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Abstract

The Hamilton-Waterloo Problem (HWP) in the case of Cm-factors and
Cn-factors asks whether Kv, where v is odd (or Kv − F , where F is a
1-factor and v is even), can be decomposed into r copies of a 2-factor
made either entirely of m-cycles and s copies of a 2-factor made entirely
of n-cycles. In this paper, we give some general constructions for such
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decompositions and apply them to the case where m = 3 and n = 3x.
We settle the problem for odd v, except for a finite number of x values.
When v is even, we make significant progress on the problem, although
open cases are left. In particular, the difficult case of v even and s = 1 is
left open for many situations.

1 Introduction

The Oberwolfach problem was first proposed by Ringel in 1967, and involves seating
v conference attendees at t round tables over v−1

2
nights such that each attendee

sits next to each other attendee exactly once. It is mathematically equivalent to
decomposing Kv into 2-factors where Kv is the complete graph on v vertices and
each 2-factor is isomorphic to a given 2-factor Q. In the original statement of the
problem, we have that v must be odd. It was later extended to the spouse-avoiding
Oberwolfach problem, allowing for even v by decomposing Kv − F , where F is a
1-factor.

The Hamilton-Waterloo Problem (HWP) is an extension of the Oberwolfach
Problem. Instead of seating v attendees at the same t tables each night, the Hamilton-
Waterloo problem asks how the v attendees can be seated if they split their nights
between two different venues. The attendees will all spend the same r nights in
Hamilton, which has round tables of size m1, m2, . . . , mk, and s nights in Waterloo,
which has round tables of size n1, n2, . . . , np where

∑k
i=1mi =

∑p
i=1 ni = v. The case

when m1 = m2 = · · · = mk = m and n1 = n2 = · · · = np = n is called the Hamilton-
Waterloo Problem with uniform cycle sizes, and this variant of the problem gets most
of the attention. Graph theoretically, this problem is equivalent to decomposing Kv

(or Kv − F when v is even) into 2-factors where each 2-factor consists entirely of
m-cycles (a Cm-factor) or entirely of n-cycles (a Cn-factor). Throughout this paper,
the word factor is assumed to be a 2-factor unless otherwise stated. We frequently
refer to a C3-factor as a triangle factor and a Hamilton cycle as a Hamilton factor.

A decomposition of a graph G is a partition of the edge set of G. A decomposition
of Kv into Cm-factors is called a Cm-factorization. We will refer to a solution to the
Hamilton-Waterloo Problem with r factors of m-cycles, s factors of n-cycles, and
v points as a resolvable (Cm, Cn)-decomposition of Kv into r Cm-factors and s Cn-
factors, and we will let (m,n)–HWP(v; r, s) denote such a decomposition. In order
for an (m,n)–HWP(v; r, s) to exist, it is clear that r + s = v−1

2
(or r + s = v−2

2
, for

even v), and both m and n must divide v. These conditions are summarized in the
following theorem.

Theorem 1.1. [1] The necessary conditions for the existence of an (m,n)–HWP(v;
r, s) are

1. If v is odd, r + s = v−1
2
,

2. If v is even, r + s = v−2
2
,

3. If r > 0, m|v,
4. If s > 0, n|v.
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Recall that the Oberwolfach Problem involves seating v conference attendees at
t round tables such that each attendee sits next to each other attendee exactly once.
The Oberwolfach Problem for constant cycle lengths was solved in [2, 3, 6, 11]. This
is equivalent to the Hamilton-Waterloo Problem with r = 0 or s = 0.

Theorem 1.2. [2, 3, 6, 11] There exists a resolvable m-cycle decomposition of Kv

(or Kv − F when v is even) if and only if v ≡ 0 (mod m), (v,m) �= (6, 3) and
(v,m) �= (12, 3).

An equipartite graph is a graph whose vertex set can be partitioned into u subsets
of size h such that no two vertices from the same subset are connected by an edge.
The complete equipartite graph with u subsets of size h is denoted K(h:u), and it
contains every edge between vertices of different subsets. Another key result solves
the Oberwolfach Problem for constant cycle lengths over complete equipartite graphs
(as opposed to Kv). That is to say, with finitely many exceptions, K(h:u) has a
resolvable Cm-factorization.

Theorem 1.3. [9] For m ≥ 3 and u ≥ 2, K(h:u) has a resolvable Cm-factorization
if and only if hu is divisible by m, h(u − 1) is even, m is even if u = 2, and
(h, u,m) �∈ {(2, 3, 3), (6, 3, 3), (2, 6, 3),
(6, 2, 6)}.

Much of the attention to the HWP has been dedicated to the case of triangle
factors and Hamilton factors. The results for this case have been summarized in the
following theorem.

Theorem 1.4. [4, 5, 7, 8] There exists a (3, v)–HWP(v; r, s) with

• 2 ≤ s ≤ v−1
2

and v ≡ 3 (mod 6) except possibly when:

v ≡ 15 (mod 18) and 2 ≤ s ≤ v − 3

6
or s =

v + 3

6
+ 1,

• s = 1 and v ≡ 3 (mod 6) except when v = 9 and possibly when:

v ∈ {93, 111, 123, 129, 141, 153, 159, 177, 183, 201, 207, 213, 237, 249}.

• 2 ≤ s ≤ (v − 2)/2 and v ≡ 0 (mod 6) except possibly when (v, s) ∈ {(36, 2),
(36, 4)} or when v ≡ 12 (mod 18) and 2 ≤ s ≤ (v/6)− 1; and

• s = 1 and v ≡ 0 (mod 6) except possibly when v = 18, v ≡ 12 (mod 18) or
v ≡ 6 (mod 36).

When considering the HWP for triangle factors and Hamilton factors, the focus
is on a specific case of the problem. This paper considers a more general family
of decompositions, namely, triangle factors and 3x-factors of Kv for any v that is
divisible by both 3 and 3x. In this instance of the problem, v is of the form 3xy.
When x = 1, the problem of finding a (3, 3x)–HWP(v; r, s) is simply that of finding
a resolvable C3-factorization of Kv, which is also known as a Kirkman triple system
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(KTS(v)). It was shown in 1971 by Ray-Chadhuri andWilson [11] and independently
by Lu (see [10]) that a KTS(v) exists if and only if v ≡ 3 (mod 6). When y = 1,
then the problem asks for a decomposition of Kv into triangle factors and Hamilton
cycles. This case is addressed in [4], [5], and [7], and the results were presented in
Theorem 1.4. Therefore, we focus on the cases where x ≥ 2 and y ≥ 2. It is a different
type of decomposition than what was considered in [4, 5, 7], because in our case, we
let both x and y vary. However, as expected, the results given in Theorem 1.4 can
be used in the decompositions we are interested in.

