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Abstract

By a Taylor expansion of a generating function, we mean that the remain-
der of the expansion is a functional of the generating function itself. In
this paper, we consider the Taylor expansion for the generating function
Bm(t) of the m-Catalan numbers. In order to give combinatorial interpre-
tations of the coefficients of these expansions, we study a new collection
of partial Grand Dyck paths, that is, (i, j)-balance m-Dyck paths, and
we obtain some new Chung-Feller type results.

1 Introduction

The m-Catalan numbers C
(m)
n are defined, for m ≥ 1, by

C(m)
n =

1

mn + 1

(
mn + 1

n

)
, n ≥ 0;

they are also called the Fuss-Catalan numbers [11, 15, 16, 20, 25]. It can easily be
seen that the ordinary Catalan numbers Cn = 1

n+1

(
2n
n

)
are the special case m = 2,

i.e., Cn = C
(2)
n . The generating function Bm(t) =

∑∞
n=0C

(m)
n tn for the m-Catalan

numbers is the so-called generalized binomial series (see [11]), and it satisfies the
function equation

Bm(t) = 1 + tBm(t)m. (1)

Equivalently, the m-Catalan numbers satisfy the recurrence

C(m)
n =

∑
i1+i2+···+im=n−1

C
(m)
i1

C
(m)
i2

. . . C
(m)
im

,
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with initial condition C
(m)
0 = C

(m)
1 = 1.

Here we consider m-Catalan numbers as enumerators of m-Dyck paths (see [6,
15, 16, 18, 23]). For a positive integer m, an m-Dyck path of length mn is a path
from the origin to (mn, 0) using the steps u = (1, 1) (i.e., north-east, up steps) and
d = (1, 1 −m) (i.e., south-east, down steps) and staying weakly above the x-axis.

It is well-known that the number of m-Dyck paths of length mn is given by
the m-Catalan number C

(m)
n . In a lattice path, a descent is a maximal sequence of

consecutive down steps, whereas an ascent is a maximal sequence of consecutive up
steps. The points on the x-axis, except for the initial point of a lattice path, are
called return points. We say that an m-Dyck path is prime if it has exactly one
return point, i.e., the only vertices at the x-axis are the start and end points.

Every m-Dyck path can be decomposed into prime blocks according to its returns.
When m = 3, the corresponding 3-Catalan numbers are

1, 1, 3, 12, 55, 273, 1428, . . . ,

and they count the number of 3-Dyck paths. In the literature, the 3-Dyck paths are
often called ternary paths, so the Fuss-Catalan numbers C

(3)
n are also called ternary

numbers (see [8, 19]).

A Grand m-Dyck path of length mn is a lattice path from the origin to (mn, 0),
consisting of up-steps u = (1, 1) and down-steps d = (1, 1 − m), but without the
requirement of staying above the x-axis. We define a negative m-Dyck path to
be a Grand m-Dyck path of nonzero length which has no vertices with positive y-
coordinates. A partial Grand m-Dyck path is just a Grand m-Dyck path but without
the requirement of ending on the x-axis. Every up step of a partial Grand m-Dyck
path α which lies below the x-axis is called a flaw of α. The number of flaws of α is
denoted by p(α). Every partial Grand m-Dyck path can be encoded by a word in a
language S on the alphabet {u, d}.

The classical Chung-Feller theorem [7, 9, 10] states that the number of Grand
Dyck paths of length 2n with j flaws is independent of j and is equal to the Catalan
number Cn = 1

n+1

(
2n
n

)
. For example, with n = 2, of the 6 paths consisting of 2 up

and 2 down steps, 2 paths have no flaw: uudd, udud; 2 paths have 1 flaw: uddu,
duud; and 2 paths have 2 flaws: dduu, dudu.

Eu, Liu and Yeh [9] proved that the generating function of the Catalan numbers
satisfies

C(t) =

n−1∑
i=0

Cit
i + tnFn(C(t)), n ≥ 1, (2)

where Fn(x) =
∑n

k=1
k

2n−k

(
2n−k
n−k

)
xk+1. This is called the n-th Taylor expansion of

C(t), and the expansion provides a simple proof for the classical Chung-Feller theo-
rem. In Eu, Fu and Yeh [9], a strengthening of the classical Chung-Feller theorem is
obtained.

In this paper, we consider the Taylor expansion for the generating function Bm(t)
of the m-Catalan numbers. In order to give combinatorial interpretations of the
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coefficients of these expansions, we study a new collection of partial Grand Dyck
paths, that is, (i, j)-balance m-Dyck paths, and obtain some new Chung-Feller type
results.

