# A note on signed $k$-matching in graphs 

S. Akbari M. Dalirrooyfard*<br>Department of Mathematical Sciences Sharif University of Technology<br>Tehran<br>Iran<br>s_akbari@sharif.edu<br>mdalirrooyfard@ce.sharif.edu<br>K. Ehsani<br>R. Sherkati<br>Department of Computer Engineering<br>Sharif University of Technology<br>Tehran<br>Iran<br>kehsani@ce.sharif.edu sherkati@ce.sharif.edu


#### Abstract

Let $G$ be a graph of order $n$. For every $v \in V(G)$, let $E_{G}(v)$ denote the set of all edges incident with $v$. A signed $k$-matching of $G$ is a function $f: E(G) \longrightarrow\{-1,1\}$, satisfying $f\left(E_{G}(v)\right) \leq 1$ for at least $k$ vertices, where $f(S)=\sum_{e \in S} f(e)$, for each $S \subseteq E(G)$. The maximum of the values of $f(E(G))$, taken over all signed $k$-matchings $f$ of $G$, is called the signed $k$-matching number and is denoted by $\beta_{S}^{k}(G)$. In this paper, we prove that for every graph $G$ of order $n$ and for any positive integer $k \leq n, \beta_{S}^{k}(G) \geq n-k-\omega(G)$, where $w(G)$ is the number of components of $G$. This settles a conjecture proposed by Wang. Also, we present a formula for the computation of $\beta_{S}^{n}(G)$.


## 1 Introduction

Let $G$ be a simple graph with the vertex set $V(G)$ and edge set $E(G)$. For every $v \in V(G)$, let $N(v)$ and $E_{G}(v)$ denote the set of all neighbors of $v$ and the set of all edges incident with $v$, respectively. A signed $k$-matching of a graph $G$ is a

[^0]function $f: E(G) \longrightarrow\{-1,1\}$, satisfying $f\left(E_{G}(v)\right) \leq 1$ for at least $k$ vertices, where $f(S)=\sum_{e \in S} f(e)$, for each $S \subseteq E(G)$. The maximum value of $f(E(G))$, taken over all signed $k$-matching $f$, is called the signed $k$-matching number of $G$ and is denoted by $\beta_{S}^{k}(G)$. We refer to a signed $n$-matching as a signed matching. The concept of signed matching has been studied by several authors; for instance see [1], [2], [4] and [5].

Throughout this paper, changing $f(e)$ to $-f(e)$ for an edge $e$ is called switching the value of $e$. Let $T$ be a trail with the edges $e_{1}, \ldots, e_{m}$ and $f: E(G) \longrightarrow\{-1,1\}$ be a function. Call $T$ a good trail, if $f\left(e_{i}\right)=-f\left(e_{i+1}\right)$ for $i=1, \ldots, m-1$. If $f\left(e_{1}\right)=a$ and $f\left(e_{m}\right)=b$, then we call $T$ a good $(a, b)$-trail. Define $O_{f}(G)=\{v \in V(G) \mid d(v) \equiv$ $\left.1(\bmod 2), f\left(E_{G}(v)\right)<1\right\}$. A vertex is called odd if its degree is odd. The following conjecture was proposed in [3].
Conjecture. Let $G$ be a graph without isolated vertices. Then for any positive integer $k$,

$$
\beta_{S}^{k}(G) \geq n-k-\omega(G)
$$

where $\omega(G)$ denotes the number of components of $G$.
In this note we prove this conjecture. Before stating the proof, we need the following result.

Theorem 1. Let $G$ be a connected graph of order $n$. Then for any positive integer $k \leq n, \beta_{S}^{k}(G) \geq n-k-1$.