The Hamilton-Waterloo Problem was studied in 2002 by Adams, et al. [1]. The
paper provides solutions to all Hamilton-Waterloo decompositions on less than 18
vertices. Some notable results involving v = 6 and v = 12 will be relevant to this
paper.

Theorem 1.5. [1] There exists a (3, 6)–HWP(12; r, s) if and only if r+ s = 5 except
(r, s) = (5, 0). There exists a (3, 12)–HWP(12; r, s) if and only if r + s = 5 except
(r, s) = (5, 0). There exists a (3, 6)–HWP(6; r, s) if and only if r + s = 2 except
(r, s) = (2, 0).

The authors in [1] also developed a tripartite construction that could be used
when considering m = 3 and n = 3x. However, it leaves many open cases, because
it relies on the existence of a (3, v)–HWP(v; r, s) for all (r, s) and for all v ≡ 3
(mod 6). According to Theorem 1.4, there are some gaps in the existence of these.
The problem is that the construction given in [1] uses a uniform decomposition of
K(x:3). Therefore, we proceed in this paper by developing a new construction that is
a bit more general, and in particular, depends on the decomposition of K(x:3) into rp
Cm-factors and sp Cn-factors. The flexibility in this construction allows us to settle
all but 14 cases of the existence of a (3, 3x)–HWP(3xy; r, s) for all possible (r, s)
whenever both x ≥ 3 and y ≥ 3 are odd. We also introduce a modified construction
that is used in the cases where at least one of x or y is even. We give almost complete
results for these cases as well. In Section 3.1 we handle the cases when x ∈ {2, 4}
and collect all of the results into a summarizing theorem in Section 4.

2 Constructions

In this section, we develop constructions that will later be used to prove our main
results about the Hamilton-Waterloo Problem in the case of triangle factors and
C3x-factors.

Recall that K(x:3) is the complete multipartite graph with 3 parts of size x. Let
the parts be G0, G1 and G2 and the vertices be (a, b) with 0 ≤ a ≤ 2, 0 ≤ b ≤ x− 1.
Consider the edge {(a1, b1), (a2, b2)} which has one vertex from Ga1 and one vertex
from Ga2 . With computations being done in Zx, we say this edge has difference
b2 − b1. Let Tx(i) for 0 ≤ i ≤ x− 1 be the subgraph of K(x:3) obtained by taking all
edges of difference: 2i between vertices of G0 and vertices of G1, −i between G1 and
G2, and −i between G2 and G0.

Lemma 2.1. Tx(i) is a triangle factor of K(x:3) for any i.
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Proof: It is easy to see that the triangles are of the form {(0, k), (1, k+2i), (2, k+ i)}
for every 0 ≤ k ≤ x− 1. �

Let Hx(i, j) be the subgraph of K(x:3) obtained by taking all edges of difference:
2i between G0 and G1, −i between G1 and G2, and −j between G2 and G0.

Lemma 2.2. If gcd(x, i− j) = 1 then Hx(i, j) is a Hamiltonian cycle of K(x:3).

Proof: Since the edges are given by differences it is clear that all vertices have degree
2. We need to show that all the vertices are connected. We will first show that there
is a path between any 2 vertices of G0. Without loss of generality, we will show that
(0, 0) is connected to (0, k) for any k. Starting at (0, 0), we may traverse the path:
(0, 0), (1, 2i), (2, i), (0, i− j). Thus the next time that we reach G0 it is via the vertex
i− j. Since gcd(x, i− j) = 1, the order of i− j in the cyclic group Zx is x. Therefore,
any k modulo x can be written as k′(i − j), which means that we reach the vertex
(0, k) after visiting the part G0 k

′ times. Hence (0, 0) is connected to all the vertices
of G0 via a path.

Because we are taking every edge of a particular difference, it follows that every
vertex in G1 is connected to a vertex in G0, and the same is true for vertices in G2.
Hence all the vertices are connected, and the cycle is Hamiltonian, as we wanted to
prove. �

2.1 When x is Odd

We can think of a decomposition of a graph G as a partition of the edge set or as
a union of edge disjoint subgraphs. This means that a decomposition of G can be
given by E(G) = ∪E(Fi) or by G = ⊕Fi, where each Fi is an edge disjoint subgraph
of G. The next lemma shows that K(x:3) can be decomposed entirely into triangle
factors or Hamilton cycles when x is odd.

Lemma 2.3. Let x be an odd integer, and let φ be a bijection of the set {0, 1, . . . ,
x− 1} into itself. Then

K(x:3) =

x−1⊕
i=0

Tx(i) =

x−1⊕
i=0

Hx(i, φ(i))

Proof: To prove the first equality,

K(x:3) =

x−1⊕
i=0

Tx(i)

we need to show that between each pair of parts inK(x:3), each difference is covered by
the edges in one of the triangle factors exactly once. It is clear that edges of difference
i between G1 and G2 and between G2 and G0 are covered in Tx(i). Now consider
groups G0 and G1. Each factor Tx(i) uses the difference 2i. Because gcd(x, 2) = 1,
the order of 2 in the cyclic group Zx is x. So it follows that any i modulo x can
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be written as 2i′, and thus the difference i between G0 and G1 is covered in Tx(i
′).

Notice that we cover the edges of exactly one difference between any two parts per
subgraph, and we only have x subgraphs. This together with the fact that we are
covering all the differences imply that we cover each difference exactly once. Thus it
is equivalent to decomposing K(x:3).

The second equality
x−1⊕
i=0

Tx(i) =
x−1⊕
i=0

Hx(i, φ(i))

is true because we again cover each difference between any pair of parts exactly once
by the edges in the factors. �

Notice that the subgraph Hx(i, i) is the same as Tx(i). Therefore, decomposing
K(x:3) into s Hamilton cycles and x − s triangle factors is equivalent to finding a
bijection φ such that gcd(x, i − φ(i)) = 1 for s elements of {0, 1, . . . , x − 1} and
φ(i) = i for the rest.

