The signed Roman k-domatic number of digraphs

Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen
Germany
volkm@math2.rwth-aachen.de

Abstract

Let $k \geq 1$ be an integer. A signed Roman k-dominating function on a digraph D is a function $f: V(D) \longrightarrow\{-1,1,2\}$ such that $\sum_{x \in N^{-[v]}} f(x) \geq$ k for every $v \in V(D)$, where $N^{-}[v]$ consists of v and all in-neighbors of v, and every vertex $u \in V(D)$ for which $f(u)=-1$ has an in-neighbor w for which $f(w)=2$. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed Roman k-dominating functions on D with the property that $\sum_{i=1}^{d} f_{i}(v) \leq k$ for each $v \in V(D)$, is called a signed Roman k-dominating family (of functions) on D. The maximum number of functions in a signed Roman k-dominating family on D is the signed Roman k-domatic number of G, denoted by $d_{s R}^{k}(D)$. In this paper we initiate the study of signed Roman k-domatic numbers in digraphs, and we present sharp bounds for $d_{s R}^{k}(D)$. In particular, we derive some Nordhaus-Gaddum type inequalities. In addition, we determine the signed Roman k-domatic number of some digraphs.

1 Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi and Slater [3]. In this paper we continue the study of Roman dominating functions in graphs and digraphs. Specifically, let G be a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of G is denoted by $n=n(G)$. For every vertex $v \in V$, the open neighborhood $N_{G}(v)=N(v)$ is the set $\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is the set $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $d(v)=|N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. A graph G is regular or r-regular if $d(v)=r$ for each vertex v of G. The complement of a graph G is denoted by \bar{G}. We write K_{n} for the complete graph of order $n, K_{p, p}$ for the complete bipartite graph of order $2 p$ with equal size of partite sets, and C_{n} for the cycle of length n.

If $k \geq 1$ is an integer, then the signed Roman k-dominating function (SRkDF) on a graph G is defined in [4] as a function $f: V(G) \longrightarrow\{-1,1,2\}$ such that $\sum_{u \in N[v]} f(u) \geq k$ for each $v \in V(G)$, and every vertex $u \in V(G)$ for which $f(u)=-1$ is adjacent to at least one vertex w for which $f(w)=2$. The weight of an SRkDF f is the value $\omega(f)=\sum_{v \in V} f(v)$. The signed Roman k-domination number of a graph G, denoted by $\gamma_{s R}^{k}(G)$, equals the minimum weight of an SRkDF on G. The special case $k=1$ was introduced and investigated in [1]. For $\gamma_{s R}^{1}(G)$ we also write $\gamma_{s R}(G)$.

A concept dual in a certain sense to the domination number is the domatic number, introduced by Cockayne and Hedetniemi [2]. They have defined the domatic number $d(G)$ of a graph G by means of sets. A partition of $V(G)$, all of whose classes are dominating sets in G, is called a domatic partition. The maximum number of classes of a domatic partition of G is the domatic number $d(G)$ of G. But Rall has defined a variant of the domatic number of G, namely the fractional domatic number of G, using functions on $V(G)$. (This was mentioned by Slater and Trees in [9].) Analogous to the fractional domatic number we may define the signed Roman k-domatic number.

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed Roman k-dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(v) \leq k$ for each $v \in V(G)$, is called in [10] a signed Roman k-dominating family (of functions) on G. The maximum number of functions in a signed Roman k-dominating family (SRkD family) on G is the signed Roman k domatic number of G, denoted by $d_{s R}^{k}(G)$. If $k=1$, then we write $d_{s R}^{1}(G)=d_{s R}(G)$. This case was introduced and investigated in [6]. The signed Roman k-domatic number is well-defined and $d_{s R}^{k}(G) \geq 1$ for all graphs G with $\delta(G) \geq k-1$, since the set consisting of any SRkDF forms an SRkD family on G.

Now let D be a finite and simple digraph with vertex set $V(D)$ and arc set $A(D)$. The integers $n=n(D)=|V(D)|$ and $m=m(D)=|A(D)|$ are the order and size of the digraph D, respectively. We write $d_{D}^{+}(v)=d^{+}(v)$ for the out-degree of a vertex v and $d_{D}^{-}(v)=d^{-}(v)$ for its in-degree. The minimum and maximum in-degree are $\delta^{-}(D)=\delta^{-}$and $\Delta^{-}(D)=\Delta^{-}$and the minimum and maximum out-degree are $\delta^{+}(D)=\delta^{+}$and $\Delta^{+}(D)=\Delta^{+}$. The sets $N_{D}^{+}(v)=N^{+}(v)=\{x \mid(v, x) \in A(D)\}$ and $N_{D}^{-}(v)=N^{-}(v)=\{x \mid(x, v) \in A(D)\}$ are called the out-neighborhood and in-neighborhood of the vertex v. Likewise, $N_{D}^{+}[v]=N^{+}[v]=N^{+}(v) \cup\{v\}$ and $N_{D}^{-}[v]=N^{-}[v]=N^{-}(v) \cup\{v\}$. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph induced by X. For an $\operatorname{arc}(x, y) \in A(D)$, the vertex y is an out-neighbor of x and x is an in-neighbor of y, and we also say that x dominates y or y is dominated by x. A digraph D is out-regular or r-out-regular if $\delta^{+}(D)=\Delta^{+}(D)=r$. A digraph D is in-regular or r-in-regular if $\delta^{-}(D)=\Delta^{-}(D)=r$. A digraph D is regular or r-regular if $\delta^{-}(D)=\Delta^{-}(D)=\delta^{+}(D)=\Delta^{+}(D)=r$. The complement \bar{D} of a digraph D is the digraph with vertex set $V(D)$ such that for any two distinct vertices u, v the arc (u, v) belongs to \bar{D} if and only if (u, v) does not belong to D.

