Partitions with bounded differences between largest and smallest parts

Robin Chapman
Department of Mathematics
University of Exeter
Exeter, EX4 4 QF
U.K.
R.J.Chapman@exeter.ac.uk

Abstract

We give a simple formal proof of a formula for the generating function of partitions with bounded differences between largest and smallest part.

1 Introduction

In [3] Breuer and Kronholm gave in effect two proofs for an explicit formula for the generating function for partitions where the difference between largest and smallest part is bounded by a given integer t. Their first proof is geometric, involving counting lattice points within a polyhedral region; their second proof constructs an explicit bijection. In this paper we give another proof, a formal calculation involving elementary q-series manipulation, involving no results deeper than the q-binomial theorem.

The results of [3] imply a theorem of Andrews, Beck and Robbins [2] on partitions where the difference between largest and smallest part is a fixed integer t. They use formal q-series methods which go beyond ours, for instance Heine's transformation for basic hypergeometric series.

2 The main result

Recall that a partition λ of an integer n is a finite sequence $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ where the integers λ_{i} satisfy $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0$ and $n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}$. Its parts are $\lambda_{1}, \ldots, \lambda_{k}$. We write $|\lambda|=\lambda_{1}+\cdots+\lambda_{k}$. It is convenient to allow trailing zeros in partition notation: we regard $\left(\lambda_{1}, \ldots, \lambda_{k}, 0\right)$ as the same partition as $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$.

We use standard q-series notation. For integers $n \geq 0$ we define

$$
(a)_{n}=\prod_{j=0}^{n-1}\left(1-a q^{j}\right)
$$

For integers $n \geq k \geq 0$ define

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q)_{n}}{(q)_{k}(q)_{n-k}}=\frac{\left(q^{n-k+1}\right)_{k}}{(q)_{k}}
$$

Let \mathcal{P}_{t} be the generating function for nonempty partitions where the difference between the largest and smallest part is $\leq t$. Write

$$
P_{t}(q)=\sum_{\lambda \in \mathcal{P}_{t}} q^{|\lambda|}
$$

for the generating function of \mathcal{P}_{t}. As Breuer and Kronholm [3] point out, $P_{0}(q)$ is not a rational function, but for $t \geq 1, P_{t}(q)$ is a rational function. We give an alternative proof of this theorem.

Theorem 1 [3] For $t \geq 1$

$$
P_{t}(q)=\frac{1}{1-q^{t}}\left(\frac{1}{(q)_{t}}-1\right)
$$

where $(a)_{t}=\prod_{j=0}^{t-1}\left(1-a q^{j}\right)$.
Proof The set \mathcal{P}_{t} is the disjoint union of sets $\mathcal{P}_{t, r, m}$ for $r, m \geq 1$ where $\mathcal{P}_{t, r, m}$ is the set of $\lambda \in \mathcal{P}_{t}$ with r parts and smallest part m (and so largest part $\leq m+t$). Then

$$
P_{t}(q)=\sum_{r, m=1}^{\infty} P_{t, r, m}(q)
$$

where $P_{t, r, m}(q)=\sum_{\lambda \in \mathcal{P}_{t, r, m}} q^{|\lambda|}$. Each element of $\mathcal{P}_{t, r, m}$ has the form $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ where $m+t \geq \lambda_{1} \geq \cdots \geq \lambda_{r}=m$. Then $\mu=\left(\lambda_{1}-m, \ldots, \lambda_{r-1}-m\right)$ is a partition of $|\lambda|-r m$ with at most $r-1$ parts and greatest part $\leq t$. The generating function for such partitions is the q-binomial coefficient $\left[\begin{array}{c}r+t-1 \\ t\end{array}\right]_{q}[1$, Theorem 3.1] and so

$$
P_{t, r, m}(q)=q^{r m}\left[\begin{array}{c}
r+t-1 \\
t
\end{array}\right]_{q} .
$$

Therefore

$$
\begin{aligned}
P_{t}(q) & =\sum_{r, m=1}^{\infty} q^{r m}\left[\begin{array}{c}
r+t-1 \\
t
\end{array}\right]_{q}=\sum_{r=1}^{\infty} \frac{q^{r}}{1-q^{r}} \frac{\left(q^{r}\right)_{t}}{(q)_{t}} \\
& =\frac{1}{(q)_{t}} \sum_{r=1}^{\infty} q^{r}\left(q^{r+1}\right)_{t-1} .
\end{aligned}
$$

At this point we use the q-binomial theorem in the form [1, Theorem 3.3]

$$
(x)_{n}=\sum_{j=0}^{n}(-1)^{j} q^{j(j-1) / 2}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q} x^{n-j}
$$

We get

$$
\begin{aligned}
P_{t}(q) & =\frac{1}{(q)_{t}} \sum_{j=0}^{t-1} \sum_{r=1}^{\infty}(-1)^{j} q^{(j+1) r} q^{j(j+1) / 2}\left[\begin{array}{c}
t-1 \\
j
\end{array}\right]_{q} \\
& =\frac{1}{(q)_{t}} \sum_{j=0}^{t-1}(-1)^{j} \frac{q^{j+1}}{1-q^{j+1}} q^{j(j+1) / 2}\left[\begin{array}{c}
t-1 \\
j
\end{array}\right]_{q} \\
& =\frac{1}{(q)_{t}\left(1-q^{t}\right)} \sum_{j=0}^{t-1}(-1)^{j} q^{(j+1)(j+2) / 2}\left[\begin{array}{c}
t \\
j+1
\end{array}\right]_{q} \\
& =\frac{1}{(q)_{t}\left(1-q^{t}\right)} \sum_{k=1}^{t}(-1)^{k-1} q^{k(k+1) / 2}\left[\begin{array}{c}
t \\
k
\end{array}\right]_{q} \\
& =\frac{1-(q)_{t}}{(q)_{t}\left(1-q^{t}\right)}=\frac{1}{1-q^{t}}\left(\frac{1}{(q)_{t}}-1\right) .
\end{aligned}
$$

at the last stage using the q-binomial theorem again.

3 Remarks

In [2, Theorem 1] Andrews, Beck and Robbins prove a formula for $\tilde{P}_{t}(q)=\sum_{\lambda \in \tilde{P}_{t}} q^{|\lambda|}$ where \tilde{P}_{t} is the set of partitions in which the difference between largest and smallest part is exactly t, valid when $t \geq 2$. As pointed out in in [3], $\tilde{P}_{t}(q)=P_{t}(q)-P_{t-1}(q)$ and so this formula follows immediately from Theorem 1.

Andrews, Beck and Robbins [2, Theorem 3] also give a generalization to partitions with a set of specified distances. The author is uncertain whether the methods of the present paper can be extended to prove such generalizations.

References

[1] George E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
[2] George E. Andrews, Matthias Beck and Neville Robbins, Partitions with fixed differences between largest and smallest parts, Proc. Amer. Math. Soc. 143 (2015), 4283-4289.
[3] Felix Breuer and Brandt Kronholm, A polyhedral model of partitions with bounded differences and a bijective proof of a theorem of Andrews, Beck, and Robbins, arXiv:1505.00250, 2015.