Proof. If $G$ is a cycle, then by Theorem 2 of [3] the assertion is obvious. Thus assume that $G$ is not a cycle. Now, we apply induction on $|E(G)|-|V(G)|$. Since $G$ is connected, $|E(G)|-|V(G)| \geq-1$. If $|E(G)|-|V(G)|=-1$, then $G$ is a tree and so by Theorem 6 of [3], we are done. Now, suppose that the assertion holds for every graph $H$ with $|E(H)|-|V(H)| \leq t(t \geq-1)$ and $G$ be a connected graph such that $|E(G)|-|V(G)|=t+1$. Since $|E(G)|-|V(G)| \geq 0, G$ contains a cycle $C$ and there exists a vertex $v$ such that $v \in V(C)$ and $d(v) \geq 3$. Assume that $u, w \in N(v) \cap V(C)$. Let $x \in N(v) \backslash\{u, w\}$. Remove two edges $v w$ and $x v$ and add a new vertex $v^{\prime}$. Join $v^{\prime}$ to both $x$ and $w$. Call the new graph $G^{\prime}$. Clearly, $G^{\prime}$ is connected and $\left|E\left(G^{\prime}\right)\right|-\left|V\left(G^{\prime}\right)\right|=t$. By the induction hypothesis, $\beta_{S}^{k+1}\left(G^{\prime}\right) \geq$ $\left|V\left(G^{\prime}\right)\right|-k-2=n-k-1$. We claim that $\beta_{S}^{k}(G) \geq \beta_{S}^{k+1}\left(G^{\prime}\right)$. Let $f$ be a signed $(k+1)$-matching of $G^{\prime}$ such that $f\left(E\left(G^{\prime}\right)\right)=\beta_{S}^{k+1}\left(G^{\prime}\right)$. Define a function $g$ on $E(G)$ as follows:

For every $e \in E(G) \backslash\{v x, v w\}$, let $g(e)=f(e)$. Moreover, define $g(x v)=f\left(x v^{\prime}\right)$ and $g(v w)=f\left(v^{\prime} w\right)$. It is not hard to see that $g$ is a $k$-matching of $G$. So $\beta_{S}^{k}(G) \geq$ $g(E(G))=\beta_{S}^{k+1}\left(G^{\prime}\right)$. Thus $\beta_{S}^{k}(G) \geq n-k-1$, and the claim is proved. The proof is complete.

Now, using the previous theorem we show that the conjecture holds.

Theorem 2. Let $G$ be a graph of order $n$ without isolated vertices. Then for any positive integer $k \leq n$,

$$
\beta_{S}^{k}(G) \geq n-k-\omega(G),
$$

where $\omega(G)$ denotes the number of components of $G$.

Proof. For the abbreviation let $\omega=\omega(G)$. If $\omega=1$, then by Theorem 1 the assertion holds. Now, suppose that $\omega>1$ and $G_{1}, \ldots, G_{\omega}$ are all components of $G$. Let $f: E(G) \longrightarrow\{-1,1\}$, be a signed $k$-matching function such that $f(E(G))=$ $\beta_{S}^{k}(G)$. Suppose that $A \subset\left\{v \in V(G) \mid f\left(E_{G}(v)\right) \leq 1\right\}$ and $|A|=k$. Let $k_{i}=\mid\{v \in$ $\left.V\left(G_{i}\right) \cap A \mid f\left(E_{G}(v)\right) \leq 1\right\} \mid$, for $i=1, \ldots, \omega$. Obviously, $\sum_{i=1}^{\omega} k_{i}=k$. By Theorem 1, $\beta_{S}^{k_{i}}\left(G_{i}\right) \geq\left|V\left(G_{i}\right)\right|-k_{i}-1$, for $i=1, \ldots, \omega$. Now, we show that $\beta_{S}^{k_{i}}\left(G_{i}\right)=f\left(E\left(G_{i}\right)\right)$. By contradiction, suppose that $\beta_{S}^{k_{i}}\left(G_{i}\right)>f\left(E\left(G_{i}\right)\right)$, for some $i, i=1, \ldots, \omega$. Let $g$ : $E(G) \longrightarrow\{-1,+1\}$ be a function such that $g(e)=f(e)$, for every $e \in E(G) \backslash E\left(G_{i}\right)$ and the restriction of $g$ on $E\left(G_{i}\right)$ is a signed $k_{i}$-matching with $g\left(E\left(G_{i}\right)\right)=\beta_{S}^{k_{i}}\left(G_{i}\right)$. So we conclude that $g(E(G))>\beta_{S}^{k}(G)$, a contradiction. Thus $\beta_{S}^{k}(G)=f(E(G))=$ $\sum_{i=1}^{\omega} f\left(E\left(G_{i}\right)\right)=\sum_{i=1}^{\omega} \beta_{S}^{k_{i}}\left(G_{i}\right) \geq \sum_{i=1}^{\omega}\left(\left|V\left(G_{i}\right)\right|-k_{i}-1\right)=|V(G)|-k-\omega$.

