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Abstract

The dimension of a graph G is defined to be the minimum n such that
G has a representation as a unit-distance graph in R

n. A problem posed
by Paul Erdős asks for the minimum number of edges in a graph of
dimension 4. In a recent article, R. F. House showed that the answer to
Erdős’ question is 9. In this article, we give a shorter (and we feel more
straightforward) proof of House’s result, and then extend our methods to
answer the question for dimension 5 as well. It is ultimately shown that
a dimension 5 graph has at least 15 edges, and that this lower bound is
realized only by two graphs: K6 and K1,3,3.

1 Introduction

The concept of graph dimension originated in a 1965 article [1] by three giants of
twentieth century mathematics, Erdős, Harary, and Tutte. For a finite simple graph
G, define G to be of dimension n and write dim(G) = n if n is the smallest integer
such that G can be represented with vertices as points of Rn with vertices being
adjacent only if they are a Euclidean distance 1 apart. Note that in the definition,
we are not forced to include an edge if two vertices are distance 1 apart, so G is not
necessarily induced. In the parlance associated with the subject, if dim(G) = n for
a given graph G, then for all m ≥ n, it is said that G is embeddable in R

m or that G
has a unit-distance representation in R

m. Alexander Soifer devotes a chapter of The
Mathematical Coloring Book [3] to the discussion of graph dimension and related



J. CHAFFEE AND M. NOBLE/AUSTRALAS. J. COMBIN. 64 (2) (2016), 327–333 328

topics, and in his discourse relates the following problem posed by Erdős in private
communication.

“What is the smallest number of edges in a graph G such that dim(G) = 4?”

In a 2013 article [2], R. F. House showed that the answer to the above question is
9 and furthermore, that the complete bipartite graph K3,3 is the unique graph that
achieves this bound. In our current work, we provide an alternate proof of House’s
result, in particular, one that has the added benefit of sidestepping much of the case
analysis required in his original paper. We then extend our methods to answer Erdős’
question in dimension 5, ultimately showing that the minimum number of edges in a
graph G with dim(G) = 5 is 15 and that this minimum is realized only in the cases
of K6 and the complete tripartite graph K1,3,3.

2 Preliminary Results

In the previously mentioned [1], Erdős, Harary, and Tutte determine the dimension
of a number of common graphs. Several of their results will be used repeatedly in
the arguments that follow, and for easy reference we give them as lemmas below.

Lemma 1. dim(Kn) = n− 1.

Lemma 2. dim(Kn − e) = n− 2 where e is any edge of Kn.

Lemma 3. dim(Kn,m) = 4 for m,n ≥ 3.

Lemma 4. Let H be any subgraph of G. Then dim(H) ≤ dim(G).

Lemma 4 can be rephrased in terms of graph complements. For a graph G, define
G to be the complement of G where V (G) = V (G) and E(G) = {uv : uv �∈ E(G)}.
It is easily seen that for graphs G and H with |V (G)| = |V (H)|, if G is a subgraph
of H, then H is a subgraph of G. This gives the following corollary.

Corollary 5. Let G be a subgraph of H where |V (G)| = |V (H)|. Then dim(H) ≤
dim(G).

3 Erdős’ Question in Dimension 4

The following two theorems were first proven by House in [2]. We reprove his results
below in a new and more concise manner.

Theorem 6. The minimum number of edges of a graph G with dim(G) = 4 is nine.

Proof. Let G be a graph which cannot be embedded in R
3 where |E(G)| is minimum.

Assume |E(G)| ≤ 8. Since |E(G)| is minimum, obviously G cannot contain a vertex
of degree 1.

We claim that G also cannot contain a vertex of degree 2. To see this, let
u ∈ V (G) with deg u = 2 and let uv1 and uv2 be distinct edges of G. Let G′ be
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defined by V (G′) = V (G) \ {u} and E(G′) = (E(G) \ {uv1, uv2}) ∪ {v1v2}. Since
|E(G′)| < |E(G)|, G′ can be embedded in R

3. Since v1 and v2 are distance 1 apart in
this embedding, the spheres of radius 1 centered at v1 and v2 intersect in a circle. In
particular, there are an infinite number of points distance 1 from both v1 and v2. We
may choose one of these to be u. This gives us a supergraph of G—that is, G along
with the edge v1v2—which is embeddable in R

3 (note here that we are following the
nomenclature convention of a graph being a supergraph of itself as v1v2 may already
be an edge of G). So by Lemma 4, G has dimension at most 3, a contradiction which
completes the proof of the claim.

