2

⌉
,
⌈
(m+1)n+1

3

⌉
,
⌈
(m+2)n+1

5

⌉
,
⌈
(m+2)n+2

n+1

⌉}
=

⌈
(m+1)n+1

3

⌉
.

We can see that tvs(Hm
n ) ≥ �((m + 1)n + 1) /3	 for every n,m ≥ 3 .

The next theorem presents the exact value of the total vertex irregularity strength
of the generalized helm graph Hm

n , n,m ≥ 3 .

Theorem 2.2. Let Hm
n , n,m ≥ 3 , be the generalized helm graph. Then

tvs(Hm
n ) =

⌈
(m+1)n+1

3

⌉
.
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Proof. Immediately from Lemma 2.1 it follows that tvs(Hm
n ) ≥ �((m + 1)n + 1) /3	.

Put k = �((m + 1)n + 1) /3	 . To show that k is an upper bound for the total
vertex irregularity strength of the generalized helm graph Hm

n i, we describe a total
k -labeling f : V (Hm

n )∪E(Hm
n ) → {1, 2, . . . , k} . Let f(w) = k and f(vi,m+1ui) = k

for 1 ≤ i ≤ n . Next we will distinguish the following three cases.

Case 1. m ≡ 0 (mod 3) , m ≥ 3 , n ≥ 3 .
Define a total labeling f of an element x , x ∈ V (Hm

n ) ∪ E(Hm
n ) in the following

way.

x f(x) n

vi,j 1, 1 ≤ i ≤ n; 1 ≤ j ≤ 2m
3 ≥ 3

1, 1 ≤ i ≤ ⌈
n+1
3

⌉
; j = 2m

3 + 1

i− ⌈
n−2
3

⌉
,

⌈
n+1
3

⌉
+ 1 ≤ i ≤ n; j = 2m

3 + 1⌈
2n
3

⌉
, 1 ≤ i ≤ ⌈

n+1
3

⌉
; j = 2m

3 + 2

i+
⌈
n−3
3

⌉
,

⌈
n+1
3

⌉
+ 1 ≤ i ≤ n; j = 2m

3 + 2 �≡ 2 (mod 3)

1 +
⌈
n
3

⌉
,

⌈
n+1
3

⌉
+ 1 ≤ i ≤ n; j = 2m

3 + 2 ≡ 2 (mod 3)⌈
n−3
3

⌉
+ i+ (j − 2m

3 − 2)n, 1 ≤ i ≤ n; 2m
3 + 3 ≤ j ≤ m+ 1 �≡ 2 (mod 3)⌈

n
3

⌉
+ i+ (j − 2m

3 − 2)n, 1 ≤ i ≤ n; 2m
3 + 3 ≤ j ≤ m+ 1 ≡ 2 (mod 3)

vi,jvi,j+1
j−1
2 n+ i, 1 ≤ i ≤ n; 1 ≤ j ≤ 2m

3 , j ≡ 1 (mod 2) ≥ 3
j
2n, 1 ≤ i ≤ n; 2 ≤ j ≤ 2m

3 , j ≡ 0 (mod 2)
j−1
2 n+ i, 1 ≤ i ≤ ⌈

n−2
3

⌉
; j = 2m

3 + 1

k,
⌈
n−2
3

⌉
+ 1 ≤ i ≤ n; j = 2m

3 + 1

k, 1 ≤ i ≤ n; 2m
3 + 2 ≤ j ≤ m

ui 1, 1 ≤ i ≤ 8 ≡ 0 (mod 3)

2, 9 ≤ i ≤ n, i ≡ 1 (mod 2)

1, 10 ≤ i ≤ n, i ≡ 0 (mod 2)

1, 1 ≤ i ≤ 6 ≡ 1 (mod 3)

2, 7 ≤ i ≤ n, i ≡ 1 (mod 2)

1, 8 ≤ i ≤ n, i ≡ 0 (mod 2)

1, 1 ≤ i ≤ 4 ≡ 2 (mod 3)

2, 5 ≤ i ≤ n, i ≡ 1 (mod 2)

1, 6 ≤ i ≤ n, i ≡ 0 (mod 2)
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x f(x) n

uiui+1 min
{
(m+ 1)n−3

3 +m− 2 + i+1
2 , k

}
, 1 ≤ i ≤ n, i ≡ 1 (mod 2) ≡ 0 (mod 3)