If $k \geq 1$ is an integer, then the signed Roman k-dominating function (SRkDF) on a digraph D is defined in [11] as a function $f: V(D) \longrightarrow\{-1,1,2\}$ such that $\sum_{u \in N^{-[v]}} f(u) \geq k$ for each $v \in V(D)$, and such that every vertex $u \in V(D)$ for
which $f(u)=-1$ has an in-neighbor w for which $f(w)=2$. The weight of an SRkDF f is the value $\omega(f)=\sum_{v \in V(D)} f(v)$. The signed Roman k-domination number of a digraph D, denoted by $\gamma_{s R}^{k}(D)$, equals the minimum weight of an SRkDF on D. A $\gamma_{s R}^{k}(D)$-function is an SRkDF on D with weight $\gamma_{s R}^{k}(D)$. If $k=1$, then we write $\gamma_{s R}^{1}(D)=\gamma_{s R}(D)$. This case was introduced and studied in [8].

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct SRkDF on a digraph D with the property that $\sum_{i=1}^{d} f_{i}(v) \leq k$ for each $v \in V(D)$, is called a signed Roman k-dominating family (of functions) on D. The maximum number of functions in a signed Roman k dominating family (SRkD family) on D is the signed Roman k-domatic number of D, denoted by $d_{s R}^{k}(D)$. If $k=1$, then we write $d_{s R}^{1}(G)=d_{s R}(G)$. This case was introduced and investigated in [7].

The signed Roman k-domination number exists when $\delta^{-} \geq \frac{k}{2}-1$. However, for investigations of the signed Roman k-dominating number and the signed Roman k-domatic number it is reasonable to claim that $\delta^{-}(D) \geq k-1$. Thus we assume throughout this paper that $\delta^{-}(D) \geq k-1$. The signed Roman k-domatic number is well-defined and $d_{s R}^{k}(D) \geq 1$ for all digraphs D, since the set consisting of the SRkDF with constant value 1 forms an SRkD family on D.

Our purpose in this paper is to initiate the study of the signed Roman k-domatic number in digraphs. We first derive basic properties and bounds for the signed Roman k-domatic number of a digraph. In particular, we obtain the NordhausGaddum type result

$$
d_{s R}^{k}(D)+d_{s R}^{k}(\bar{D}) \leq n+1,
$$

and we discuss the equality in this inequality. In addition, we determine the signed Roman k-domatic number of some classes of digraphs. Some of our results are extensions of known properties of the signed Roman k-domatic number of graphs, given in [10].

We make use of the following results in this paper.
Proposition A. ([8]) Let D be a digraph of order n. Then $\gamma_{s R}(D) \leq n$ with equality if and only if D is the disjoint union of isolated vertices and oriented triangles C_{3}.

Proposition B. ([11]) If D is a digraph of order n with minimum in-degree $\delta^{-}(D) \geq$ $k-1$, then $\gamma_{s R}^{k}(D) \leq n$.

Proposition C. ([1, 4]) If K_{n} is the complete graph of order $n \geq k \geq 1$, then $\gamma_{s R}^{k}\left(K_{n}\right)=k$, unless $k=1$ and $n=3$ in which case $\gamma_{s R}\left(K_{3}\right)=2$.

Proposition D. ([6, 10]) If K_{n} is the complete graph of order $n \geq k \geq 1$, then $d_{s R}^{k}\left(K_{n}\right)=n$, unless $k=1$ and $n=3$ in which case $d_{s R}\left(K_{3}\right)=1$ and unless $n=k=2$ in which case $d_{s R}^{2}\left(K_{2}\right)=1$.

Proposition E. ([11]) If D is a digraph of order n with $\delta^{-}(D) \geq k+1$, then $\gamma_{s R}^{k}(D) \leq n-1$.

Proposition F. ([11]) If D is an δ-out-regular digraph of order n with $\delta \geq k-1$, then

$$
\gamma_{s R}^{k}(D) \geq\left\lceil\frac{k n}{\delta+1}\right\rceil
$$

Proposition G. ([4]) If $k \geq 2$, then $\gamma_{s R}^{k}\left(K_{k, k}\right)=2 k$.
Proposition H. ([10]) If $k \geq 4$ is an even integer, then $d_{s R}^{k}\left(K_{k, k}\right)=k$.
The associated digraph G^{*} of a graph G is the digraph obtained from G when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since $N_{G^{*}}^{-}[v]=N_{G}[v]$ for each vertex $v \in V(G)=V\left(G^{*}\right)$, the following useful observation is valid.

Observation 1. If G^{*} is the associated digraph of the graph G, then $\gamma_{s R}^{k}\left(G^{*}\right)=$ $\gamma_{s R}^{k}(G)$ and $d_{s R}^{k}\left(G^{*}\right)=d_{s R}^{k}(G)$.

Let K_{n}^{*} be the associated digraph of the complete graph K_{n}. Using Observation 1 and Propositions C, D, we obtain the signed Roman k-domination number and the signed Roman k-domatic number of the complete digraph K_{n}^{*}.

Corollary 2. If K_{n}^{*} is the complete digraph of order $n \geq k \geq 1$, then $\gamma_{s R}^{k}\left(K_{n}^{*}\right)=k$, unless $k=1$ and $n=3$ in which case $\gamma_{s R}\left(K_{3}^{*}\right)=2$.

Corollary 3. If K_{n}^{*} is the complete digraph of order $n \geq k \geq 1$, then $d_{s R}^{k}\left(K_{n}^{*}\right)=n$, unless $k=1$ and $n=3$ in which case $d_{s R}\left(K_{3}^{*}\right)=1$ and unless $n=k=2$ in which case $d_{s R}^{2}\left(K_{2}^{*}\right)=1$.

Let $K_{p, p}^{*}$ be the associated digraph of the complete bipartite graph $K_{p, p}$. Observation 1, Propositions G and H lead to the next results immediately.