We may now begin with G and insert edges between vertices of G (if |E(G)| < 8)
to create a graph H where dim(H) > 3, |E(H)| = 8, and deg v ≥ 3 for each
v ∈ V (H). As |E(H)| = 8, the sum of the degree measures of all vertices of H is
equal to 16. It is then easy to see that the only possible degree sequence of H is
(4, 3, 3, 3, 3). This, however, implies that H is a subgraph of K5 − e and by Lemmas
2 and 4, we have that dim(H) ≤ 3. This contradiction, along with the facts that
dim(K3,3) = 4 and |E(K3,3)| = 9, completes the proof of the theorem.

Theorem 7. The only dimension 4 graph with nine edges is K3,3.

Proof. Let G be a graph with dim(G) = 4 and |E(G)| = 9. By the arguments in the
preceding theorem, it must be the case that for any v ∈ V (G), deg v ≥ 3. K4 has
only six edges so G must have at least 5 vertices. If G has 5 vertices, then each vertex
must have degree at least 3 as argued above and at most 4 since G has 5 vertices. It
follows that G must have degree sequence (4, 4, 4, 3, 3). If G is on 6 vertices, the fact
that each vertex must have degree at least 3 immediately implies that the only degree
sequence is (3, 3, 3, 3, 3, 3). The sequence (4, 4, 4, 3, 3) corresponds solely to the graph
K5 − e. By Lemma 2, dim(K5 − e) = 3, so this degree sequence cannot represent
G. Note now that the complement of a graph with degree sequence (3, 3, 3, 3, 3, 3) is
a 2-regular graph on six vertices; in other words, a cycle C6 or a graph whose two
components are each copies of K3. If G = C6, then G has an embedding in R

2 with
vertices (0, 0), (1, 0), (0, 1), (1, 1), (1

2
,
√
3
2
), and (1

2
, 1+

√
3
2
). If G consists of two copies

of K3, then G = K3,3.

4 Erdős’ Question in Dimension 5

In this section, we show that there are exactly two dimension 5 graphs with minimum
edge set: K6, whose dimension is given in Lemma 1, and K1,3,3, which is addressed
in the following theorem.

Theorem 8. dim(K1,3,3) = 5.

Proof. As K1,3,3 is a subgraph of K7 − e, we have that dim(K1,3,3) ≤ 5. We will
now suppose there exists an embedding of K1,3,3 in R

4 and establish a contradiction.
Label K1,3,3 as having partite sets A, B, and C where |A| = |B| = 3 and |C| = 1.
We may freely assume that one of the vertices of A is the origin (0, 0, 0, 0). Call
the other two vertices of that part u and v. Rotate all of R4 about the origin (thus
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preserving distance) so that u and v both land in the xy-plane. We may now write
u = (u1, u2, 0, 0) and v = (v1, v2, 0, 0). As any of the points of B or C are equidistant
from (0, 0, 0, 0), u, and v, it is impossible for (0, 0, 0, 0), u, and v to be collinear. So
let (h, k) be the circumcenter of the triangle with vertices (0, 0), (u1, u2), and (v1, v2)
and note that (h, k) is the unique point equidistant from (0, 0), (u1, u2), and (v1, v2).