1 + i
2 , 2 ≤ i ≤ 8, i ≡ 0 (mod 2)

i− 3, 10 ≤ i ≤ n, i ≡ 0 (mod 2)

min
{
(m+ 1)n−4

3 + 4m−3
3 + i+1

2 , k
}
, 1 ≤ i ≤ n, i ≡ 1 (mod 2) ≡ 1 (mod 3)

1 + i
2 , 2 ≤ i ≤ 6, i ≡ 0 (mod 2)

i− 2, 8 ≤ i ≤ n, i ≡ 0 (mod 2)

min
{
(m+ 1)n−5

3 + 5m
3 + i+1

2 , k
}
, 1 ≤ i ≤ n, i ≡ 1 (mod 2) ≡ 2 (mod 3)

1 + i
2 , 2 ≤ i ≤ 4, i ≡ 0 (mod 2)

i− 1, 6 ≤ i ≤ n, i ≡ 0 (mod 2)

wui 3, i = 1 n = 3

2m, i = 1 n = 6

1, i = 1 ≡ 3 (mod 6); ≥ 9

(m− 2)
⌈
n
3

⌉
+ 5, i = 1 ≡ 0 (mod 6); ≥12

k, i �= 1 ≥ 3
4m
3 , i = 1 n = 4

1, i = 1 ≡ 1 (mod 6); ≥ 7

(m− 2)
⌈
n
3

⌉
+ 15−2m

3 , i = 1 ≡ 4 (mod 6); ≥10

1, i = 1 ≡ 5 (mod 6); ≥ 5

(m− 2)
⌈
n
3

⌉
+ 9−m

3 , i = 1 ≡ 2 (mod 6); ≥ 8

We can see that under the labeling f , all vertex and edge labels are at most k . The
vertex-weights of Hm

n are

wt(vi,j) = (j − 1)n + 1 + i, for 1 ≤ i ≤ n, 1 ≤ j ≤ m + 1,

wt(ui) = (m + 1)n + 1 + i, for 1 ≤ i ≤ n.

If n ≡ 0 (mod 3) , then

wt(w) =

⎧⎪⎪⎨
⎪⎪⎩
nk + 3, for n = 3,
nk + 2m, for n = 6,
nk + 1, for n ≥ 9 odd,
nk + (m− 2)n

3
+ 5, for n ≥ 12 even.

If n ≡ 1 (mod 3) , then

wt(w) =

⎧⎨
⎩
nk + 4m

3
, for n = 4,

nk + 1, for n ≥ 7 odd,
nk + (m− 2)

⌈
n
3

⌉
+ 15−2m

3
, for n ≥ 10 even.

If n ≡ 2 (mod 3) , then

wt(w) =

{
nk + 1, for n ≥ 5 odd,
nk + (m− 2)

⌈
n
3

⌉
+ 9−m

3
, for n ≥ 8 even.
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Clearly, the weights of the vertices vi,j and ui form a sequence of consecutive integers
from 2 up to n(m+2)+1 and the weight of the vertex w is greater than n(m+2)+1 .
It means that the vertex-weights are different for all pairs of distinct vertices. We
conclude that f is the vertex irregular total k -labeling.

Case 2. m ≡ 1 (mod 3) , m ≥ 4 , n ≥ 3 . Define a total labeling f of an element
x , x ∈ V (Hm

n ) ∪ E(Hm
n ) as follows.

x f(x) n

vi,j 1, 1 ≤ i ≤ n; 1 ≤ j ≤ 2m−2
3 ≥ 3

1, 1 ≤ i ≤ ⌈
2n+1

3

⌉
; j = 2m+1

3

i− ⌈
2n+1

3

⌉
+ 1,

⌈
2n+1
3

⌉
+ 1 ≤ i ≤ n; j = 2m+1

3

n− ⌈
2n+1
3

⌉
+ 1, 1 ≤ i ≤ ⌈

2n+1
3

⌉
; j = 2m+4

3

i− ⌈
2n+1

3

⌉
+

⌈
n
3

⌉
,

⌈
2n+1
3

⌉
+ 1 ≤ i ≤ n; j = 2m+4

3

2
⌈
n
3

⌉− 1 + i+ (j − 2m−2
3 − 3)n, 1 ≤ i ≤ n; 2m+7

3 ≤ j ≤ m+ 1

vi,jvi,j+1 min
{

j−1
2 n+ i, k

}
, 1 ≤ i ≤ n; 1 ≤ j ≤ 2

⌈
m
3

⌉− 1, ≥ 3

j ≡ 1 (mod 2)
jn
2 , 1 ≤ i ≤ n; 2 ≤ j ≤ 2

⌈
m
3

⌉− 2,

j ≡ 0 (mod 2)

k, 1 ≤ i ≤ n; 2
⌈
m
3

⌉ ≤ j ≤ m

ui 1, 1 ≤ i ≤ 8 ≡ 0 (mod 3)