Corollary 4. If $k \geq 2$, then $\gamma_{s R}^{k}\left(K_{k, k}^{*}\right)=2 k$.
Corollary 5. If $k \geq 4$ is an even integer, then $d_{s R}^{k}\left(K_{k, k}^{*}\right)=k$.

2 Bounds on the signed Roman k-domatic number

In this section we present basic properties of $d_{s R}^{k}(D)$ and sharp bounds on the signed Roman k-domatic number of a graph.

Theorem 2.1. If D is a digraph with $\delta^{-}(D) \geq k-1$, then

$$
d_{s R}^{k}(D) \leq \delta^{-}(D)+1
$$

Moreover, if $d_{s R}^{k}(D)=\delta^{-}(D)+1$, then for each SRkD family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on D with $d=d_{s R}^{k}(D)$ and each vertex v of minimum in-degree, $\sum_{x \in N^{-}[v]} f_{i}(x)=k$ for each function f_{i} and $\sum_{i=1}^{d} f_{i}(x)=k$ for all $x \in N^{-}[v]$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be an SRkD family on D such that $d=d_{s R}^{k}(D)$. If v is a vertex of minimum in-degree $\delta^{-}(D)$, then we deduce that

$$
\begin{aligned}
k d & \leq \sum_{i=1}^{d} \sum_{x \in N^{-}[v]} f_{i}(x)=\sum_{x \in N^{-}[v]} \sum_{i=1}^{d} f_{i}(x) \\
& \leq \sum_{x \in N^{-}[v]} k=k\left(\delta^{-}(D)+1\right)
\end{aligned}
$$

and thus $d_{s R}^{k}(D) \leq \delta^{-}(D)+1$.
If $d_{s R}^{k}(D)=\delta^{-}(D)+1$, then the two inequalities occurring in the proof become equalities. Hence for the SRkD family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on D and for each vertex v of minimum in-degree, $\sum_{x \in N^{-}[v]} f_{i}(x)=k$ for each function f_{i} and $\sum_{i=1}^{d} f_{i}(x)=k$ for all $x \in N^{-}[v]$.

Example 2.2. If $C_{3 t}^{*}$ is the associated digraph of a cycle $C_{3 t}$ of length $3 t$ with an integer $t \geq 1$, then $d_{s R}^{2}\left(C_{3 t}^{*}\right)=3$.

Proof. According to Theorem 2.1, $d_{s R}^{2}\left(C_{3 t}^{*}\right) \leq 3$. Let $C_{3 t}^{*}=v_{0} v_{1} \ldots v_{3 t-1} v_{0}$. Define the functions f_{1}, f_{2}, f_{3} by

$$
\begin{aligned}
& f_{1}\left(v_{3 i}\right)=2, \quad f_{1}\left(v_{3 i+1}\right)=1, \quad f_{1}\left(v_{3 i+2}\right)=-1, \\
& f_{2}\left(v_{3 i}\right)=-1, \quad f_{2}\left(v_{3 i+1}\right)=2, \quad f_{2}\left(v_{3 i+2}\right)=1, \\
& f_{3}\left(v_{3 i}\right)=1, \quad f_{3}\left(v_{3 i+1}\right)=-1, \quad f_{3}\left(v_{3 i+2}\right)=2
\end{aligned}
$$

for $0 \leq i \leq t-1$. It is easy to see that f_{i} is a signed Roman 2-dominating function on $C_{3 t}^{*}$ for $1 \leq i \leq 3$ and $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a signed Roman 2-dominating family on $C_{3 t}^{*}$. Therefore $d_{s R}^{2}\left(C_{3 t}^{*}\right) \geq 3$ and so $d_{s R}^{2}\left(C_{3 t}^{*}\right)=3$.

Example 2.3. Let $C_{3 t}=v_{0} v_{1} \ldots v_{3 t-1} v_{0}$ be a cycle with an integer $t \geq 1$. Add t new vertices $w_{0}, w_{1}, \ldots, w_{t-1}$ and join w_{i} to the three vertices $v_{3 i+2}, v_{3 i+1}$ and $v_{3 i}$ for $i=0,1, \ldots, t-1$. If G is the resulting cubic graph, then let G^{*} be the associated digraph of G. We have $d_{s R}^{3}\left(G^{*}\right)=4$.

Proof. According to Theorem 2.1, $d_{s R}^{3}\left(G^{*}\right) \leq 4$. Define the functions $f_{1}, f_{2}, f_{3}, f_{4}$ by

$$
\begin{aligned}
& f_{1}\left(w_{i}\right)=-1, \quad f_{1}\left(v_{3 i}\right)=2, \quad f_{1}\left(v_{3 i+1}\right)=1, \quad f_{1}\left(v_{3 i+2}\right)=1, \\
& f_{2}\left(w_{i}\right)=1, \quad f_{2}\left(v_{3 i}\right)=-1, \quad f_{2}\left(v_{3 i+1}\right)=2, \quad f_{2}\left(v_{3 i+2}\right)=1, \\
& f_{3}\left(w_{i}\right)=1, \quad f_{3}\left(v_{3 i}\right)=1, \quad f_{3}\left(v_{3 i+1}\right)=-1, \quad f_{3}\left(v_{3 i+2}\right)=2 \text {, } \\
& f_{4}\left(w_{i}\right)=2, \quad f_{4}\left(v_{3 i}\right)=1, \quad f_{4}\left(v_{3 i+1}\right)=1, \quad f_{4}\left(v_{3 i+2}\right)=-1
\end{aligned}
$$

for $0 \leq i \leq t-1$. It is easy to see that f_{i} is a signed Roman 3-dominating function on G^{*} for $1 \leq i \leq 4$ and $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ is a signed Roman 3-dominating family on G^{*}. Therefore $d_{s R}^{3}\left(G^{*}\right) \geq 4$ and so $d_{s R}^{3}\left(G^{*}\right)=4$.

Examples 2.2 and 2.3 show that Theorem 2.1 is sharp for $k=2$ as well as for $k=3$.