Now, suppose that $G$ is a connected graph containing exactly $2 k$ odd vertices. Let $P$ be a partition of the edge set into $m$ trails, say $T_{1}, \ldots, T_{m}$, for some $m$. Call $P$ a complete partition if $m=k$. By Theorem 1.2.33 of [6], for every connected graph with $2 k$ odd vertices there exists at least one complete partition. Note that for every odd vertex $v \in V(G)$, there exists $i$ such that $v$ is an endpoint of $T_{i}$, where $P: T_{1}, \ldots, T_{k}$ is a complete partition of $G$. So we obtain that the end vertices of $T_{i}$ are odd and they are mutually disjoint, for $i=1, \ldots, k$. Now, define $\tau(P)=$ $\left|\left\{i\left|\left|E\left(T_{i}\right)\right| \equiv 1(\bmod 2)\right\} \mid\right.\right.$. Let $\eta(G)=\max \tau(P)$, taken over all complete partitions of $G$. In the next theorem we provide an explicit formula for the signed $n$-matching number of a graph.

Theorem 3. For every non-Eulerian connected graph $G$ of order $n, \beta_{S}^{n}(G)=\eta(G)$.
Proof. For the simplicity, let $O_{f}=O_{f}(G)$. Let $f$ be a signed matching such that $\left|O_{f}\right|=\max \left(\left|O_{g}\right|\right)$ taken over all signed matching $g$ with $g(E(G))=\beta_{S}^{n}(G)$. We prove that $f\left(E_{G}(v)\right) \geq-1$, for every $v \in V(G)$.

By contradiction suppose that there is a vertex $v \in V(G)$ such that $f\left(E_{G}(v)\right) \leq$ -2 . Let $W$ be a longest good $(-1, \pm 1)$-trail starting at $v$. Suppose that $W$ ends at $u$. There are two cases:

Case 1. Assume that $u \neq v$. If $W$ is a good $(-1,-1)$-trail, then $f\left(E_{G}(u)\right) \leq-1$, since otherwise there exists $e \in E_{G}(u) \backslash E(W)$ such that $f(e)=1$, therefore $W$ can be extended and it contradicts the maximality of $|E(W)|$. Now, switch the values of all edges of $W$ to obtain a function $g$ on $E(G)$, where $g\left(E_{G}(x)\right)=f\left(E_{G}(x)\right)$ for every $x \in V(G) \backslash\{u, v\}$, and $g\left(E_{G}(x)\right)=f\left(E_{G}(x)\right)+2$ for $x \in\{u, v\}$. Thus $g$ is a signed matching of $G$ such that $g(E(G))=\beta_{S}^{n}(G)+2$, a contradiction.
If $W$ is a good $(-1,1)$-trail, then $f\left(E_{G}(u)\right)=1$, since otherwise there exists $e \in$
$E_{G}(u) \backslash E(W)$, where $f(e)=-1$, a contradiction. Now, switch the values of all the edges of $W$ to obtain a function $g$ on $E(G)$, where $g\left(E_{G}(x)\right)=f\left(E_{G}(x)\right)$ for $x \in V(G) \backslash\{u, v\}, g\left(E_{G}(u)\right)=-1$ and $g\left(E_{G}(v)\right)<1$. So $g$ is a signed matching of $G$ such that $g(E(G))=\beta_{S}^{n}(G)$ and $\left|O_{g}\right|=\left|O_{f}\right|+1$, a contradiction.

Case 2. Now, let $u=v$. Note that $W$ is a good $(-1,-1)$-trail, since otherwise $\sum_{e \in E(W) \cap E_{G}(v)} f(e)=0$ and using the inequality $f\left(E_{G}(v)\right) \leq-2$, we conclude that there exists $e \in E_{G}(v) \backslash E(W)$, such that $f(e)=-1$. Therefore $W$ can be extended, a contradiction.