Theorem 2.4. Let x be odd and let s ∈ {0, 2, 3, . . . , x}. Then:

• there exists a bijection φ on the set {0, 1, . . . , x − 1} with gcd(x, i − φ(i)) = 1
for s elements and r = x− s fixed points; and

• K(x:3) can be decomposed into s Hamiltonian cycles and r = x − s triangle
factors.

Proof: If s = 0 we just use the identity mapping. Let 2 ≤ s ≤ x, and let e be the
smallest integer such that s ≤ 2e + 1. We have

2e−1 + 1 < s ≤ min{2e + 1, x} = t.

Let r = t− s and define φ as follows:

φ(i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for i = 1
i+ 2 for i ≡ 0 (mod 2), 0 ≤ i ≤ s− 3
i− 2 for i ≡ 1 (mod 2), 3 ≤ i ≤ s− 1
s− 2 for i ≡ 0 (mod 2), i = s− 1
s− 1 for i ≡ 0 (mod 2), i = s− 2
i for s ≤ i ≤ x− 1

It is an easy exercise to check that φ is a bijection with r = x − s fixed points.
Furthermore, for any non-fixed point we have (i− φ(i)) ∈ {±1,±2} and, because x
is odd, gcd(x, i− φ(i)) = 1. Hence by Lemma 2.3,

K(x:3) =
x−1⊕
i=0

Hx(i, φ(i))

is a decomposition of K(x:3) into s Hamiltonian cycles and r = x− s triangle factors.
�

Unfortunately this construction only works when x is odd. For the cases when x
is even we can get a similar result, although only when x = 2x̄, with x̄ odd.
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2.2 When x is Even

In this subsection, we develop a construction similar to what is described in Sec-
tion 2.1. It relies on the following decomposition of K(4:3) into triangle factors.
Define Γ(i) for i ∈ {0, 1, 2, 3} as follows.

Γ(0) = Γ(1) =

Γ(2) = Γ(3) =

Note that the edges that join G0 to G2 are dashed since they will need to be distin-
guished from the other two edges in each C3. It is easy to see that

⊕3
i=0 Γ(i) is a

C3-factorization of K(4:3).

Lemma 2.5. There exist a decomposition of K(4:3) into s C6-factors and 4 − s C3-
factors for any s ∈ {0, 2, 3, 4}.
Proof: Consider the C3 factorization of K(4:3),

⊕3
i=0 Γ(i). Let Λ(α, β) be the graph

that has edges between G0 (the first column) and G1 (the second column) from Γ(α),
has edges between G1 and G2 from Γ(α), and has dashed edges from Γ(β). Notice
that if α �= β then Λ(α, β) is a union of cycles of size 6.

This way we can get 2 C6-factors by using Λ(0, 1) and Λ(1, 0) instead of Γ(0) and
Γ(1) . We can get 3 C6-factors by using edges Λ(0, 1), Λ(1, 2) and Λ(2, 0) instead of
Γ(0), Γ(1) and Γ(2). And finally we can get 4 C6-factors by using Λ(0, 1), Λ(1, 2),
Λ(2, 3) and Λ(3, 0). This construction gives the desired decompositions. �

For x̄ = 1, Lemma 2.5 gives a decomposition of K(4x̄:3) into triangle factors and
C6x̄-factors. We will extend this result to work on any K(4x̄:3) where x̄ > 1 and odd.
The construction works by giving weight x̄ to each vertex in K(4:3).

Replace each vertex in K(4:3) by a set of x̄ vertices. Thus for a = 0, 1, 2, we have
Ga = {(a, b, c) : b = 1, 2, 3, 4; c = 1, 2, . . . , x̄} is a set of 4x̄ vertices.

For α = 0, 1, 2, 3, we construct the triangle factor T2x̄(α, i) of K(4x̄:3) as fol-

lows. For each triangle {(0, b0), (1, b1), (2, b2)} in
⊕3

α=0 Γ(α), construct the com-
plete equipartite graph K(x̄:3) on the set of vertices {(0, b0, c), (1, b1, c), (2, b2, c) : c =
1, 2, . . . , x̄}.

To visualize this weighting construction with x̄ = 3 we show a picture of a triangle
from K(4:3). After giving weight 3 to each vertex, the triangle becomes K(3:3).
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Decompose each K(x̄:3) into triangle factors Tx̄(i) for i = 0, 1, . . . , x̄ − 1 by
Lemma 2.3. Thus we have a decomposition of K(4x̄:3) into triangle factors.

Define H2x̄(α, i)(β, j) as the graph obtained by taking T2x̄(α, i) and replacing the
edges between G0 and G2 with the same edges from T2x̄(β, j). Then we have

H2x̄(α, i)(β, j)⊕H2x̄(β, j)(α, i) = T2x̄(α, i)⊕ T2x̄(β, j).

If α �= β and gcd(i − j, x̄) = 1 then we claim that H2x̄(α, i)(β, j) is a C6x̄-factor.
Suppose (a, b, c) ∈ H2x̄(α, i)(β, j). Then (a, b) is a vertex of K(4:3). Because α �= β,
Λ(α, β) is a C6-factor on K(4:3), as shown in the proof of Lemma 2.3. Because
gcd(i− j, x) = 1, it follows from Lemma 2.2 that K(x̄:3) is a 3x̄-cycle. Thus (a, b, c) is
contained in a cycle of length lcm(6, 3x̄) = 6x̄. Hence H2x̄(α, i)(β, j) is a C6x̄-factor.

Let ψ be a bijection on {(α, i)|0 ≤ α ≤ 3, 0 ≤ i ≤ x̄−1}. The previous discussion
leads us to the following result.

Lemma 2.6. Let x̄ be odd. Let s and r be non-negative integers such that s+r = 4x̄.
If ψ satisfies the following:

• ψ(α, i) = (α, i) for r pairs (α, i); and

• ψ(α, i) = (β, j) with α �= β and gcd(i− j, x̄) = 1 for the s remaining pairs;

then K(4x̄:3) =
⊕

H2x̄(α, i)(ψ(α, i)) is a decomposition of K(4x̄:3) into r triangle fac-
tors and s C6x̄-factors.

Proof: Notice that H2x̄(α, i)(α, i) = T2x̄(α, i), so if ψ(α, i) = (α, i), H2x̄(α, i)(ψ(α, i))
is a triangle factor. When ψ(α, i) = (β, j) with α �= β and gcd(i − j, x̄) = 1, by
the discussion preceding the lemma, H2x̄(α, i)(ψ(α, i)) is a C6x̄-factor. Therefore
K(4x̄:3) =

⊕
H2x̄(α, i)(ψ(α, i)) is a decomposition of K(4x̄:3) into r triangle factors

and s C6x̄-factors. �

Thanks to Lemma 2.6 we only need to show that for any r ∈ {0, 1, . . . , 4x̄−2, 4x̄}
we have a bijection ψ satisfying the conditions of the lemma and with r fixed points.