2, 9 ≤ i ≤ n, i ≡ 1 (mod 2)

1, 10 ≤ i ≤ n, i ≡ 0 (mod 2)

1, 1 ≤ i ≤ 4 ≡ 1 (mod 3)

2, 5 ≤ i ≤ n, i ≡ 1 (mod 2)

1, 6 ≤ i ≤ n, i ≡ 0 (mod 2)

ui 1, 1 ≤ i ≤ 6 ≡ 2 (mod 3)

2, 7 ≤ i ≤ n, i ≡ 1 (mod 2)

1, 8 ≤ i ≤ n, i ≡ 0 (mod 2)

uiui+1 min
{
(m+ 1)n−3

3 +m−2+ i+1
2 , k

}
, 1 ≤ i ≤ n, i ≡ 1 (mod 2) ≡ 0 (mod 3)

1 + i
2 , 2 ≤ i ≤ 8, i ≡ 0 (mod 2)

i− 3, 10 ≤ i ≤ n, i ≡ 0 (mod 2)

min
{
(m+ 1)n−4

3 + 4m−1
3 + i+1

2 , k
}
, 1 ≤ i ≤ n, i ≡ 1 (mod 2) ≡ 1 (mod 3)

1 + i
2 , 2 ≤ i ≤ 4, i ≡ 0 (mod 2)

i− 1, 6 ≤ i ≤ n, i ≡ 0 (mod 2)

min
{
(m+ 1)n−5

3 + 5m−2
3 + i+1

2 , k
}
, 1 ≤ i ≤ n, i ≡ 1 (mod 2) ≡ 2 (mod 3)

1 + i
2 , 2 ≤ i ≤ 6, i ≡ 0 (mod 2)

i− 2, 8 ≤ i ≤ n, i ≡ 0 (mod 2)
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x f(x) n

wui 3, i = 1 n = 3

2m, i = 1 n = 6

1, i = 1 ≡ 3 (mod 6); ≥ 9

(m− 2)n3 + 5, i = 1 ≡ 0 (mod 6); ≥ 12

k, i �= 1 ≥ 3
4m−1

3 , i = 1 n = 4

1, i = 1 ≡ 1 (mod 6); ≥ 7

(m− 2)
⌈
n
3

⌉
+ 11−2m

3 , i = 1 ≡ 4 (mod 6); ≥ 10

1, i = 1 ≡ 5 (mod 6); ≥ 5

(m− 2)
⌈
n
3

⌉
+ 13−m

3 , i = 1 ≡ 2 (mod 6); ≥ 8

It is a routine matter to verify that under the labeling f all vertex and edge labels
are at most k and vertex-weights of Hm

n are

wt(vi,j) = (j − 1)n + 1 + i, for 1 ≤ i ≤ n, 1 ≤ j ≤ m + 1,

wt(ui) = (m + 1)n + 1 + i, for 1 ≤ i ≤ n.

If n ≡ 0 (mod 3) , then

wt(w) =

⎧⎪⎪⎨
⎪⎪⎩
nk + 3, for n = 3,
nk + 2m, for n = 6,
nk + 1, for n ≥ 9 odd,
nk + (m− 2)n

3
+ 5, for n ≥ 12 even.

If n ≡ 1 (mod 3) , then

wt(w) =

⎧⎨
⎩
nk + 4m−1

3
, for n = 4,

nk + 1, for n ≥ 7 odd,
nk + (m− 2)

⌈
n
3

⌉
+ 11−2m

3
, for n ≥ 10 even,

and if n ≡ 2 (mod 3) , then

wt(w) =

{
nk + 1, for n ≥ 5 odd,
nk + (m− 2)

⌈
n
3

⌉
+ 13−m

3
, for n ≥ 8 even.

Thus weights of the vertices vi,j and ui form a set of consecutive integers from 2
up to n(m + 2) + 1 and the weight of the vertex w is greater than n(m + 2) + 1 .
Therefore, the vertex-weights are pairwise distinct and f is the vertex irregular total
k -labeling.