If $f\left(E_{G}(v)\right) \leq-3$, then switch the values of all edges of $W$ to obtain a signed matching $g$ such that $g(E(G))=\beta_{S}^{n}(G)+2$, a contradiction. Now, assume that $f\left(E_{G}(v)\right)=-2$. We show that $f\left(E_{G}(t)\right)=0$, for every $t \in V(W) \backslash\{v\}$. By contradiction, suppose that there exists $x \in V(W) \backslash\{v\}$, such that $f\left(E_{G}(x)\right) \neq 0$. Let $e_{1}, \ldots, e_{m}$ be all edges of $W$. Assume that $e_{i}$ and $e_{i+1}$ are two consecutive edges of $W$ which are incident with $x$. With no loss of generality, assume that $f\left(e_{i}\right)=-1$. First, suppose that $f\left(E_{G}(x)\right) \leq-1$. Call the sub-trail induced on the edges $e_{1}, e_{2}, \ldots, e_{i}$ by $W_{1}$. Clearly, $W_{1}$ is a good $(-1,-1)$-trail. Switch the values of all edges of $W_{1}$ to obtain a signed matching $g$ such that $g(E(G))=\beta_{S}^{n}(G)+2$, a contradiction. Next, suppose that $f\left(E_{G}(x)\right)=1$. Call the sub-trail induced on the edges $e_{i+1}, \ldots, e_{m}$ by $W_{2}$. Clearly, $W_{2}$ is a good $(1,-1)$-trail. Switch the values of all edges of $W_{2}$ to obtain a signed matching $g$ such that $g\left(E_{G}(x)\right)=-1, g\left(E_{G}(v)\right)=0$ and $g\left(E_{G}(z)\right)=f\left(E_{G}(z)\right)$, for every $z \in E(G) \backslash\{x, v\}$. So $g(E(G))=\beta_{S}^{n}(G)$ and $\left|O_{g}\right|=\left|O_{f}\right|+1$, a contradiction. Thus, $f\left(E_{G}(t)\right)=0$, for every $t \in V(W) \backslash\{v\}$.

Now, we show that $E_{G}(v) \subseteq E(W)$. By contradiction assume that there exists $e \in E_{G}(v) \backslash E(W)$. If $f(e)=1$, then $W$ can be extended, a contradiction. If $f(e)=-1$, then $f\left(E_{G}(v)\right) \leq-3$ which contradicts $f\left(E_{G}(v)\right)=-2$. Thus $E_{G}(v) \subseteq$ $E(W)$. Since $G$ is non-Eulerian, there are $x \in V(W) \backslash\{v\}$ and $y \in V(G)$ such that $x y \notin E(W)$. Let $W^{\prime}$ be a longest good trail in $G \backslash E(W)$ whose first vertex and first edge are $x$ and $x y$, respectively. Suppose that $W^{\prime}$ ends at $y^{\prime}$ and the last edge of $W^{\prime}$ is $e$. We have two possibilities:

If $y^{\prime}=x$, then we show that $W^{\prime}$ is a good $(1,-1)$ or $(-1,1)$-trail. To see this, since $f\left(E_{G}(x)\right)=0$, we obtain that $f\left(E_{G}(x) \backslash E(W)\right)=0$. If $f(e)=f(x y)$, then there exists $e^{\prime} \in E_{G}(x) \backslash\left(E(W) \cup E\left(W^{\prime}\right)\right)$ such that $f\left(e^{\prime}\right)=-f(x y)$. So $W^{\prime}$ can be extended, a contradiction. Thus $f(e) \neq f(x y)$. It is not hard to see that the trail with the edges $E(W) \cup E\left(W^{\prime}\right)$ is a good $(-1,-1)$-trail starting at $v$, a contradiction.