Theorem 2.7. Let x̄ be odd and s ∈ {0, 2, 3, . . . , 4x̄− 1, 4x̄}, then:
• There exists a bijection ψ satisfying the conditions of Lemma 2.6 with r = 4x̄−s
fixed points.

• K(4x̄:3) can be decomposed into s C6x̄-factors and r triangle factors.
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Proof: If s = 0 we just use the identity mapping.
If 2 ≤ s ≤ 4x̄ we let s0, s1, s2, s3 ∈ {0, 2, 3 . . . , x̄ − 1} be such that s =

s0 + s1 + s2 + s3. We define ψ as follows, where m ∈ {0, 1, 2, 3} and i+m is taken
(mod 4):

ψ(i+m, i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(m, 0) for i = 1
(i+m+ 2, i+ 2) for i ≡ 0 (mod 2), 0 ≤ i ≤ sm − 3
(i+m− 2, i− 2) for i ≡ 1 (mod 2), 3 ≤ i ≤ sm − 1
(sm +m− 2, sm − 2) for i ≡ 0 (mod 2), i = sm − 1
(sm +m− 1, sm − 1) for i ≡ 0 (mod 2), i = sm − 2
(i+m, i) for sm ≤ i ≤ x̄− 1

It is an easy exercise to check that ψ is a bijection with 4x̄−(s0+s1+s2+s3) = r
fixed points. Notice that ψ(α, i) − (α, i) ∈ {(0, 0), (±1,±1), (±2,±2)}. This gives
that if ψ(α, i) = (β, j) is not a fixed point of ψ, α �= β and gcd(i− j, x̄) = 1.

Hence by Lemma 2.6

K(4x̄:3) =
⊕

H2x̄(α, i)(ψ(α, i))

is a decomposition of K(4x̄:3) into s C6x̄-factors and 4x̄− s triangle factors. �

2.3 A Weighting Construction

A group divisible design (k, λ)–GDD(hu) is a triple (V,G,B) where V is a finite set
of size v = hu, G is a partition of V into u groups each containing h elements, and
B is a collection of k element subsets of V called blocks which satisfy the following
properties.

• If B ∈ B, then |B| = k.

• If a pair of elements from V appear in the same group, then the pair cannot
be in any block.

• Two points that are not in the same group, called a transverse pair, appear in
exactly λ blocks.

• |G| > 1.

Here we use the term group to indicate an element of G. In this context, group
simply means a set of elements without any algebraic structure. A resolvable GDD
(RGDD) has the additional condition that the blocks can be partitioned into parallel
classes such that for each element of V there is exactly one block in each parallel class
containing it. If λ = 1, we refer to the RGDD as a k–RGDD(hu). In this paper, we
will only talk about RGDDs with λ = 1. Necessary and sufficient conditions for the
existence of 3–RGDD(hu)s have been established except in a finite number of cases.

Theorem 2.8. [12] A (3, λ)–RGDD(hu) exists if and only if u ≥ 3, λh(u−1) is even,
hu ≡ 0 (mod 3), and (λ, h, u) �∈ {(1, 2, 6), (1, 6, 3)}⋃{(2j+1, 2, 3), (4j+2, 1, 6) : j ≥
0}.
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In particular, we have that a 3–RGDD(3u) exists for all odd u ≥ 3 and a
3–RGDD(6u) exists for all u ≥ 4. Note that when a 3–RGDD(hu) exists, then B
can be partitioned in h(u−1)

2
parallel classes.

Lemma 2.9. Let m ≥ 3, n ≥ 3 and x be positive integers such that both m and n
divide 3x. Suppose the following conditions are satisfied:

• There exists a 3-RGDD(hu),

• there exists a decomposition of K(x:3) into rp Cm-factors and sp Cn-factors, for

p ∈ {1, 2, . . . , h(u−1)
2

},
• there exists an (m,n)–HWP(hx; rβ, sβ).

Let

rα =

h(u−1)
2∑

p=1

rp and sα =

h(u−1)
2∑

p=1

sp.

Then there exists a (m,n)–HWP(hux; rα + rβ, sα + sβ).

Proof: For a = 1, 2, . . . , u, let the groups of the 3-RGDD(hu) be denoted by Ga =
{(a, b) : b = 1, 2, . . . , h}. Let {P1,P2, . . . ,Ph(u−1)

2

} denote the parallel classes of the

3-RGDD(hu), and for a = 1, 2, . . . , u, define G∗
a = {(a, b, c) : b = 1, 2, . . . , h; c =

1, 2, . . . , x} to be a set of hx vertices. Consider each parallel class Pp with p ∈
{1, 2, . . . , h(u−1)

2
}. For each block {(a1, b1), (a2, b2), (a3, b3)} ∈ Pp, construct a de-

composition of K(x:3) into rp Cm-factors and sp Cn-factors on the set of vertices
{(a1, b1, c), (a2, b2, c), (a3, b3, c) : c = 1, 2, . . . , x}. Thus we have a decomposition of
K(hx:u) into rα Cm-factors and sα Cn-factors where

rα =

h(u−1)
2∑

p=1

rp and sα =

h(u−1)
2∑

p=1

sp.

Now each part of K(hx:u) can be decomposed into rβ Cm-factors and sβ Cn-factors.
Thus there exists an (m,n)–HWP(hux; r, s) where r = rα + rβ and s = sα + sβ. �

Lemma 2.10. Let m ≥ 3, n ≥ 3 and x be positive integers such that both m and n
divide 3x. Suppose the following conditions are satisfied:

• There exists a 3-RGDD(hu),

• there exists an (m,n)–HWP(3x; rβ, sβ),

• there exists a decomposition of K(x:h) into rγ Cm-factors and sγ Cn-factors,

• there exists a decomposition of K(x:3) into rp Cm-factors and sp Cn-factors, for

p ∈ {1, 2, . . . , h(u−1)
2

}.
Let

rα =

h(u−1)
2

−1∑
p=1

rp and sα =

h(u−1)
2

−1∑
p=1

sp.