Case 3. m ≡ 2 (mod 3) , m ≥ 5 , n ≥ 3 . Define a total labeling f of an element
x , x ∈ V (Hm

n ) ∪ E(Hm
n ) in the following way.
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x f(x) n

vi,j 1, 1 ≤ i ≤ n; 1 ≤ j ≤ 2
⌈
m
3

⌉ ≥ 3

i, 1 ≤ i ≤ n; j = 2
⌈
m
3

⌉
+ 1

(j − 2
⌈
m
3

⌉− 1)n− 1 + i, 1 ≤ i ≤ n; 2
⌈
m
3

⌉
+ 2 ≤ j ≤ m+1

ui 1, 1 ≤ i ≤ 8 ≥ 3

2, 9 ≤ i ≤ n, i ≡ 1 (mod 2)

1, 10 ≤ i ≤ n, i ≡ 0 (mod 2)

vi,jvi,j+1
j−1
2 n+ i, 1 ≤ i ≤ n; 1 ≤ j ≤ 2m−1

3 ≥ 3
jn
2 , 1 ≤ i ≤ n; 2 ≤ j ≤ 2

⌈
m
3

⌉
k, 1 ≤ i ≤ n; 2

⌈
m
3

⌉
+ 1 ≤ j ≤ m

uiui+1 min
{
(n− 3)

⌈
m
3

⌉
+m+ i−3

2 , k
}
, 1 ≤ i ≤ n, i ≡ 1 (mod 2) ≥ 3

1 + i
2 , 2 ≤ i ≤ 8, i ≡ 0 (mod 2)

i− 3, 10 ≤ i ≤ n, i ≡ 0 (mod 2)

wui 3, i = 1 n = 3

2m, i = 1 n = 6

1, i = 1 ≡ 3 (mod 6); ≥ 9

(m− 2)n3 + 5, i = 1 ≡ 0 (mod 6); ≥ 12

k, i �= 1 ≥ 3⌈
4m
3

⌉
, i = 1 n = 4

1, i = 1 ≡ 1 (mod 6); ≥ 7

(m− 2)
⌈
n
3

⌉
+ 19−2m

3 , i = 1 ≡ 4 (mod 6); ≥ 10

2, i = 1 n = 5

(m− 2)
⌈
n
3

⌉
+ 17−m

3 , i = 1 ≡ 2 (mod 6); ≥ 8

1, i = 1 ≡ 5 (mod 6); ≥ 11

Observe that under the labeling f all vertex and edge labels are at most k . It
means that f is the total k -labeling. For the vertex-weights of Hm

n we have:

wt(vi,j) = (j − 1)n + 1 + i, for 1 ≤ i ≤ n, 1 ≤ j ≤ m + 1,

wt(ui) = (m + 1)n + 1 + i, for 1 ≤ i ≤ n.

If n ≡ 0 (mod 3) , then

wt(w) =

⎧⎪⎪⎨
⎪⎪⎩
nk + 3, for n = 3,
nk + 2m, for n = 6,
nk + 1, for n ≥ 9 odd,
nk + (m− 2)

⌈
n
3

⌉
+ 5, for n ≥ 12 even.

If n ≡ 1 (mod 3) , then

wt(w) =

⎧⎨
⎩
nk +

⌈
4m
3

⌉
, for n = 4,

nk + 1, for n ≥ 7 odd,
nk + (m− 2)

⌈
n
3

⌉
+ 19−2m

3
, for n ≥ 10 even,

and if n ≡ 2 (mod 3) , then

wt(w) =

⎧⎨
⎩
nk + 2, for n = 5,
nk + (m− 2)

⌈
n
3

⌉
+ 17−m

3
, for n ≥ 8 even,

nk + 1, for n ≥ 11 odd.
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One can see that the vertex-weights of vertices vi,j and ui attain consecutive integers
from 2 up to n(m+ 2) + 1 and the vertex-weight of w is greater than n(m+ 2) + 1 .
Therefore, the vertex-weights are different for all vertices. Thus the labeling f is the
required vertex irregular total k -labeling. In fact, for every of previous three cases

tvs(Hm
n ) ≤

⌈
(m+1)n+1

3

⌉
. (3)

Combining (3) with the lower bound given in Lemma 2.1, we conclude that tvs(Hm
n )

= �((m + 1)n + 1)/3	 .