Theorem 2.4. If D is a digraph of order n, then

$$
\gamma_{s R}^{k}(D) \cdot d_{s R}^{k}(D) \leq k n
$$

Moreover, if $\gamma_{s R}^{k}(D) \cdot d_{s R}^{k}(D)=k n$, then for each SRkD family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on D with $d=d_{s R}^{k}(D)$, each function f_{i} is a $\gamma_{s R}^{k}(D)$-function and $\sum_{i=1}^{d} f_{i}(v)=k$ for all $v \in V(D)$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be an SRkD family on D such that $d=d_{s R}^{k}(D)$. Then

$$
\begin{aligned}
d \cdot \gamma_{s R}^{k}(D) & =\sum_{i=1}^{d} \gamma_{s R}^{k}(D) \leq \sum_{i=1}^{d} \sum_{v \in V(D)} f_{i}(v) \\
& =\sum_{v \in V(D)} \sum_{i=1}^{d} f_{i}(v) \leq \sum_{v \in V(D)} k=k n
\end{aligned}
$$

If $\gamma_{s R}^{k}(D) \cdot d_{s R}^{k}(D)=k n$, then the two inequalities occurring in the proof become equalities. Hence for the SRkD family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on D and for each i, $\sum_{v \in V(D)} f_{i}(v)=\gamma_{s R}^{k}(D)$. Thus each function f_{i} is a $\gamma_{s R}^{k}(D)$-function, and $\sum_{i=1}^{d} f_{i}(v)$ $=k$ for all $v \in V(D)$.

Corollaries 2 and 3 demonstrate that Theorems 2.1 and 2.4 are both sharp.
Let G^{*} be the associated digraph of the graph G of order n. Since $\delta^{-}\left(G^{*}\right)=\delta(G)$, $\gamma_{s R}^{k}\left(G^{*}\right)=\gamma_{s R}^{k}(G)$ and $d_{s R}^{k}\left(G^{*}\right)=d_{s R}^{k}(G)$, Theorems 2.1 and 2.4 lead to $d_{s R}^{k}(G) \leq$ $\delta(G)+1$ and $\gamma_{s R}^{k}(G) \cdot d_{s R}^{k}(G) \leq k n$ immediately. These known bounds can be found in [10].

Using the upper bound on the product $\gamma_{s R}^{k}(D) \cdot d_{s R}^{k}(D)$ in Theorem 2.4, we obtain a sharp upper bound on the sum of these two parameters.

Theorem 2.5. If D is a digraph of order $n \geq 1$ and $\delta^{-}(D) \geq k-1$, then

$$
\gamma_{s R}^{k}(D)+d_{s R}^{k}(D) \leq n+k
$$

If $\gamma_{s R}^{k}(D)+d_{s R}^{k}(D)=n+k$, then
(a) $\gamma_{s R}^{k}(D)=k$ and $d_{s R}^{k}(D)=n$ (in this case $D=K_{n}^{*}$ unless $k=1$ and $n=3$ or $k=n=2$) or
(b) $\gamma_{s R}^{k}(D)=n$ and $d_{s R}^{k}(D)=k$ (in this case D is the disjoint union of isolated vertices and oriented triangles when $k=1, k \neq 2$ and $k-1 \leq \delta^{-}(D) \leq k$ when $k \geq 3$).

Proof. If $d_{s R}^{k}(D) \leq k$, then Proposition B implies $\gamma_{s R}^{k}(D)+d_{s R}^{k}(D) \leq n+k$ immediately. Let now $d_{s R}^{k}(D) \geq k$. It follows from Theorem 2.4 that

$$
\gamma_{s R}^{k}(D)+d_{s R}^{k}(D) \leq \frac{k n}{d_{s R}^{k}(D)}+d_{s R}^{k}(D)
$$

According to Theorem 2.1, we have $k \leq d_{s R}^{k}(D) \leq n$. Using these bounds, and the fact that the function $g(x)=x+(k n) / x$ is decreasing for $k \leq x \leq \sqrt{k n}$ and increasing for $\sqrt{k n} \leq x \leq n$, we obtain

$$
\gamma_{s R}^{k}(D)+d_{s R}^{k}(D) \leq \frac{k n}{d_{s R}^{k}(D)}+d_{s R}^{k}(D) \leq \max \{n+k, k+n\}=n+k
$$

and the desired bound is proved.
Now assume that $\gamma_{s R}^{k}(D)+d_{s R}^{k}(D)=n+k$. The above inequality leads to

$$
n+k=\gamma_{s R}^{k}(D)+d_{s R}^{k}(D) \leq \frac{k n}{d_{s R}^{k}(D)}+d_{s R}^{k}(D) \leq n+k
$$

This implies that $d_{s R}^{k}(D)=n$ and $\gamma_{s R}^{k}(D)=k$ or $d_{s R}^{k}(D)=k$ and $\gamma_{s R}^{k}(D)=n$.
(a) If $d_{s R}^{k}(D)=n$ and $\gamma_{s R}^{k}(D)=k$, then $\delta^{-}(D)=n-1$, by Theorem 2.1 and thus D is the complete digraph. In view of Corollaries 2 and 3, the digraph D is isomorphic to K_{n}^{*} unless $n=3$ and $k=1$ or $n=k=2$.
(b) If $d_{s R}^{k}(D)=k$ and $\gamma_{s R}^{k}(D)=n$, then it follows from Proposition E that $k-1 \leq \delta^{-}(D) \leq k$.

If $k=1$, then Proposition A shows that D consists of the disjoint union of isolated vertices and oriented triangles.

If $k=2$, then suppose that $\left\{f_{1}, f_{2}\right\}$ is an SR2D family on D. By Theorem $2.4 f_{1}$ and f_{2} are $\gamma_{s R}^{2}(D)$-functions and $f_{1}(v)+f_{2}(v)=2$ for all $v \in V(D)$. This yields to the contradiction that $f_{1}(v)=f_{2}(v)=1$ for each $v \in V(D)$, and thus $k=2$ is not possible in that case.