Now, suppose that $y^{\prime} \neq x$. Assume that $x$ is the common endpoint of $e_{j}$ and $e_{j+1}$, for some $j, 1 \leq j \leq m-1$. With no loss of generality assume that $f\left(e_{j}\right)=-f(x y)$. Consider the trail $W^{\prime \prime}: e_{1}, \ldots, e_{j}, W^{\prime}$. Since $E_{G}(v) \subseteq E(W), y^{\prime} \neq v$. If $y^{\prime} \in V(W)$, then $f\left(E_{G}\left(y^{\prime}\right)\right)=0$ and $\sum_{z \in\left(E_{G}(W) \cup E_{G}\left(W^{\prime}\right)\right) \cap E_{G}\left(y^{\prime}\right)} f(z)=f(e)$. Hence there exists $e^{\prime} \in E_{G}\left(y^{\prime}\right) \backslash\left(E_{G}(W) \cup E_{G}\left(W^{\prime}\right)\right)$ such that $f\left(e^{\prime}\right)=-f(e)$, which contradicts the maximality of $\left|E\left(W^{\prime}\right)\right|$. Thus $y^{\prime} \notin V(W)$ and so $W^{\prime \prime}$ is a maximal good trail in $G$. So we reach to Case 1 which we discussed before (Note that in Case 1 we used just the maximality of the length of $W$ ).

So far we have proved that $f\left(E_{G}(z)\right) \geq-1$, for every $z \in V(G)$. In the sequel assume that $G$ has exactly $2 k$ odd vertices. We would like to partition $G$ into $k$ good trails.

Let $T: e_{1}, \ldots, e_{m}$ be a longest good trail in $G$. Suppose that $T$ starts at $u_{1}$ and ends at $u_{2}$, where $u_{1}, u_{2} \in V(G)$. First, we show that $u_{1} \neq u_{2}$. By contradiction assume that $u_{1}=u_{2}$. Suppose that $f\left(e_{1}\right) \neq f\left(e_{m}\right)$. Since $G$ is non-Eulerian, there exists $e \in E(G) \backslash E(T)$ and $e$ is adjacent to the common endpoint of $e_{i}$ and $e_{i+1}$ for some $i, i=1, \ldots, m\left(e_{m+1}=e_{1}\right)$. With no loss of generality assume that $f(e) \neq f\left(e_{i}\right)$, so $T^{\prime}: e, e_{i}, e_{i-1}, \ldots, e_{1}, e_{m}, \ldots, e_{i+1}$ is a good trail with $m+1$ edges, a contradiction. Now, suppose that $f\left(e_{1}\right)=f\left(e_{m}\right)$. Since $\sum_{z \in E_{G}\left(u_{1}\right) \cap E(T)} f(z)=2 f\left(e_{1}\right)$ and $\left|f\left(E_{G}\left(u_{1}\right)\right)\right| \leq 1$, we obtain that there exists $a \in E_{G}\left(u_{1}\right) \backslash E(T)$ such that $f(a) \neq f\left(e_{1}\right)$. So $T$ can be extended, a contradiction.
Hence $u_{1} \neq u_{2}$. Since $f\left(E_{G}(v)\right)=0$, for every $v \in V(G)$ of even degree, we obtain that $u_{1}$ and $u_{2}$ have odd degrees. Indeed, if $u_{1}$ has even degree, then $f\left(E_{G}\left(u_{1}\right)\right)=0$ and so $T$ can be extended, a contradiction. Now, we show that $E_{G}\left(u_{1}\right) \cup E_{G}\left(u_{2}\right) \subseteq E(T)$. By contradiction, suppose that there is an edge $e \in$ $E_{G}\left(u_{1}\right) \backslash E(T)$. Clearly, $f(e)=f\left(e_{1}\right)$. Since $\sum_{a \in E_{G}\left(u_{1}\right) \cap E(T)} f(a)=f\left(e_{1}\right)$, it is not hard to see that $\left|f\left(E_{G}\left(u_{1}\right)\right)\right| \geq 2$, a contradiction. Hence $E_{G}\left(u_{1}\right) \cup E_{G}\left(u_{2}\right) \subseteq E(T)$.

Let $G^{\prime}=G \backslash\left(E(T) \cup\left\{u_{1}, u_{2}\right\}\right)$. First, we prove that $G^{\prime}$ has no Eulerian component. By contradiction suppose that $H$ is an Eulerian component of $G^{\prime}$. Since $\left|f\left(E_{G}(v)\right)\right| \leq$ 1 , for every $v \in V(G)$, we have $f\left(E_{G}(v)\right)=0$, for every $v \in V(H)$. It is straight forward to see that there is an Eulerian circuit $C: t_{1}, t_{2}, \ldots, t_{|E(H)|}$ of $H$ such that $f\left(t_{i}\right)=-f\left(t_{i+1}\right)$, for $i=1, \ldots,|E(H)|-1$. Clearly,

$$
|E(C)| \equiv \sum_{e \in E(C)} f(e) \equiv \frac{\sum_{v \in V(C)} f\left(E_{H}(v)\right)}{2} \equiv 0(\bmod 2)
$$