Now consider an arbitrary point (x, y, z, w) that is distance 1 from (0, 0, 0, 0), u,
and v. We have that 1 = x2 + y2 + z2 + w2 = (x − u1)

2 + (y − u2)
2 + z2 + w2 =

(x−v1)
2+(y−v2)

2+z2+w2. Thus x2+y2 = (u1−x)2+(u2−y)2 = (v1−x)2+(v2−y)2

which implies that (x, y) is equidistant to (0, 0), (u1, u2), and (v1, v2). It follows that
x = h, y = k. Furthermore, since x2 + y2 + z2 +w2 = 1, x = h, and y = k, it follows
that z2 + w2 = 1 − h2 − k2. This means that the three vertices of B and the single
vertex of C (call it c) must lie on a circle of radius

√
1− h2 − k2 in the plane given

by x = h, y = k. However, if a point is equidistant from three points on a circle
and also in the plane containing the circle, then that point must lie at the center of
the circle. As c is on the circle containing each vertex of B, c cannot be equidistant
(and thus adjacent) to each of the vertices of B. This contradiction shows that K1,3,3

cannot be embedded in R
4 and completes the proof of the theorem.

The graphs K7 − {e1, e2, e3} where e1, e2, e3 are any three independent edges
and K8 − {e1, e2, e3, e4} where e1, e2, e3, e4 are any four independent edges will play
important roles in the arguments that follow. The former graph happens to be
K1,2,2,2 and the latter graph K2,2,2,2 and although this will be the notation used when
referencing them, we feel that in regards to Corollary 5 it is more beneficial to think
of the graphs as K7 minus three independent edges and K8 minus four independent
edges respectively. We determine their dimension in the following lemma.

Lemma 9. dim(K1,2,2,2) = dim(K2,2,2,2) = 4.

Proof. Letting a =
√
2
2
, note that K1,2,2,2 has an embedding in R

4 with vertices
(a, 0, 0, 0), (−a, 0, 0, 0), (0, a, 0, 0), (0,−a, 0, 0), (0, 0, a, 0), (0, 0,−a, 0), and (0, 0, 0, a).
K2,2,2,2 has an embedding in R

4 with those same seven vertices along with the addi-
tional vertex (0, 0, 0,−a). It is easily seen that K3,4 is a subgraph of K1,2,2,2 and that
K4,4 is a subgraph of K2,2,2,2 which in light of Lemmas 3 and 4 implies that K1,2,2,2

and K2,2,2,2 each have dimension greater than or equal to 4.

Theorem 10. The minimum number of edges of a graph G with dim(G) = 5 is
fifteen.

Proof. Let G be the set of all graphs which cannot be embedded in R
4 which have

a minimum number of edges. Let G ∈ G where |V (G)| is minimum. For a contra-
diction, assume |E(G)| ≤ 14. By the arguments in Theorem 6, G cannot contain a
vertex of degree 1 or degree 2.

We claim that G cannot contain a vertex of degree 3. To see this, let u ∈ V (G)
with deg u = 3. Let uv1, uv2, and uv3 be distinct edges of G. Let G′ be defined by
V (G′) = V (G) \ {u} and E(G′) = (E(G) \ {uv1, uv2, uv3}) ∪ {v1v2, v1v3, v2v3}. As
either |E(G′) < |E(G)| or |E(G′)| = |E(G)| and |V (G′)| < |V (G)|, we have that
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G′ is embeddable in R
4. The spheres in R

4 of radius 1 centered at v1, v2, and v3
intersect in infinitely many points. Pick one not in V (G′) to be u. This gives an
embedding in R

4 of a supergraph of G (again, by convention we are allowing the fact
that a graph is a supergraph of itself). Hence by Lemma 4, G is embeddable in R

4,
a contradiction which proves this claim.

We may now begin with G and insert edges between vertices (if |E(G)| < 14) to
create a graph H where dim(H) > 4, |E(H)| = 14, and deg v ≥ 4 for each v ∈ V (H).
As |E(H)| = 14, the sum of the degree measures of all vertices of H is equal to 28.
Arguing in the same manner as Theorem 7, we see that there are two possible degree
sequences for H . They are (5, 5, 5, 5, 4, 4) and (4, 4, 4, 4, 4, 4, 4). The degree sequence
(5, 5, 5, 5, 4, 4) corresponds to the graph K6 − e, and as dim(K6 − e) = 4 by Lemma
2, it cannot represent H . So assume H has degree sequence (4, 4, 4, 4, 4, 4, 4). The
complement of a graph with degree sequence (4, 4, 4, 4, 4, 4, 4) is a 2-regular graph
on seven vertices. It follows then that H is equal to C7 or equal to a graph whose
two components are K3 and C4. In either case H contains three independent edges
and we have that K1,2,2,2 is a subgraph of H . Thus by Corollary 5 and Lemma 9,
dim(H) ≤ 4, a contradiction that completes the proof of the theorem.