Corollaries 2 and 3 imply that $\gamma_{s R}^{k}\left(K_{n}^{*}\right)+d_{s R}^{k}\left(K_{n}^{*}\right)=n+k$, unless $k=1$ and $n=3$ or $k=n=2$. Therefore Theorem 2.5 is sharp.

Example 2.6. If $C_{3 t}^{*}$ is the associated digraph of the cycle $C_{3 t}$ of length $3 t$ with an integer $t \geq 1$, then $d_{s R}^{3}\left(C_{3 t}^{*}\right)=3$.

Proof. According to Theorem 2.1, $d_{s R}^{3}\left(C_{3 t}^{*}\right) \leq 3$. Let $C_{3 t}^{*}=v_{0} v_{1}, \ldots v_{3 t-1} v_{0}$. Define the functions f_{1}, f_{2}, f_{3} by

$$
\begin{aligned}
& f_{1}\left(v_{3 i+1}\right)=-1, \quad f_{1}\left(v_{3 i+2}\right)=2, \quad f_{1}\left(v_{3 i}\right)=2, \\
& f_{2}\left(v_{3 i+1}\right)=2, \quad f_{2}\left(v_{3 i+2}\right)=-1, \quad f_{2}\left(v_{3 i}\right)=2, \\
& f_{3}\left(v_{3 i+1}\right)=2, \quad f_{3}\left(v_{3 i+2}\right)=2, \quad f_{3}\left(v_{3 i}\right)=-1
\end{aligned}
$$

for $0 \leq i \leq t-1$. It is easy to see that f_{i} is a signed Roman 3 -dominating function on $C_{3 t}^{*}$ of weight $3 t$ for $1 \leq i \leq 3$ and $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a signed Roman 3-dominating family on $C_{3 t}^{*}$. Therefore $d_{s R}^{3}\left(C_{3 t}^{*}\right) \geq 3$ and so $d_{s R}^{3}\left(C_{3 t}^{*}\right)=3$.

Example 2.7. Let $C_{3 t}=v_{0} v_{1}, \ldots v_{3 t-1} v_{0}$ be a cycle of length $3 t$ with an integer $t \geq 1$. Add t new vertices $w_{0}, w_{1}, \ldots, w_{t-1}$ and join w_{i} to the three vertices $v_{3 i+2}$, $v_{3 i+1}$ and $v_{3 i}$ for $i=0,1, \ldots, t-1$. If H is the resulting cubic graph, then let H^{*} be the associated digraph of H. Then we have $d_{s R}^{4}\left(H^{*}\right)=4$.

Proof. According to Theorem 2.1, $d_{s R}^{4}\left(H^{*}\right) \leq 4$. Define the functions $f_{1}, f_{2}, f_{3}, f_{4}$ by

$$
\begin{aligned}
& f_{1}\left(w_{i}\right)=-1, \quad f_{1}\left(v_{3 i}\right)=2, \quad f_{1}\left(v_{3 i+1}\right)=2, \quad f_{1}\left(v_{3 i+2}\right)=1, \\
& f_{2}\left(w_{i}\right)=1, \quad f_{2}\left(v_{3 i}\right)=-1, \quad f_{2}\left(v_{3 i+1}\right)=2, \quad f_{2}\left(v_{3 i+2}\right)=2 \text {, } \\
& f_{3}\left(w_{i}\right)=2, \quad f_{3}\left(v_{3 i}\right)=1, \quad f_{3}\left(v_{3 i+1}\right)=-1, \quad f_{3}\left(v_{3 i+2}\right)=2 \text {, } \\
& f_{4}\left(w_{i}\right)=2, \quad f_{4}\left(v_{3 i}\right)=2, \quad f_{4}\left(v_{3 i+1}\right)=1, \quad f_{4}\left(v_{3 i+2}\right)=-1
\end{aligned}
$$

for $0 \leq i \leq t-1$. It is easy to see that f_{i} is a signed Roman 4-dominating function on H^{*} for $1 \leq i \leq 4$ and $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ is a signed Roman 4-dominating family on H^{*}. Therefore $d_{s R}^{4}\left(H^{*}\right) \geq 4$ and so $d_{s R}^{4}\left(H^{*}\right)=4$.

It follows from Proposition F that $\gamma_{s R}^{3}\left(C_{3 t}^{*}\right) \geq 3 t$ and so $\gamma_{s R}^{3}\left(C_{3 t}^{*}\right)=3 t$ by Proposition B. For the digraph H^{*} in Example 2.7, it follows from Proposition F that $\gamma_{s R}^{4}\left(H^{*}\right) \geq 4 t$ and so $\gamma_{s R}^{4}\left(H^{*}\right)=4 t=n\left(H^{*}\right)$ by Proposition B.

Thus Examples 2.6, 2.7 and Corollaries 4 and 5 show that Case (b) in Theorem 2.5 is possible for $\delta^{-}=k-1$ as well as for $\delta^{-}=k$.

For some regular digraphs we will improve the upper bound given in Theorem 2.1.