Then there exists a (m,n)–HWP(hux; rα + rβ + rγ, sα + sβ + sγ).
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Proof: Let {P1,P2, . . . ,Ph(u−1)
2

} denote the parallel classes of the 3-RGDD(hu), and

let W = {1, 2, . . . , x}. Consider each parallel class Pp with p ∈ {1, 2, . . . , h(u−1)
2

−
1}. For each block {a1, a2, a3} ∈ Pp, construct a decomposition of K(x:3) into rp
Cm-factors and sp Cn-factors with parts {ai} × W , i = 1, 2, 3. For each block

{a1, a2, a3} in parallel class Pβ where β = h(u−1)
2

, construct an (m,n)–HWP(3x; rβ, sβ)
on {a1 ×W, a2 ×W, a3 ×W}. Take a decomposition of K(x:h) into rγ Cm-factors and
sγ Cn-factors simultaneously on each group of the 3-RGDD(hu). This makes an
(m,n)–HWP(hux; r, s) where r = rα + rβ + rγ and s = sα + sβ + sγ. �

3 Main Results

In this section, we use the constructions given in Section 2 to obtain results on the
existence of a (3, 3x)–HWP(3xy; r, s). We consider four different cases depending on
the parity of x and y.

Lemma 3.1. Suppose x is even. If there exists a decomposition of K3x − F into
rδ C3-factors and sδ Hamilton cycles, then there exists a decomposition of K6x − F ′

into rδ C3-factors and sδ +
3x
2
C3x-factors, where F is a 1-factor of K3x and F ′ is a

1-factor of K6x.

Proof: Let G1 and G2 be a partition of the 6x points into two subsets of size 3x.
Decompose KG1 − F1 (the complete graph on G1 minus a 1-factor F1) into rδ C3-
factors and sδ Hamilton cycles. In the same manner, decompose KG2 − F2 (the
complete graph on G2 minus a 1-factor) into rδ C3-factors and sδ Hamilton cycles.
Then there is a decomposition of (KG1 ∪KG2)− (F1 ∪ F2) into rδ C3-factors and sδ
C3x-factors. Notice that F ′ = F1 ∪ F2 is a 1-factor of K6x. By Theorem 1.3, there
exists a decomposition of K(3x:2) into

3x
2
C3x-factors. The union of these edges is K6x.

Therefore there is a decomposition of K6x − F ′ into rδ C3-factors and sδ +
3x
2

C3x-factors. �

Theorem 3.2. For each pair of odd integers x ≥ 3 and y ≥ 3, there exists a
(3, 3x)–HWP(3xy; r, s) if and only if r + s = v−1

2
except when s = 1 and x = 3, and

possibly when s = 1 and
x ∈ {31, 37, 41, 43, 47, 51, 53, 59, 61, 67, 69, 71, 79, 83}.
Proof: By Theorem 2.8 there exists a 3−RGDD(3y) for all odd y ≥ 3. There exists a
decomposition ofK(x:3) into rp C3-factors and sp C3x-factors for (rp, sp) ∈ {(x, 0), (x−
2, 2), (x − 3, 3), . . . , (0, x)} by Theorem 2.4. There exists a (3, 3x)–HWP(3x; rβ, sβ)
whenever (rβ, sβ) ∈ {(3x−1

2
, 0), (3x−3

2
, 1), (0, 3x−1

2
)} by Theorems 1.2 and 1.4 (ex-

cluding the exception and possible exceptions listed in the statements of these the-
orems). So apply Lemma 2.9 with m = 3 and n = 3x. We must now show that
for each s ∈ {0, 1, . . . , 3xy−1

2
}, there exists a (3, 3x)–HWP(3xy; r, s). It is easy to

see that if sα ∈ {0, 2, 3, . . . , 3xy−3x
2

}, then we can write sα =
∑(3y−3)/2

i=1 sp where

sp ∈ {0, 2, 3, . . . , x}. Thus if s ∈ {0, 2, 3, . . . , 3xy−3x
2

}, then we may write s = sα + sβ
by choosing sα = s and sβ = 0. If s = 1, then choose sα = 0 and sβ = 1. If
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s = 3xy−3x
2

+ 1, choose sα = 3xy−3x
2

and sβ = 1. Finally, let i = 2, 3, . . . , 3x−1
2

, and

consider s = 3xy−3x
2

+ i. We may choose sα = s− (3x−1
2

) and sβ = 3x−1
2

because

2 ≤ s− 3x− 1

2
≤ 3xy − 3x

2
.

�

Theorem 3.3. For each odd integer x ≥ 3 and each even integer y ≥ 8, there exists
a (3, 3x)–HWP(3xy; r, s) if and only if r + s = 3xy−1

2
except possibly when s = 1.

Proof: By Theorem 2.8, there exists a 3–RGDD(6y/2) for all even y ≥ 8. By

Theorem 2.4, for each p ∈ {1, 2, . . . , 6(y/2−1)
2

}, K(x:3) can be decomposed into rp C3-
factors and sp C3x-factors where (rp, sp) ∈ {(x, 0), (x − 2, 2), (x − 3, 3), . . . , (0, x)},
so that rα =

∑3(y/2−1)
p=1 rp and sα =

∑3(y/2−1)
p=1 sp. By Theorem 1.2, K6x can be

decomposed into rβ C3-factors, sβ C3x-factors, and a 1-factor where (rβ, sβ) ∈ {((6x−
2)/2, 0), (0, (6x− 2)/2)}. We must show that for each s ∈ {0, 2, 3, . . . , (3xy − 2)/2}
there exists a (3, 3x)–HWP(3xy; r, s). It is easy to see that such a decomposition
exists when s ∈ {0, 2, 3, . . . , (3xy − 6x)/2} by choosing sα = s and sβ = 0. For each
i ∈ {1, 2, . . . , (6x − 2)/2}, when s = (3xy − 6x)/2 + i, choose sα = s − (6x − 2)/2
and sβ = (6x− 2)/2. Notice that

2 ≤ sα =
3xy − 6x

2
+i−

(
6x− 2

2

)
≤ 3xy − 6x

2
+

(
6x− 2

2

)
−
(
6x− 2

2

)
≤ 3xy − 6x

2
.