Theorem 11. The only dimension 5 graphs with fifteen edges are K6 and K1,3,3.

Proof. Let G be the set of all dimension 5 graphs with fifteen edges. By the arguments
presented in Theorem 6 and Theorem 10, no graph of G can contain a vertex of
degree 1 or 2. Let G0 ⊂ G where each graph of G0 has at least one vertex of
degree 3. We claim that G0 is empty. To see this, suppose G0 is non-empty and
among all graphs of G0, let G be one with a minimum number of vertices. Let
u ∈ V (G) with deg u = 3 and let uv1, uv2, uv3 be distinct edges of G. We now
observe two important properties of G. First, it must be the case that {v1, v2, v3}
is an independent set. Otherwise, the fact that at least one of v1v2, v1v3, v2v3 is
an edge of G would imply that the graph G′ formed by V (G′) = V (G) \ {u} and
E(G′) = (E(G) \ {uv1, uv2, uv3})

⋃{v1v2, v1v3, v2v3} would have fewer edges than G
and thus be embeddable in R

4. We would then be able to obtain a contradiction by
using the the technique presented in the proof of Theorem 10 to show that G is also
embeddable in R

4. Secondly, any pair of vertices of degree 3 must be adjacent. To
see this, let v ∈ V (G) with deg v = 3 and consider the graph G′ defined above. If uv
is not an edge of G, then G′ must be embeddable in R

4 as it would have the same
number of edges as G with fewer vertices and a vertex of degree 3, namely v. Again
we would be able to establish a contradiction by using the technique in the proof of
Theorem 10 to show that G must also be embeddable in R

4. Combining these two
observations, we conclude that G can have at most two vertices of degree 3. We now
consider the possible size of V (G), in each case showing that G cannot exist of that
order.

Case 1.1 |V (G)| ≤ 6

Since G has a vertex of degree 3, G is a subgraph of K6 − e. By Lemmas 2 and
4, G has dimension at most 4.



J. CHAFFEE AND M. NOBLE/AUSTRALAS. J. COMBIN. 64 (2) (2016), 327–333 332

Case 1.2 |V (G)| = 7

The possible degree sequences for a graph of order seven with one or two vertices of
degree 3 are (6, 6, 4, 4, 4, 3, 3), (6, 5, 5, 4, 4, 3, 3), (6, 5, 4, 4, 4, 4, 3), (5, 5, 5, 5, 4, 3, 3) and
(5, 5, 5, 4, 4, 4, 3). As any vertex of degree 6 must be adjacent to every other vertex
of the graph, it will be adjacent to a vertex of degree 3 and the other two neighbors
of that vertex. This cannot happen as it violates the previously given observation
that the vertices adjacent to a vertex of degree 3 must form an independent set.
For the degree sequence (5, 5, 5, 5, 4, 3, 3), note that each vertex of degree 5 must be
adjacent to a vertex of degree 3. Again with the previous observation in mind, it
follows that a vertex of degree 5 cannot be adjacent to the two neighbors of a vertex
of degree 3. This is a contradiction since any vertex of degree 5 must be adjacent to
all but one other vertex. For the same reason, when we look at the degree sequence
(5, 5, 5, 4, 4, 4, 3), we see that the vertex of degree 3 cannot be adjacent to any vertex
of degree 5. This uniquely identifies the graph with the vertex of degree 3 being
adjacent to each vertex of degree 4 and the degree 5 vertices being adjacent to every
vertex except the degree 3 vertex. But this graph can be embedded in R

4 as follows
with u1, u2, and u3 having degree 5, v1, v2, v3 having degree 4 and w having degree

3: u1 = (0, 0, 0, 0), u2 = (1, 0, 0, 0), u3 = (1
2
,
√
3
2
, 0, 0), v1 = (1

2
, 1
2
√
3
, 0,

√
2
3
), v2 =

(1
2
, 1
2
√
3
, 0,−

√
2
3
), v3 = (1

2
, 1
2
√
3
,
√

2
3
, 0), w = (1

2
+
√

1
3
, 1
2
√
3
, 0, 0).