2 Taylor expansions for the m-Catalan numbers

By a Taylor expansion of a generating function, we mean that the remainder of the
expansion is a functional of the generating function itself. For example, the n-th
Taylor expansion of C(t) in equation (2) can be expressed in the form [9]

C(t) =

n−1∑
i=0

Cit
i + tn

n−1∑
k=0

a(n− 1, k)C(t)k+2,

where the coefficient a(n, k) is the number of Dyck paths from (0, 0) to (2n+2, 0) that
begin with an ascent of length k+1, and it is also the number of Dyck paths of semi-
length n + 1 with k + 1 returns. The matrix A = (a(n, k)) is precisely the Catalan
triangle [17]. In order to provide a combinatorial interpretation for coefficients in
the remainder of the Taylor expansion of Bm(t), we need to introduce a new matrix
which is the ECO matrix of m-Dyck paths.

The ECO (Enumerating Combinatorial Objects) method is a constructive method
to produce all the objects of a given class, according to the growth of a certain
parameter (in terms of the size) of the objects. The core of the ECO method is
a recursive description of a class of combinatorial objects. This should be done in
such a way that, if On denotes the set of objects of size n, each object O′ ∈ On+1 is
achieved from one and only one object O ∈ On. We say that O′ is a successor of O.

We assign a label (k), k ∈ N+ (the positive integers), to each object. An object’s
label gives the number of successors of that object. The succession rule dictates the
labels of these successors. The rule also includes an axiom (a), a ∈ N+, which gives
the label of the smallest object. In the basic case a succession rule is written as

Ω :

{
(a),

(k)� (e1(k))(e1(k)) . . . (ek(k)).
(3)

where ei(k) : N+ −→ N+ gives the labels of the k successors of an object with label k.
It is natural to think of a succession rule as a generating tree: the root of the tree is
the axiom, (a), and if a node has label (k), it has k children labelled e1(k), e2(k), . . . ,
ek(k). The production matrix P = (pi,j)i,j≥0 of a succession rule is defined as follows.
List all labels of a rule. Let this list be l0, l1, . . . . Then pi,j equals the number of
successors with label lj produced by an object with label li. A succession rule defines
an infinite matrix F whose (n, k) entry represents the number of nodes labelled lk
at level n. The matrix F is called the ECO matrix associated with Ω. Obviously
F contains all the enumerative information provided by the succession rule Ω. The
main references concerning these topics are [2,3], whereas for the applications of the
ECO method we refer the reader to [1, 4, 14].
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Now we apply the ECO method to m-Dyck paths. Let GDn be the set of m-Dyck
paths of length mn. Given α ∈ GDn, we construct a set of paths of GDn+1 as follows:
if the length of the first ascent of α is k, then we insert a peak of form u1 . . . um−1d,
where u1 = · · · = um−1 = u, into any point of the first ascent of α. The succession
rule Ω describing the above construction is:

Ω :

{
(m),

(k)� (m)(m + 1) . . . (k)(k + 1) . . . (k + m− 1).
(4)

It corresponds to the production matrix Pm = (pm(i, j))i,j≥0, where

pm(i, j) =

{
1, if 0 ≤ j ≤ m + i− 1,

0, otherwise.

The entries of the ECO matrix Am = (am(i, j))i,j≥0 obey the recursion:

am(n + 1, k) = am(n, k −m + 1) + am(n, k −m + 2) + · · · + am(n, n(m− 1)), (5)

for all n, k ≥ 0, with initial conditions am(0, 0) = 1, and am(0, k) = 0 for all k �= 0.
Here we summarize the result as the following theorem.

Theorem 2.1. The general entry am(i, j) of the ECO matrix Am is the number of
m-Dyck paths from (0, 0) to (mi + m, 0) whose first ascent is of length j + m− 1.

Let dk(t) denote the generating function for the kth column of ECO matrix Am,
i.e., dk(t) =

∑∞
n=k am(n, k)tn. Then, by the succession rule (4), we have d0(t) =

Bm(t), d1(t) = d2(t) = · · · = dm−1(t) = Bm(t) − 1 = tBm(t)m, and for k ≥ m,

dk(t) = tBm(t)dk−m+1(t) + tBm(t)2dk−m+2(t) + · · · + tBm(t)m−1dk−1(t).