Hence, $f\left(t_{1}\right)=-f\left(t_{|E(H)|}\right)$. Since $G$ is connected and all of the edges of $u_{1}$ and $u_{2}$ belong to $E(T)$, there exists $v \in V(H) \cap V(T)$. It is not hard to see that we have a good trail with the edge set $E(T) \cup E(C)$ which is longer than $T$, a contradiction. So if $k=2$, then $E\left(G^{\prime}\right)=\emptyset$, and $E(G)$ forms a good trail. Now, apply induction on $k$. Suppose that $k>2$. Let $H_{1}, \ldots, H_{r}$ be all components of $G^{\prime}$, where $H_{i}$ has $k_{i}$ odd vertices $\left(k_{i} \geq 2\right)$, for $i=1, \ldots, r$. It is clear that $f$ is a signed matching of $H_{i}$ such that $f\left(E\left(H_{i}\right)\right)=\beta_{S}^{\left|V\left(H_{i}\right)\right|}\left(H_{i}\right)$ and $O_{f}\left(H_{i}\right)=\max O_{g}\left(H_{i}\right)$ taken over all signed matching $g$ with $g\left(E\left(H_{i}\right)\right)=\beta_{S}^{\left|V\left(H_{i}\right)\right|}\left(H_{i}\right)$. So $E\left(H_{i}\right)$ can be decomposed into $k_{i}$ good trails, for $i=1, \ldots, r$. Hence, $G$ has a complete partition, say $P$, into $k$ good trails. Obviously, $f(E(G)) \leq \tau(P) \leq \eta(G)$. Thus, $\beta_{S}^{n}(G) \leq \eta(G)$. Now, we give a signed matching $f$ such that $f(E(G))=\eta(G)$.

Consider a complete partition $P$ of the edge set of $G$, where $\tau(P)=\eta(G)$. For each trail $T_{i}$ assign +1 and -1 to the edges of $T_{i}$, alternatively, to obtain a signed matching $f$ where $f(E(G))=\eta(G)$. So the proof is complete.

Remark. For every Eulerian graph $G$ of size $m, \beta_{S}^{n}(G)=0$ if $m$ is even and $\beta_{S}^{n}(G)=-1$ if $m$ is odd. To see this, let $f$ be a signed matching of $G$ such that
$f(E(G))=\beta_{S}^{n}(G)$. Since the degree of each vertex of $G$ is even, $f\left(E_{G}(v)\right) \leq 0$, for every $v \in V(G)$. Thus $f(E(G))=\frac{1}{2} \sum_{v \in V(G)} f\left(E_{G}(v)\right) \leq 0$. Therefore, $\beta_{S}^{n}(G) \leq 0$, if $m$ is even and $\beta_{S}^{n}(G) \leq-1$, if $m$ is odd. Now, consider an Eulerian circuit of $G$. Assign -1 and +1 to the edges of this Eulerian circuit, alternatingly to obtain a signed matching $g$ with the desired property.

## References

[1] R. P. Anstee, A polynomial algorithm for $b$-matchings an alternative approach, Inform. Process. Lett. 24(3) (1987), 153-157.
[2] A. N. Ghameshlou, A. Khodkar, R. Saei and S. M. Sheikholeslami, Signed ( $b, k$ )Edge Covers in Graphs, Intelligent Information Management 2 (2010), 143-148.
[3] C. Wang, The signed $k$-submatching in graphs, Graphs Combin. 29(6) (2013), 1961-1971.
[4] C. Wang, Signed $b$-matchings and $b$-edge covers of strong product graphs, Contrib. Discrete Math. 5(2) (2010), 1-10.
[5] C. Wang, The signed matchings in graphs, Discuss. Math. Graph Theory 28(3) (2008), 477-486.
[6] D. B. West, Introduction To Graph Theory, Second Ed., Prentice Hall (2007).


[^0]:    * Also at Department of Computer Engineering, Sharif University of Technology, Iran.