Therefore by Lemma 2.9, the proposed (3, 3x)–HWP(3xy; r, s) exists for all specified
pairs (r, s). �

Note that when x is even we cannot apply Theorem 2.4 to decompose K(x:3). In-
stead we can apply Theorem 1.3 to get a decomposition ofK(x:3) into x C3-factors or a
decomposition of K(x:3) into x C3x-factors. In this way we can use Theorem 1.3 to de-
compose K(x:3) into rp C3-factors and sp C3x-factors, where (rp, sp) ∈ {(x, 0), (0, x)}.
Theorem 3.4. For each even integer x ≥ 8 and each odd integer y ≥ 3, there exists
a (3, 3x)–HWP(3xy; r, s) if and only if r + s = 3xy−2

2
except possibly when:

• (s, x) ∈ {(2, 12), (4, 12)},
• 1 ≤ s ≤ x

2
− 1 and x ≡ 4 (mod 6),

• s = 1 and x ≡ 2 (mod 12).

Proof: Suppose x ≥ 8 is even. By Theorem 2.8, there exists a 3-RGDD(3y) for all

odd integers y ≥ 3. By Theorem 1.3, for each p ∈ {1, 2, . . . , 3(y−1)
2

}, K(x:3) can be
decomposed into rp C3-factors and sp C3x-factors, where (rp, sp) ∈ {(x, 0), (0, x)}.
By Theorem 1.4, there exists a decomposition of K3x into rβ C3-factors and sβ
C3x-factors and a 1-factor for (rβ, sβ) ∈ {(3x−2

2
, 0), (3x−4

2
, 1), . . . , (0, 3x−2

2
)}, except

possibly when (sβ, x) ∈ {(2, 12), (4, 12)}; 1 ≤ sβ ≤ x
2
− 1 and x ≡ 4 (mod 6); or

sβ = 1 and x ≡ 2 (mod 12). We apply Lemma 2.9 to obtain a (3, 3x)–HWP(3xy; r, s)
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with r = rα + rβ and s = sα + sβ for all s ∈ {0, 1, . . . , 3xy−2
2

} (with the exceptions

listed in the statement of this theorem) as follows. We may write sα =
∑ 3(y−1)

2
p=1 sp

where sp ∈ {0, x}, so that sα ∈ {0, x, 2x, . . . , x · 3y−3
2

}. Write s = t · x + i, where

t ∈ {0, 1, . . . , 3y−3
2

} and i ∈ {0, 1, . . . , 3x−2
2

}. We may choose sα = s− i and sβ = i.
�

Note that the cases of x = 2, 4 are not considered in the previous theorem. They
will be handled in Section 3.1. We leave open the case of x = 6 and y odd.

Theorem 3.5. For each even integer x ≥ 8 and each even integer y ≥ 8, there exists
a (3, 3x)–HWP(3xy; r, s) if and only if r + s = 3xy−2

2
except possibly when:

• (s, x) ∈ {(2, 12), (4, 12)},
• 2 ≤ s ≤ x

2
− 1 and x ≡ 4 or 10 (mod 12),

• s = 1 and x ≡ 2, 4, or 10 (mod 12).

Proof: There exists a 3-RGDD(6y/2) for all even y ≥ 8 by Theorem 2.8. There
exists a decomposition of K(x:3) into rp C3-factors and sp C3x-factors for (rp, sp) ∈
{(0, x), (x, 0)} by Theorem 1.3. By the same result, we also get a decomposition
of K(x:6) into rγ C3-factors and sγ C3x-factors for (rγ, sγ) ∈ {(0, 5x

2
), (5x

2
, 0)}. By

Theorem 1.4, there exists a decomposition of K3x into rβ C3-factors, sβ C3x-factors,
and a 1-factor for (rβ, sβ) ∈ {3x−2

2
, 0), (3x−4

2
, 1), . . . , (0, 3x−2

2
)}, except possibly when

(sβ, x) ∈ {(2, 12), (4, 12)}; 1 ≤ sβ ≤ x
2
− 1 and x ≡ 4 (mod 6); or sβ = 1 and x ≡ 2

(mod 12). Write sα =
∑ 3y

2
−4

p=1 sp so sα ∈ {0, x, 2x, . . . , x(3y
2
− 4)}. By Lemma 2.10,

we obtain a (3, 12)–HWP(3xy; r, s) for all s ∈ {0, 1, . . . , 3xy−2
2

} as follows. If s ∈
{0, 1, . . . , 3xy

2
− 5x

2
− 1}, it is easy to see that we can let sγ = 0 and write s as

s = sα + sβ . If s = 3xy
2

− 5x
2
+ i, for i = 0, 1, . . . , 3x

2
− 1 choose sα = (3y

2
− 5)x,

sβ = i, and sγ = 5x
2
. If s = 3xy

2
− x+ i for i = 0, 1, . . . , x− 1, choose sα = (3y

2
− 4)x,

sβ = x
2
+ i and sγ = 5x

2
. �

We can fill in some of the gaps that we have left by using Theorem 2.7.

Theorem 3.6. For each odd integer x̄ ≥ 3 and each even integer y ≥ 6, there exists
a (3, 6x̄)–HWP(6x̄y; r, s) if and only if r + s = 6x̄y−2

2
except possibly when s = 1.

Proof: Assume that y ≡ 2 (mod 4) and y ≥ 6. For all such y, there exists a 3-
RGDD(3

y
2 ) by Theorem 2.8. There exists a (3, 6x̄)–HWP(12x̄; rβ, sβ) for all (rβ, sβ) ∈

{(0, 12x̄−2
2

), (12x̄−2
2

, 0)} by Theorem 1.2. By Theorem 2.7, we have that K(4x̄:3) can
be decomposed into rp C3-factors and sp C6x̄-factors for (rp, sp) ∈ {(0, 4x̄), (1, 4x̄ −
1), . . . , (4x̄ − 2, 2), (4x̄, 0)}. Apply Lemma 2.9 with m = 3, n = 6x̄, and x = 4x̄.