3 A prisms with outer pendant edges

In this part, we study the total vertex irregularity strength for a prism with outer
pendant edges. It is a graph derived from a prism Dn , n ≥ 3 , by hanging a leaf
from every vertex on the outer-cycle and denoted by Pn . Let V (Pn) = {vi,j : 1 ≤
i ≤ n, j = 1, 2, 3} be the vertex set and E(Pn) = {vi,jvi+1,j : 1 ≤ i ≤ n, j =
2, 3} ∪ {vi,1vi,2, vi,2vi,3 : 1 ≤ i ≤ n} be the edge set of Pn , where indices are taken
modulo n . Thus, Pn has 4n edges, n vertices of degree 1 , n vertices of degree 3
and n vertices of degree 4 .

The next two lemmas determine the upper bound for the total vertex irregularity
strength of Pn .

Lemma 3.1. Let Pn , n = 4, 5, 7, 10 , be the prism with outer pendant edges. Then

tvs(Pn) ≤ ⌈
3n+1
5

⌉
.

Proof. Let k = �(3n + 1)/5	 . To prove the upper bound of tvs(Pn) , it is sufficient
to show the existence of a vertex irregular total k -labeling. Define the total labeling
f of an element x , x ∈ V (Pn) ∪ E(Pn) as in the following table.

It is not difficult to see that under the total labeling f all vertex and edge labels are
at most k and that the vertex-weights of Pn are as follows:

wtf(vi,1) = i + 1, for 1 ≤ i ≤ n,

wtf(vi,2) = 2n + i + 1, for 1 ≤ i ≤ n,

wtf(vi,3) = n + i + 1, for 1 ≤ i ≤ n.

Since the vertex-weights form a set of consecutive integers from 2 up to 3n+1 then
the weights of all vertices are pairwise distinct. It proves that tvs(Pn) ≤ k .
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x f(x) n

vi,1 1, 1 ≤ i ≤ k 4, 5, 7, 10

i− k + 1, k + 1 ≤ i ≤ n

vi,2 1, 1 ≤ i ≤ k + 1 4, 5, 7, 10

i− k, k + 2 ≤ i ≤ n

vi,3 2, i = 1 4, 5

k, 2 ≤ i ≤ n⌈
n
7

⌉
, i = 1 7, 10⌈

n
7

⌉
+ i+ 1, 2 ≤ i ≤ n− k

k, n− k + 1 ≤ i ≤ n

vi,1vi,2 min{i, k}, 1 ≤ i ≤ n 4, 5, 7, 10

vi,2vi+1,2 k, 1 ≤ i ≤ n

vi,2vi,3 k − 1, 1 ≤ i ≤ k 4, 7, 10

k k + 1,≤ i ≤ n

k − 2, 1 ≤ i ≤ k 5

k − 1, k + 1 ≤ i ≤ n

vi,3vi+1,3 1, i = 1, 2, 4 4

2, i = 3

1, 1 ≤ i ≤ ⌈
n
3

⌉
5, 7⌈

i−�n3 	+3

3

⌉
,
⌈
n
3

⌉
+ 1 ≤ i ≤ n

1, 1 ≤ i ≤ ⌈
n
3

⌉
10⌈

i−�n3 	+2

2

⌉
,
⌈
n
3

⌉
+ 1 ≤ i ≤ ⌈

n
3

⌉
+ 2⌈

i
2

⌉− 1,
⌈
n
3

⌉
+ 3 ≤ i ≤ n, i odd⌈

i
2

⌉− 2,
⌈
n
3

⌉
+ 3 ≤ i ≤ n, i even

Lemma 3.2. Let Pn , n �= 4, 5, 7, 10 , be the prism with outer pendant edges. Then

tvs(Pn) ≤ ⌈
3n+1
5

⌉
.

Proof. Let k = �(3n + 1)/5	 . Define the total labeling g of an element x , x ∈
V (Pn) ∪ E(Pn) as in the table overleaf.

It is a matter for routine checking to see that under the labeling g all vertex and
edge labels are at most k and the vertex-weights successively form three sets of
consecutive integers

{wtg(vi,1) = i + 1 : 1 ≤ i ≤ n} = {2, 3, . . . , n + 1},
{wtg(vi,3) = n + i + 1 : 1 ≤ i ≤ n} = {n + 2, n + 3, . . . , 2n + 1},
{wtg(vi,2) = 2n + i + 1 : 1 ≤ i ≤ n} = {2n + 2, 2n + 3, . . . , 3n + 1}.