Theorem 2.8. Let D be a δ-out-regular digraph of order n with $\delta \geq k-1$ such that $n=p(\delta+1)+r$ with integers $p \geq 1$ and $1 \leq r \leq \delta$ and $k r=t(\delta+1)+s$ with integers $t \geq 0$ and $1 \leq s \leq \delta$. Then $d_{s R}^{k}(D) \leq \delta$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be an SRkD family on D such that $d=d_{s R}^{k}(D)$. It follows that

$$
\sum_{i=1}^{d} \omega\left(f_{i}\right)=\sum_{i=1}^{d} \sum_{v \in V(D)} f_{i}(v)=\sum_{v \in V(D)} \sum_{i=1}^{d} f_{i}(v) \leq \sum_{v \in V(D)} k=k n .
$$

Proposition F implies

$$
\begin{aligned}
\omega\left(f_{i}\right) & \geq \gamma_{s R}^{k}(D) \geq\left\lceil\frac{k n}{\delta+1}\right\rceil=\left\lceil\frac{k p(\delta+1)+k r}{\delta+1}\right\rceil \\
& =k p+\left\lceil\frac{k r}{\delta+1}\right\rceil=k p+\left\lceil\frac{t(\delta+1)+s}{\delta+1}\right\rceil=k p+t+1
\end{aligned}
$$

for each $i \in\{1,2, \ldots, d\}$. If we suppose to the contrary that $d \geq \delta+1$, then the above inequality chains lead to the contradiction

$$
\begin{aligned}
k n & \geq \sum_{i=1}^{d} \omega\left(f_{i}\right) \geq d(k p+t+1) \geq(\delta+1)(k p+t+1) \\
& =k p(\delta+1)+(\delta+1)(t+1)=k p(\delta+1)+t(\delta+1)+\delta+1 \\
& =k p(\delta+1)+k r-s+\delta+1>k p(\delta+1)+k r=k(p(\delta+1)+r)=k n .
\end{aligned}
$$

Thus $d \leq \delta$, and the proof is complete.
Corollary 5 shows that Theorem 2.8 is sharp, and Corollary 3 demonstrates that Theorem 2.8 is not valid in general. A digraph without directed cycles of length 2 is called an oriented graph. An oriented graph D is called a tournament when either $(u, v) \in A(D)$ or $(v, u) \in A(D)$ for each pair of distinct vertices $u, v \in V(D)$. By D^{-1} we denote the digraph obtained by reversing all arcs of D.

Theorem 2.9. If T is a δ-regular tournament of order n such that $\delta^{-}(T) \geq k$, then $d_{s R}^{k}(T) \leq \delta$.

Proof. Since T is a δ-regular tournament, we observe that $n=2 \delta+1$. Since $n=$ $p(\delta+1)+r=(\delta+1)+\delta$ and $k r=k \delta=t(\delta+1)+s=(k-1)(\delta+1)+(\delta-k+1)$ and $s=\delta-k+1 \geq 1$, it follows from Theorem 2.8 that $d_{s R}^{k}(D) \leq \delta$.

Corollary 2.10. If D is an oriented graph of order n such that $\delta^{-}(D), \delta^{-}\left(D^{-1}\right) \geq k$, then

$$
d_{s R}^{k}(D)+d_{s R}^{k}\left(D^{-1}\right) \leq n .
$$

Proof. If D is not a tournament or D is a non-regular tournament, then $\delta^{-}(D)+$ $\delta^{-}\left(D^{-1}\right) \leq n-2$, and hence we deduce from Theorem 2.1 that

$$
d_{s R}^{k}(D)+d_{s R}^{k}\left(D^{-1}\right) \leq\left(\delta^{-}(D)+1\right)+\left(\delta^{-}\left(D^{-1}\right)+1\right) \leq n .
$$

Let now D be a δ-regular tournament. Then D^{-1} is also a δ-regular tournament such that $n=2 \delta+1$. Thus it follows from Theorem 2.9 that

$$
d_{s R}^{k}(D)+d_{s R}^{k}\left(D^{-1}\right) \leq \delta+\delta=2 \delta=n-1
$$

This completes the proof.
The proof of Corollary 2.10 also implies the next result immediately.
Corollary 2.11. If T is δ-regular tournament of order n such that $\delta^{-}(T) \geq k$, then $d_{s R}^{k}(T)+d_{s R}^{k}\left(T^{-1}\right) \leq n-1$.

3 Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or product of a parameter on a graph or digraph and its complement. In their classical paper [5], Nordhaus and Gaddum discussed this problem for the chromatic number of graphs. We present such inequalities for the signed Roman k-domatic number of digraphs.

Theorem 3.1. If D is a digraph of order n such that $\delta^{-}(D), \delta^{-}(\bar{D}) \geq k-1$, then

$$
d_{s R}^{k}(D)+d_{s R}^{k}(\bar{D}) \leq n+1
$$

Furthermore, if $d_{s R}^{k}(D)+d_{s R}^{k}(\bar{D})=n+1$, then D is in-regular.

Proof. It follows from Theorem 2.1 that

$$
\begin{aligned}
d_{s R}^{k}(D)+d_{s R}^{k}(\bar{D}) & \leq\left(\delta^{-}(D)+1\right)+\left(\delta^{-}(\bar{D})+1\right) \\
& =\left(\delta^{-}(D)+1\right)+\left(n-\Delta^{-}(D)-1+1\right) \leq n+1
\end{aligned}
$$

If D is not in-regular, then $\Delta^{-}(D)-\delta^{-}(D) \geq 1$, and hence the above inequality chain implies the better bound $d_{s R}^{k}(D)+d_{s R}^{k}(\bar{D}) \leq n$.

For tournaments of odd order we improve Theorem 3.1.
Theorem 3.2. If T is a tournament of odd order $n \geq 3$ such that $\delta^{-}(T), \delta^{-}(\bar{T}) \geq k$, then

$$
d_{s R}^{k}(T)+d_{s R}^{k}(\bar{T}) \leq n-1 .
$$

Proof. If T is not regular, then $\delta^{-}(T) \leq(n-3) / 2$ and $\delta^{-}(\bar{T}) \leq(n-3) / 2$. Hence Theorem 2.1 implies that

$$
d_{s R}^{k}(T)+d_{s R}^{k}(\bar{T}) \leq\left(\delta^{-}(T)+1\right)+\left(\delta^{-}(\bar{T})+1\right) \leq \frac{n-3}{2}+\frac{n-3}{2}+2=n-1
$$

Let now T be a δ-regular tournament. Then \bar{T} is also a δ-regular tournament such that $n=2 \delta+1$. Thus it follows from Theorem 2.9 that

$$
d_{s R}^{k}(T)+d_{s R}^{k}(\bar{T}) \leq \delta+\delta=2 \delta=n-1 .
$$

In [7], we have proved the following Nordhaus-Gaddum type inequality for regular digraphs.