For example, the ECO matrix A2 is the Catalan triangle [6,13], and it is the sequence
A033184 in [22]. The first few rows of the ECO matrix A2 are:

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

2 2 1 0 0 0 0 0 0

5 5 3 1 0 0 0 0 0

14 14 9 4 1 0 0 0 0

42 42 28 14 5 1 0 0 0

132 132 90 48 20 6 1 0 0

429 429 297 165 75 27 7 1 0

1430 1430 1001 572 275 110 35 8 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The first few rows of the array A3 are⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0

3 3 3 2 1 0 0 0 0 0 0 0 0

12 12 12 9 6 3 1 0 0 0 0 0 0

55 55 55 43 31 19 10 4 1 0 0 0 0

273 273 273 218 163 108 65 34 15 5 1 0 0

1428 1428 1428 1155 882 609 391 228 120 55 21 6 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Starting from the equation Bm(t) = 1 + tBm(t)m, we can obtain successively:

Bm(t) = 1 + tBm(t)m = 1 + t + t2
m∑
k=1

Bm(t)m+k−1

= 1 + t + mt2 + t3(

m∑
k=1

mBm(t)m+k−1 +

2m−1∑
k=m+1

(2m− k)Bm(t)m+k−1).

In general, we can obtain the Taylor expansion of Bm(t). The coefficients in the
reminder of the expansion are the entries of ECO matrix Am.

Theorem 2.2. The generating function of the m-Catalan numbers satisfies

Bm(t) =
n−1∑
i=0

C
(m)
i ti + tn

(m−1)(n−1)∑
k=0

am(n− 1, k)Bm(t)k+m. (6)

where am(n, k) is the number of m-Dyck paths from (0, 0) to (mn + m, 0) that begin
with exactly k + m− 1 rise steps.

Proof. We suppose that Bm(t) =
∑n−1

i=0 C
(m)
i ti+tn

∑(m−1)(n−1)
k=0 bm(n−1, k)Bm(t)k+m.

We need only show that the coefficients bm(n−1, k) satisfy the recurrence relation and
the initial conditions as those of am(n− 1, k). By (1), we have Bm(t) = 1 + tBm(t)m.
Multiplying the two sides of the equation by Bm(t) and substituting the the equation
again, we get Bm(t)2 = 1 + t(Bm(t)m +Bm(t)m+1). Iterating this procedure, we have

Bm(t)k = 1 + t(Bm(t)m + Bm(t)m+1 + · · · + Bm(t)m+k−1).

Substituting this relation into

Bm(t) =
n−1∑
i=0

C
(m)
i ti + tn

(m−1)(n−1)∑
k=0

bm(n− 1, k)Bm(t)k+m,
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we obtain

Bm(t) =
n−1∑
i=0

C
(m)
i ti + tn

(m−1)(n−1)∑
k=0

bm(n− 1, k)Bm(t)k+m

=
n−1∑
i=0

C
(m)
i ti + tn

(m−1)(n−1)∑
k=0

bm(n− 1, k)(1 + t
k+m−1∑
j=0

Bm(t)j+m)

=

n−1∑
i=0

C
(m)
i ti +

(m−1)(n−1)∑
k=1

(tnbm(n− 1, k) + tn+1bm(n− 1, k)

k+m−1∑
j=0

Bm(t)j+m)

=
n∑

i=0

C
(m)
i ti + tn+1

(m−1)n∑
j=0

(

(m−1)(n−2)∑
k=j−m+1

bm(n− 1, k))Bm(t)j+m.

Therefore, we have bm(n + 1, k) =
∑(m−1)(n−1)

i=k−m+1 bm(n, i), with initial conditions
bm(0, 0) = 1, and bm(0, k) = 0 for all k �= 0. Comparing with equation (5), we
get bm(n, k) = am(n, k). This complete the proof.

Corollary 2.3. If n ≥ r ≥ 1, then we have

C(m)
n = [tn−r]

(m−1)(r−1)∑
k=0

am(r − 1, k)Bm(t)k+m.

Corollary 2.4. If n ≥ r ≥ 1, then we have

Cn = [tn−r]
r−1∑
k=0

a(r − 1, k)C(t)k+2,

C(3)
n = [tn−r]

2r−2∑
k=0

a3(r − 1, k)B3(t)
k+3.

3 Some identities related to the m-Catalan numbers

An infinite lower triangular matrix D is called a Riordan array [12,21,24] if its column
k has generating function g(t)(tf(t))k, k = 0, 1, 2, . . . , where g(t) and f(t) are formal
power series with g(0) = 1 and f(0) �= 0. For instance, as defined in Section 2, the
ECO matrix of Catalan numbers is the Riordan array (see [5,17]) A2 = (C(t), tC(t)).
However, when m ≥ 3, the ECO matrix Am of m-Catalan numbers is not the Riordan
array.
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Theorem 3.1. Let the lower triangular matrix Tm = (Tm(n, k))n,k≥0 be defined
by the Riordan array Tm = (Bm(t), tBm(t)). Then Tm(n, k) counts the number
of partial m-Dyck paths from the origin to (mn − mk + k, k), and Tm(n, k) =

k+1
m(n−k)+k+1

(
m(n−k)+k+1

n−k

)
.