So the labeling g has the required properties and the existence of an vertex irregular
total k -labeling for Pn is proved.
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x g(x) n

vi,1 1, 1 ≤ i ≤ k �= 4, 5, 7, 10

i− k + 1, k + 1 ≤ i ≤ n

vi,2 1, 1 ≤ i ≤ 2 3

2, i = 3

3
⌈
n−15
15

⌉
+ 2, i = 1 ≡ 0 (mod 3); ≥ 6

3
⌈
n−15
15

⌉
+ 1, 2 ≤ i ≤ k

i− k + 3
⌈
n−15
15

⌉
+ 1, k + 1 ≤ i ≤ n

3
⌈
n−10
15

⌉
+ 1, i = 1 ≡ 1(mod 3);≥ 13

3
⌈
n−10
15

⌉
, 2 ≤ i ≤ k

i− k + 3
⌈
n−5
15

⌉
, k + 1 ≤ i ≤ n

3
⌈
n−5
15

⌉
, i = 1 ≡ 2(mod 3);≥ 8

3
⌈
n−5
15

⌉− 1, 2 ≤ i ≤ k

i− k + 3
⌈
n−5
15

⌉− 1, k + 1 ≤ i ≤ n

vi,3 1, i = 1 3

2, 2 ≤ i ≤ 3

1, i = 1 ≡ 0 (mod 3);≥ 6

i+ n− k − 1, 2 ≤ i ≤ n− k − 3
⌈
n−15
15

⌉
k, n− k − 3

⌈
n−15
15

⌉
+ 1 ≤ i ≤ n

1, i = 1 ≡ 1(mod 3);≥ 13

i+ n− k − 1, 2 ≤ i ≤ n− k − 2
⌈
n−10
15

⌉− ⌈
n−25
15

⌉
k, n−k−2

⌈
n−10
15

⌉− ⌈
n−25
15

⌉
+1 ≤ i ≤ n

1, i = 1 ≡ 2(mod 3);≥ 8

i+ n− k − 1, 2 ≤ i ≤ n− k − 2
⌈
n−20
15

⌉− ⌈
n−5
15

⌉
k, n−k−2

⌈
n−20
15

⌉− ⌈
n−5
15

⌉
+ 1 ≤ i ≤ n

vi,1vi,2 min{i, k}, 1 ≤ i ≤ n �= 4, 5, 7, 10

vi,2vi+1,2 k, 1 ≤ i ≤ n

vi,2vi,3 2, 1 ≤ i ≤ 3 3

k − 1, i = 1 �= 3, 4, 5, 7, 10

k, 2 ≤ i ≤ n

vi,3vi+1,3 1, 1 ≤ i ≤ 3 3

1, 1 ≤ i ≤ n− k − 2
⌈
n−15
15

⌉− ⌈
n−30
15

⌉ ≡ 0 (mod 3);

≥ 6
⌈

i−n+k+2
⌈
n−15
15

⌉
+
⌈
n−30
15

⌉
+2

2

⌉
, n−k−2

⌈
n−15
15

⌉− ⌈
n−30
15

⌉
+ 1 ≤ i ≤ n

1, 1 ≤ i ≤ n− k − 2
⌈
n−10
15

⌉− ⌈
n−40
15

⌉ ≡ 1 (mod 3);

≥ 13
⌈

i−n+k+2
⌈
n−10
15

⌉
+
⌈
n−40
15

⌉
+2

2

⌉
, n−k−2

⌈
n−10
15

⌉− ⌈
n−40
15

⌉
+ 1 ≤ i ≤ n

1, 1 ≤ i ≤ n− k − 3
⌈
n−20
15

⌉ ≡ 2 (mod 3);

≥ 8
⌈

i−n+k+3
⌈
n−20
15

⌉
+2

2

⌉
, n− k − 3

⌈
n−20
15

⌉
+ 1 ≤ i ≤ n

The next theorem proves the exact value of the total vertex irregularity strength
for Pn .
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Theorem 3.3. Let Pn , n ≥ 3 be the prism with outer pendant edges. Then

tvs(Pn) =
⌈
3n+1
5

⌉
.

Proof. According to (1) and (2), for the graph of Pn with order 3n , having minimum
degree 1 and maximum degree 4 we have that tvs(Pn) ≥ �(3n + 1)/5	 , n ≥
3 . Combining with the upper bound from Lemmas 3.1 and 3.2 we conclude that
tvs(Pn) = �(3n + 1)/5	 , n ≥ 3 .
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[12] A.M. Marr and W.D. Wallis, Magic graphs, Birkhäuser/Springer, New York,
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