Theorem 3.3. Let D be an δ-regular digraph of order n. Then $d_{s R}(D)+d_{s R}(\bar{D}) \leq$ $n+1$ with equality if and only if $D=K_{n}^{*}$ or $\bar{D}=K_{n}^{*}$ and $n \neq 3$.

As a supplement to Theorem 3.3, we present the following result for $k \geq 2$.
Theorem 3.4. Let $k \geqq 2$ be an integer, and let D be a δ-regular digraph such that $\delta \geq k-1$ and $\bar{\delta}=\delta^{-}(\bar{D}) \geq k-1$. Then there is only a finite number of digraphs D such that

$$
d_{s R}^{k}(D)+d_{s R}^{k}(\bar{D})=n(D)+1 .
$$

Proof. Let $n(G)=n$. The strategy of our proof is as follows. For a fixed integer $k \geq 2$, we show that $d_{s R}^{k}(D)+d_{s R}^{k}(\bar{D}) \leq n$ or $n \leq k^{3}+\frac{5}{2} k^{2}-2 k+1$. Together with Theorem 3.1 this implies the desired result.

Since D is δ-regular, \bar{D} is $\bar{\delta}$-regular such that $\delta+\bar{\delta}+1=n$. Assume, without loss of generality, that $\bar{\delta} \leq \delta$.

Let $k \bar{\delta}=t(\delta+1)+s$ with integers $t \geq 0$ and $0 \leq s \leq \delta$. If $s \neq 0$, then we deduce from Theorem 2.8 that $d_{s R}^{k}(D) \leq \delta$, and Theorem 2.1 yields to

$$
d_{s R}^{k}(D)+d_{s R}^{k}(\bar{D}) \leq \delta+(\bar{\delta}+1)=n
$$

If $s=0$, then the condition $\bar{\delta} \leq \delta$ shows that

$$
\begin{equation*}
k \bar{\delta}=t(\delta+1) \text { with } 1 \leq t \leq k-1 \tag{1}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\delta=\frac{k \bar{\delta}}{t}-1 \tag{2}
\end{equation*}
$$

Let now

$$
\begin{equation*}
n=p(\bar{\delta}+1)+r \text { with integers } p \geq 1 \text { and } 0 \leq r \leq \bar{\delta} \tag{3}
\end{equation*}
$$

and when $r \neq 0$

$$
\begin{equation*}
k r=a(\bar{\delta}+1)+b \text { with integers } a \geq 0 \text { and } 0 \leq b \leq \bar{\delta} \tag{4}
\end{equation*}
$$

If $b, r \neq 0$, then we conclude from Theorem 2.8 that $d_{s R}^{k}(\bar{D}) \leq \bar{\delta}$, and we obtain by Theorem 2.1

$$
d_{s R}^{k}(D)+d_{s R}^{k}(\bar{D}) \leq(\delta+1)+\bar{\delta}=n
$$

Now let $r \neq 0$ and $b=0$. Then (3) and (4) yield to

$$
k r=a(\bar{\delta}+1) \text { with } 1 \leq a \leq k-1
$$

and thus

$$
\begin{equation*}
\bar{\delta}=\frac{k r}{a}-1 \tag{5}
\end{equation*}
$$

In view of (2), we obtain

$$
\delta=\frac{k}{t}\left(\frac{k r}{a}-1\right)-1
$$

and so

$$
\begin{equation*}
n=\delta+\bar{\delta}+1=\frac{k}{t}\left(\frac{k r}{a}-1\right)+\frac{k r}{a}-1 \tag{6}
\end{equation*}
$$

According to (3) and (5), we have

$$
\begin{equation*}
n=p(\bar{\delta}+1)+r=\frac{p k r}{a}+r . \tag{7}
\end{equation*}
$$

Combining (6) and (7), we find that

$$
r\left(\frac{p k}{a}+1\right)=\frac{k r}{a}\left(\frac{k}{t}+1\right)-\frac{k}{t}-1
$$

and therefore

$$
\begin{equation*}
1+\frac{k}{t}=r\left(\frac{k^{2}}{a t}+\frac{k}{a}-\frac{p k}{a}-1\right)=\frac{k r}{a}\left(\frac{k}{t}+1-p\right)-r . \tag{8}
\end{equation*}
$$

These equalities show that

$$
\frac{k^{2}}{a t}+\frac{k}{a}-\frac{p k}{a}-1>0 \text { and } \frac{k}{t}+1-p>0
$$

and hence

$$
\begin{equation*}
\frac{k^{2}}{a t}+\frac{k}{a}-\frac{p k}{a}-1 \geq \frac{1}{a t} . \tag{9}
\end{equation*}
$$

and

$$
\frac{k}{t}+1-p \geq \frac{1}{t}
$$

We deduce from the last inequality that

$$
\begin{equation*}
p \leq \frac{k-1}{t}+1 \leq k . \tag{10}
\end{equation*}
$$

Using (9) and the first equality in (8), we obtain

$$
1+\frac{k}{t} \geq \frac{r}{a t}
$$

and thus

$$
\begin{equation*}
r \leq a t+a k \tag{11}
\end{equation*}
$$

In view of (5), it follows that

$$
\begin{equation*}
\bar{\delta}+1=\frac{k r}{a} \leq k t+k^{2} \tag{12}
\end{equation*}
$$

If $t=1$, then we deduce from (3), (10), (11), a $\leq k-1$ and the last inequality leads to the desired bound as follows

$$
\begin{aligned}
n & =p(\bar{\delta}+1)+r \leq k\left(k t+k^{2}\right)+a t+a k \\
& \leq k\left(k+k^{2}\right)+(k-1)+k(k-1) \\
& =k^{3}+2 k^{2}-1 \leq k^{3}+\frac{5}{2} k^{2}-2 k+1 .
\end{aligned}
$$