Proof. Each partial m-Dyck path from the origin to (mn −mk + k, k) consists of
(m − 1)(n− k) + k “up” steps and n− k “down” steps, and can be decomposed as
indicated in the following figure.

Bm

(0,0)
��

Bm

��

Bm

···
��

Bm

(mn−mk + k, k)

Figure 1: An m-Dyck path from (0, 0) to (mn−mk + k, k).

Hence the generating function for these paths is given by tkBm(t)k+1. By the defini-
tion of a Riordan array, we have

Tm(n, k) = [tn]Bm(t)(tBm(t))k = [tn−k]Bm(t)k+1

=
k + 1

m(n− k) + k + 1

(
m(n− k) + k + 1

n− k

)

=
k + 1

mn−mk + k + 1

(
mn−mk + k + 1

n− k

)
,

and Tm(n, k) is the number of partial m-Dyck paths starting at (0, 0) and ending at
(mn−mk + k, k).

The row sum sequence bn =
∑n

k=0 Tm(n, k) counts the number of the partial m-
Dyck paths from (0, 0) to the line x+(m−1)y = mn. For example, the first few rows
of the lower triangular matrix T3 = (B3(t), tB3(t)) are (sequence A110616 in [22]):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

3 2 1 0 0 0 0 0 0

12 7 3 1 0 0 0 0 0

55 30 12 4 1 0 0 0 0

273 143 55 18 5 1 0 0 0

1428 728 273 88 25 6 1 0 0

7752 3876 1428 455 130 33 7 1 0

43263 21318 7752 2448 700 182 42 8 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Theorem 3.2. For n ≥ r ≥ 1, the following identity holds:

(m−1)(r−1)∑
k=0

am(r − 1, k)Tm(n + k + m− r − 1, k + m− 1) = C(m)
n (7)

Proof From Corollary 2.2, we obtain

C(m)
n = [tn−r]

(m−1)(r−1)∑
k=0

am(r − 1, k)Bm(t)k+m

=

(m−1)(r−1)∑
k=0

am(r − 1, k)[tn−r]Bm(t)k+m

=

(m−1)(r−1)∑
k=0

am(r − 1, k)Tm(n + k + m− r − 1, k + m− 1).

Corollary 3.3. For 0 ≤ i, j < n, we have

(m−1)i∑
k=0

am(i, k)Tm(n− j + k + m− 2, k + m− 1) = C
(m)
n+i−j. (8)

Corollary 3.4. For i, j ≥ 0, we have

(m−1)i∑
k=0

am(i, k)Tm(j + k + m− 1, k + m− 1) = C
(m)
i+j+1. (9)

Example 3.1. The most important special case arises when m = 2. We then have
A2 = T2. Thus, for i, j ≥ 0,

i∑
k=0

a(i, k)T2(j + k + 1, k + 1) = Ci+j+1.

When 0 ≤ i, j ≤ 3, we have⎛
⎜⎜⎜⎝

1 0 0 0

1 1 0 0

2 2 1 0

5 5 3 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 2 5 14

1 3 9 28

1 4 14 48

1 5 20 75

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 2 5 14

2 5 14 42

5 14 42 132

14 42 132 429

⎞
⎟⎟⎟⎠

Example 3.2. For m = 3, we have

2i∑
k=0

a3(i, k)T3(j + k + 2, k + 2) = C
(3)
i+j+1.
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When 0 ≤ i, j ≤ 3, we have the matrix identity:

⎛
⎜⎜⎜⎝

1 0 0 0 0 0 0

1 1 1 0 0 0 0

3 3 3 2 1 0 0

12 12 12 9 6 3 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 12 55

1 4 18 88

1 5 25 130

1 6 33 182

1 7 42 245

1 8 52 320

1 9 63 408

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 3 12 55

3 12 55 273

12 55 273 1428

55 273 1428 7752

⎞
⎟⎟⎟⎠ .

4 A Chung-Feller property of the m-Catalan paths

Definition 4.1. Let i, j ≥ 1. A partial Grand m-Dyck path α is called a (i, j)-
balance m-Dyck path if it can be decomposed in the form α = βγ satisfying:

(1) β is a negative m-Dyck path of length mi;

(2) γ is a partial m-Dyck path with j down steps;

(3) If the length of the last ascent of β is k, then the end point of γ is at height k,
where m− 1 ≤ k ≤ mi− i.