Let sα =
∑3( y

2
−1)/2

p=1 sp, then it is easy to see that sα ∈ {0, 2, 3, . . . , 3x̄y − 6x̄}. Write
s = sα + sβ where sα ∈ {0, 2, 3, . . . , 3x̄y − 6x̄} and sβ ∈ {0, 6x̄ − 1}. Then we can
write s as sα+sβ for every s ∈ {0, 2, 3, . . . , 6x̄y−2

2
} in this way. Thus we can construct

a (3, 6x̄)–HWP(6x̄y; r, s) for all s ∈ {0, 1, . . . , 6x̄y−2
2

}.
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Assume y ≡ 0 (mod 4), and y ≥ 12. Then there exists a 3-RGDD(6
y
4 ) by The-

orem 2.8. There exists a decomposition of K(4x̄:3) into rp C3-factors and sp C6x̄-
factors for sp ∈ {0, 2, 3, . . . , 4x̄} by Theorem 2.7. By Theorem 1.3, there exists a
(C3, C6x̄)-factorization of K(4x̄:6) for (rγ, sγ) ∈ {(0, 10x̄), (10x̄, 0)}. There exists a
(3, 6x̄)–HWP(12x̄; rβ, sβ) for sβ ∈ {0, 12x̄−2

2
} by Theorem 1.2. Now we can easily

write s = sα + sβ + sγ for s ∈ {0, 2, 3, . . . , 3x̄y − 1} and apply Lemma 2.10. �

By writing x = 2x̄, Theorem 3.6 covers the cases when s �= 1 and x = 6 and also
some of the cases when s �= 1 and x ≡ 4 (mod 6) (namely the ones where x ≡ 10
(mod 12)). When x ≥ 6 is even and y ≥ 8 is even, the cases that are not covered by
Theorems 3.5 and 3.6 are as follows:

• (s, x) ∈ {(2, 12), (4, 12)},
• 2 ≤ s ≤ x

2
− 1 and x ≡ 4 (mod 12),

• s = 1 and x ≡ 2, 4, 10 (mod 12).

Because there is no 3–RGDD(6u) for u ≤ 3, Lemmas 2.9 and 2.10 are not useful
when y ∈ {2, 4, 6}. However, we still have some results. When y = 2 and x is even we
may apply Lemma 3.1 to find a (3, 3x)–HWP(6x; r, s) for s = s1 +

3x
2
, r = r1, where

(s1, r1) is a solution of the Hamilton-Waterloo Problem with triangles and Hamilton
cycles for K3x.

When y = 4 and x ≥ 2 is even, consider K12x. We can partition the vertices
into four parts of size 3x. In the four copies of K3x we have some solutions for
the Hamilton-Waterloo Problem with triangles and Hamilton cycles. The remaining
edges give us K(3x:4), which can be decomposed into all C3x-factors or into all triangle
factors. In this way we can get either all triangle factors, or s = s1 + e1

9x
2
, r =

r1+e2
9x
2
, where (s1, r1) is a solution of the Hamilton-Waterloo problem with triangles

and Hamilton cycles for K3x and e1 + e2 = 1, e1, e2 ≥ 0. If y = 6 and x is even,
consider K18x. By following the same method, we can get either all triangle factors,
or s = s1+e1

15x
2
, r = r1+e2

15x
2
, where (s1, r1) is a solution of the Hamilton-Waterloo

Problem with triangles and Hamilton cycles for K3x and e1 + e2 = 1, e1, e2 ≥ 0.

3.1 When x is small

In this subsection, we consider the small values of x for which the general construc-
tions used in Section 3 cannot be readily applied. By applying the methods described
at the end of Section 3, it is easy to see that the following decompositions exist when
x = 2: a (3, 6)–HWP(24; r, s) for s ∈ {0, 1, 2, 7, 8, 9, 10, 11}, and a (3, 6)–HWP(48; r, s)
for s ∈ {0, 1, 2, 3, 4, 5, 12, 13, 14, 19, 20, 21, 22, 23}. The following three results gives
solutions to the Hamilton-Waterloo Problem, (3, 3x)–HWP(3xy; r, s), for all other
values of y when x = 2.

Theorem 3.7. There exists a (3, 6)–HWP(6y; r, s) for all y ≡ 2 (mod 4) if and only
if r + s = 6y−2

2
, except when y = 2 and s = 0.

Proof: If y = 2, then there exists a (3, 6)–HWP(12; r, s) for all possible r and s
except when s = 0 by Theorem 1.5. We now assume that y ≡ 2 (mod 4) and
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y ≥ 6. For all such y, there exists a 3-RGDD(3
y
2 ) by Theorem 2.8. There exists

a (3, 6)–HWP(12; rβ, sβ) for all (rβ, sβ) ∈ {(0, 5), (1, 4), (2, 3), (3, 2), (4, 1)} by Theo-
rem 1.5. By Lemma 2.5, we have that K(4:3) can be decomposed into rp C3-factors
and sp C6-factors for (rp, sp) ∈ {(0, 4), (1, 3), (2, 2), (4, 0)}. Apply Lemma 2.9 with

m = 3, n = 6, and x = 4. Let sα =
∑3( y

2
−1)/2

p=1 sp, then it is easy to see that
sα ∈ {0, 2, 3, . . . , 3y − 6}. Write s = sα + sβ where sα ∈ {0, 2, 3, . . . , 3y − 6} and
sβ ∈ {1, 2, 3, 4, 5}. Then we can write s as sα + sβ for every s ∈ {1, 2, . . . , 6y−2

2
} in

this way. If s = 0, then there exists a (3, 6)–HWP(6y; r, s) by Theorem 1.2. Thus we
can construct a (3, 6)–HWP(6y; r, s) for all s ∈ {0, 1, . . . , 6y−2

2
}. �

Theorem 3.8. There exists a (3, 6)–HWP(6y; r, s) for all y ≡ 0 (mod 4) if and only
if r + s = 6y−2

2
, except possibly when y = 4 or y = 8.

Proof: Assume y ≡ 0 (mod 4), and y ≥ 12. Then there exists a 3-RGDD(6
y
4 )

by Theorem 2.8. There exists a decomposition of K(4:3) into rp C3-factors and
sp C6-factors for sp ∈ {0, 2, 3, 4} by Lemma 2.5. By Theorem 1.3, there exists
a (C3, C6)-factorization of K(4:6) for (rγ, sγ) ∈ {(0, 10), (10, 0)}. There exists a
(3, 6)–HWP(12; rβ, sβ) for sβ ∈ {1, 2, 3, 4, 5} by Theorem 1.5. Now we can easily
write s = sα + sβ + sγ for s ∈ {0, 1, . . . , 3y − 1} and apply Lemma 2.10. �

Theorem 3.9. There exists a (3, 6)–HWP(6y; r, s) when y is odd and s ∈ {1, 2,
3(y−1)

2
+ 1, 3(y−1)

2
+ 2, . . . , 3y − 1}.