Case 1.3 |V (G)| = 8

The only possible degree sequence (with one or two vertices of degree 3) is
(4, 4, 4, 4, 4, 4, 3, 3). Regarding Corollary 5 and Lemma 9, to show a graph with
this degree sequence is embeddable in R

4 it is sufficient to show that the comple-
ment of such a graph contains four independent edges. To see that this is indeed the
case, let u1 and u2 be the vertices of degree 3 and label the other vertices v1, . . . , v6.
Recall that u1 and u2 are adjacent. Since the open neighborhoods of u1 and u2 must
each consist of a set of independent vertices, it cannot be the case that u1 and u2

are adjacent to the same vertex. So say u1 is adjacent to v1 and v2, and say that u2

is adjacent to v3 and v4. It must then be that v1 and v2 are not adjacent and that
v3 and v4 are not adjacent. Additionally, u1 and v5 are not adjacent and u2 and v6
are not adjacent, giving four independent edges in the complement of the graph.

Finally, we note that any graph with nine vertices and at most two vertices of
degree 3 (and none of degree less than 3) will have more than 15 edges, completing
the proof of the claim that G0 is empty.

Now let G be a graph with dim(G) = 5 and |E(G)| = 15. Since the minimum de-
gree is 4, the only possible degree sequences of G are (5, 5, 5, 5, 5, 5), (6, 4, 4, 4, 4, 4, 4),
or (5, 5, 4, 4, 4, 4, 4). We analyze these cases below.

Case 2.1 G has degree sequence (5, 5, 5, 5, 5, 5).

It follows that G = K6.

Case 2.2 G has degree sequence (6, 4, 4, 4, 4, 4, 4).
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Let u ∈ V (G) with deg u = 6 and note that u is adjacent to each other vertex of
G. G−{u} is a 3-regular graph on six vertices and as such, its complement is either
C6 or a graph whose two components are each copies of K3. If G− {u} = C6, we
note that C6 has three independent edges which implies that K1,2,2,2 is a subgraph

of G and thus by Corollary 5 and Lemma 9, dim(G) ≤ 4. If G− {u} = K3

⋃
K3,

then G = K1,3,3.

Case 2.3 G has degree sequence (5, 5, 4, 4, 4, 4, 4).

Let u, v ∈ V (G) with deg u = deg v = 5. If uv �∈ E(G), then u, v are each
adjacent to the other five vertices of G. G− {u, v} is then a 2-regular graph on five
vertices. In other words, G− {u, v} equals the cycle C5. It follows that G contains
three independent edges – uv and two independent edges from G− {u, v}. Thus
K1,2,2,2 is a subgraph of G and by Corollary 5 and Lemma 9, dim(G) ≤ 4.

Now assume uv ∈ E(G). Label the other five vertices of G as w1, w2, w3, w4, w5.
If the open neighborhoods of u and v have four vertices in common – say w1, w2, w3, w4

– then w5 is adjacent to w1, w2, w3, w4 as well. It follows that G− {u, v, w5} is a 1-
regular graph on 4 vertices. We then have that G contains three independent edges
– uw5 and two independent edges from G− {u, v, w5}. Again K1,2,2,2 is a subgraph
of G and by Corollary 5 and Lemma 9, dim(G) ≤ 4.

As well as uv being an edge of G, assume also that u is adjacent to w1, w2, w3, w4

and v is adjacent to w2, w3, w4, w5. Then uw5 and vw1 are both independent edges
of G. We claim there must be an additional independent edge in G− {u, v, w1, w5}.
To see this, note that if w2, w3, w4 constituted the vertices of a copy of K3, we would
then have that w1 cannot be adjacent to any of w2, w3, w4 and thus degw1 < 4. So
again G must contain three independent edges and by Corollary 5 and Lemma 9,
dim(G) ≤ 4.
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