An example of a (2, 2)-balance 3-Dyck path is illustrated in Figure 2.
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Figure 2: A (2, 2)-balance 3-Dyck path.

Theorem 4.1. The number of (i, j)-balance m-Dyck paths is given by C
(m)
i+j .

Proof. By Theorem 1.1, am(i− 1, k) is the number of negative m-Dyck paths from
(0, 0) to (mi, 0) whose last ascent is of length k+m−1. By Theorem 3.1, Tm(j+k+
m−1, k+m−1) is the number of partial m-Dyck paths with j down steps and whose

last point is at height k+m−1. Hence
∑(m−1)i

k=0 am(i−1, k)Tm(j+k+m−2, k+m−1)
is the total number of (i, j)-balance Grand m-Dyck paths. By Corollary 3.3, we have

(m−1)(i−1)∑
k=0

am(i− 1, k)Tm(j + k + m− 2, k + m− 1) = C
(m)
i+j .

Therefore the number of (i, j)-balance m-Dyck paths is given by C
(m)
i+j .
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Figure 3: The (2, 1)-balance 3-Dyck paths.

Theorem 4.2. For n ≥ i ≥ 1, the number of (i, n − i)-balance m-Dyck paths is

counted by C
(m)
n , and is independent of i.

Example 4.1. For m = 3, i = 2, and j = 1, the number of (2, 1)-balance 3-Dyck

paths is equal to C
(3)
3 = 12. These paths are illustrated in Figure 3.
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generalized Motzkin paths, Séminaire Lotharingien de Combinatoire 46 (2001),
Article B46b.

[5] P. Barry, A note on a one-parameter family of Catalan-like numbers, J. Integer
Seq. 12(2009), Article 09.5.4.

[6] G.-S. Cheon, H. Kim and L.W. Shapiro, Combinatorics of Riordan arrays with
identical A and Z sequences, Discrete Math. 312 (2012), 2040–2049.

[7] K.L. Chung and W. Feller, On fluctuations in coin-tossing, Proc. Nat. Acad.
Sci. USA 35 (1949), 605–608.

[8] E.Y.P. Deng and T. Mansour, Three Hoppy path problems and ternary paths,
Discrete Appl. Math. 156 (2008), 770–779.

[9] S.-P. Eu, S.-C. Liu and Y.-N. Yeh, Taylor expansions for Catalan and Motzkin
numbers, Adv. Appl. Math. 29 (2002), no. 3, 345-357.

[10] S.-P. Eu, T.-S. Fu and Y.-N. Yeh, Refined Chung-Feller theorems for lattice
paths, J. Combin. Theory Ser. A 112 (2005), no. 1, 143-162.

[11] R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics, Addison-
Wesley, New York, 1989.

[12] T.X. He and R. Sprugnoli, Sequence characterization of Riordan arrays, Discrete
Math. 309 (2009), 3962–3974.

[13] T.X. He, Parametric Catalan numbers and Catalan triangles, Linear Alg. Appl.
438 (2013), 1467–1484.

[14] T.X. He, Matrix characterizations of Riordan arrays, Linear Algebra Appl. 465
(2015), 15–42.

[15] S. Heubach, N.Y. Li and T. Mansour, Staircase tilings and k-Catalan structures,
Discrete Math. 308 (24) (2008), 5954–5964.

[16] P. Hilton and J. Pedersen, Catalan numbers, their generalization, and their uses,
Math. Intell. 13 (1991), 64–75.

[17] A. Luzón, D. Merlini, M. Morón and R. Sprugnoli, Identities induced by Riordan
arrays, Linear Alg. Appl. 436 (2011), 631–647.

[18] T. Mansour and Y. Sun, Bell Polynomials and k-generalized Dyck Paths, Dis-
crete Appl. Math. 156 (2008), 2279–2292.

[19] T. Mansour, Protected points in k-ary trees, Appl. Math. Lett. 24 (2011), 478–
480.



S.-L. YANG AND L.-J. WANG/AUSTRALAS. J. COMBIN. 64 (3) (2016), 420–431 431

[20] W. M�lotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docu-
menta Mathematica 15 (2010), 939–955.

[21] L.W. Shapiro, S. Getu, W.-J. Woan and L. Woodson, The Riordan Group,
Discrete Appl. Math. 34 (1991), 229–239.

[22] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published elec-
tronically at http://oeis.org, 2014.
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