Proof: If y = 1, then exists a (3, 6)–HWP(6; r, s) for all possible r and s except for
(r, s) = (2, 0) by Theorem 1.5. Assume y ≥ 3 is odd, then there exists a 3-RGDD(3y)
by Theorem 2.8. There exists a (3, 6)–HWP(6; rβ, sβ) for (rβ, sβ) ∈ {(1, 1), (0, 2)} by
Theorem 1.5. It is easy to see that K(2:3) can be decomposed into a C3-factor and a
C6-factor or two C6-factors. Apply Lemma 2.9 with m = 3, n = 6 and x = 2. Let
sα =

∑3(y−1)/2
p=1 sp with sp ∈ {1, 2} and notice that sα ∈ {3(y−1)

2
, 3(y−1)

2
+ 1, . . . , 3(y −

1)}. Then we can write s as sα + sβ for every s ∈ {3(y−1)
2

+ 1, 3(y−1)
2

+ 2, . . . , 3y −
1}. Thus we obtain a (3, 6)–HWP(6y; r, s) for all such s. We can also obtain a
(3, 6)–HWP(6y; r, s) for s = 1 and s = 2 as follows. There exists a 3-RGDD(6y) by
Theorem 2.8; it has 3(y− 1) parallel classes. There exists a (3, 6)–HWP(6; rβ, sβ) for
sβ ∈ {1, 2}. Apply Lemma 2.9 with m = 3, n = 6 and x = 1, and write s = sα + sβ
with sα = 0 and sβ = 1 or sβ = 2. �

Recall from Theorem 1.5 that there exists a (3, 12)–HWP(12; rδ, sδ) if and only
if sδ ∈ {1, 2, 3, 4, 5}. For each possible decomposition of K12, let sβ = sδ + 6, and
apply Lemma 3.1 to obtain a (3, 12)–HWP(24; r, s) for all s ∈ {7, 8, 9, 10, 11}. If
s = 0, then simply apply Theorem 1.2. Similarly, apply Theorem 1.2 to obtain a
(3, 12)–HWP(48; r, s) for s = 0. Consider the equipartite graph K(12:4). It has a
C12-factorization and a C3-factorization by Theorem 1.3. On each part, construct
a (3, 12)–HWP(12; r, s) for s ∈ {1, 2, 3, 4, 5}. Thus we have a (3, 12)–HWP(48; r, s)
for s ∈ {0, 1, 2, 3, 4, 5, 19, 20, 21, 22, 23}. The next theorem settles the Hamilton-
Waterloo Problem, (3, 3x)–HWP(3xy; r, s) when x = 4 for the remaining values of y.

Theorem 3.10. For y = 3 and all y ≥ 5, there exists a (3, 12)–HWP(12y; r, s) if
and only if r + s = v−2

2
.
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Proof: Let y ≥ 6 be even. There exists a 3-RGDD(6y/2) by Theorem 2.8. There
exists a decomposition of K(4:3) into rp C3-factors and sp C12-factors for (rp, sp) ∈
{(0, 4), (4, 0)} by Lemma 1.3. By the same result, we also get a decomposition of
K(4:6) into rγ C3-factors and sγ C12-factors for (rγ, sγ) ∈ {(0, 10), (10, 0)}. Recall that
there exists a (3, 12)–HWP(12; rβ, sβ) for (rβ, sβ) ∈ {(0, 5), (1, 4), (2, 3), (3, 2), (4, 1)}
by Theorem 1.5. Write sα =

∑ 3y
2
−4

p=1 sp so sα ∈ {0, 4, 8, . . . , 6y−16}. By Lemma 2.10,
we obtain a (3, 12)–HWP(3xy; r, s) for all s ∈ {0, 1, . . . , 6y − 1} as follows. If s = 0,
apply Theorem 1.2. If s ∈ {1, 2, . . . , 6y− 11}, it is easy to see that we can let sγ = 0
and write s as s = sα+ sβ. If s = 6y− 10, choose sα = 6y− 24, sβ = 4, and sγ = 10.
If s = 6y − i for i = 9, 8, 7, 6, choose sα = 6y − 20, sβ = 10 − i and sγ = 10. If
s = 6y − i for i = 5, 4, 3, 2, 1, choose sα = 6y − 16, sβ = 6− i and sγ = 10.

If y ≥ 3 is odd, there exists a 3-RGDD(3y) by Lemma 2.8. There exists a decom-
position of K(4:3) into rp C3-factors and sp C12-factors for (rp, sp) ∈ {(0, 4), (4, 0)}
by Theorem 1.3. Write sα =

∑ 3(y−1)
2

p=1 sp, so sα ∈ {0, 4, 8, . . . , 6(y − 1)}. Recall the
existence of a (3, 12)–HWP(12; rβ, sβ) for sβ ∈ {1, 2, 3, 4, 5}. Then it is easy to see
that we can write s as sα + sβ for all s ∈ {0, 1, 2, . . . , 6y − 1}. Thus we may apply
Lemma 2.9 for the result.

�

4 Conclusions

The following theorem combines the results from Theorems 3.2, 3.3, 3.4, 3.5, 3.6, 3.7,
3.8, 3.9 and 3.10 (note that we did not include all of the small partially complete
results such as those at the end of Section 3):

Theorem 4.1. Let x ≥ 2, y ≥ 2, and r, s ≥ 0 such that r+ s = 
3xy−1
2

�. Then there
exists a (3, 3x)-HWP(3xy; r, s) except possibly when:

• s = 1, y ≥ 3, and x ∈ {3, 31, 37, 41, 43, 47, 51, 53, 59, 61, 67, 69, 71, 79, 83}.
• s = 1, x is odd and y is even.

• s = 1, x ≥ 6, x ≡ 2 (mod 12).

• s = 1, y ≥ 8 is even and x ≡ 10 (mod 12).

• s = 1, x ≥ 3 is odd and y is even.

• 1 ≤ s ≤ x
2
− 1, x ≥ 16, x ≡ 4 (mod 12), y is even.

• 1 ≤ s ≤ x
2
− 1, x ≥ 10, x ≡ 4 (mod 6), y is odd.

• (s, x) ∈ {(2, 12), (4, 12)}.
• s = 0, x = 2, y = 2.

• x = 2 and y ∈ {4, 8}.
• s ∈ {3, 4, . . . 3(y−1)

2
}, x = 2 and y ≥ 3 is odd.

• x �∈ {2, 4} and y ∈ {2, 4, 6}.
• x = 4 and y ∈ {2, 4}.
• x = 6 and y odd.
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