If $t \geq 2$, then the first inequality of (10) leads to $p \leq \frac{k+1}{2}$. Applying this bound, (3), (11), (12), $t \leq k-1$ and $a \leq k-1$, we arrive at the desired bound

$$
\begin{aligned}
n & =p(\bar{\delta}+1)+r \leq \frac{k+1}{2}\left(k t+k^{2}\right)+a t+a k \\
& \leq \frac{k+1}{2}\left(k(k-1)+k^{2}\right)+(k-1)^{2}+k(k-1) \\
& =k^{3}+\frac{5}{2} k^{2}-\frac{7}{2} k+1 \leq k^{3}+\frac{5}{2} k^{2}-2 k+1
\end{aligned}
$$

It remains the case that $r=0$ and thus $n=p(\bar{\delta}+1)$ with an integer $p \geq 2$. Since $n=\delta+\bar{\delta}+1$, we deduce that

$$
\delta+1=(p-1) \bar{\delta}+p
$$

Using this identity and (1), we obtain

$$
k \bar{\delta}=t(\delta+1)=t(p-1) \bar{\delta}+t p
$$

and thus

$$
t p=\bar{\delta}(k-t(p-1)) .
$$

It follows that $t(p-1) \leq k-1$ and so $t p \geq \bar{\delta}$ and $p \leq k$. Therefore $\bar{\delta} \leq t p \leq k(k-1)$ and consequently,

$$
n=p(\bar{\delta}+1) \leq k(k(k-1)+1)=k^{3}-k^{2}+k \leq k^{3}+\frac{5}{2} k^{2}-2 k+1 .
$$

This completes the proof.
Example 3.5. Let $k \geq 3$ be an integer and let D be the disjoint union of two copies of the complete digraph K_{k}^{*}. Then $d_{s R}^{k}(D)=k$.

Proof. The digraph $D=K_{k}^{*} \cup K_{k}^{*}$ is k-regular of order $2 k$. Since $2 k=p(\delta+1)+r=$ $(k+1)+(k-1)$ and $k r=k(k-1)=t(k+1)+s=(k-2)(k+1)+2$ and $s=2 \leq k$, it follows from Theorem 2.8 that $d_{s R}^{k}(D) \leq k$.

Now let $\left\{v_{0}, v_{1}, \ldots, v_{k-1}\right\}$ be the vertex set of one copy of K_{k}^{*} and $\left\{w_{0}, w_{1}, \ldots, w_{k-1}\right\}$ the vertex set of the other copy of K_{k}^{*}. Define the functions $f_{1}, f_{2}, \ldots, f_{k}$ by $f_{1}\left(v_{0}\right)=$ $f_{1}\left(v_{k-1}\right)=f_{1}\left(w_{0}\right)=f_{1}\left(w_{k-1}\right)=2, f_{1}\left(v_{1}\right)=f_{1}\left(w_{1}\right)=-1$ and $f_{1}\left(v_{i}\right)=f_{1}\left(w_{i}\right)=1$ for $2 \leq i \leq k-2$ and for $2 \leq j \leq k$ and $0 \leq i \leq k-1$

$$
f_{j}\left(v_{i}\right)=f_{j-1}\left(v_{i+j-1}\right) \text { and } f_{j}\left(w_{i}\right)=f_{j-1}\left(w_{i+j-1}\right),
$$

where the indices are taken modulo k. It is easy to see that f_{i} is a signed Roman k-dominating function on D for $1 \leq i \leq k$ and $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ is a signed Roman k-dominating family on D. Hence $d_{s R}^{k}(D) \geq k$ and thus $d_{s R}^{k}(D)=k$.

Example 3.5 also demonstrates the sharpnes of Theorem 2.8
Conjecture 3.6. Let $k \geq 2$ be an integer. If D is a δ-regular digraph of order n such that $\delta, \bar{\delta} \geq k-1$, then

$$
d_{s R}^{k}(D)+d_{s R}^{k}(\bar{D}) \leq n
$$

If $k \geq 4$ is an even integer, then Corollary 5 and Example 3.5 show that

$$
d_{s R}^{k}\left(K_{k, k}^{*}\right)+d_{s R}^{k}\left(\overline{K_{k, k}^{*}}\right)=2 k=n\left(K_{k, k}^{*}\right) .
$$

Thus Conjecture 3.6 would be tight, at least for $k \geq 4$ even.

References

[1] H. A. Ahangar, M. A. Henning, Y. Zhao, C. Löwenstein and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014), 241-255. DOI 10.1007/s10878-012-9500-0.
[2] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247-261.
[3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., New York, 1998.
[4] M. A. Henning and L. Volkmann, Signed Roman k-domination in graphs, Graphs Combin. 32 (2016), 175-190. DOI 10.1007/s00373-015-1536-3.
[5] E. A. Nordhaus and J. W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956), 175-177.
[6] S. M. Sheikholeslami and L. Volkmann, The signed Roman domatic number of a graph, Ann. Math. Inform. 40 (2012), 105-112.
[7] S. M. Sheikholeslami and L. Volkmann, The signed Roman domatic number of a digraph, Electronic J. Graph Theory Appl. 3 (2015), 85-93.
[8] S. M. Sheikholeslami and L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. 30 (2015), 456-467. DOI 10.1007/s10878-013-9684-2.
[9] P. J. Slater and E.L. Trees, Multi-fractional domination, J. Combin. Math. Combin. Comput. 40 (2002), 171-181.
[10] L. Volkmann, The signed Roman k-domatic number of a graph, Discrete Appl. Math. 180 (2015), 150-157.
[11] L. Volkmann, Signed Roman k-domination in digraphs, Graphs Combin. (to appear).

