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Abstract

For a prime power q > 1 and an integer n ≥ 2 we consider the extension
Fqn/Fq of Galois fields together with a cyclic Fq-vector space endomor-
phism τ . An element of Fqn is called a primitive τ-generator over
Fq provided it generates the multiplicative group of Fqn , as well as the
additive group of Fqn regarded as an Fq[x]-module with respect to τ .
The notion of a primitive τ -generator generalizes the well known con-
cept of a primitive normal basis generator; the latter is just a primitive
σ-generator, where σ is the Frobenius automorphism of Fqn over Fq.

The pair (q, n) as well as the corresponding extension Fqn/Fq are called
extensive provided that for every cyclic Fq-vector space endomorphism
τ of Fqn there exists a primitive τ -generator for Fqn over Fq.

Our main result can be summarized as follows. We determine two
distinguished (disjoint) sets, C with 5 pairs (q, n), and U with 19 pairs,
such that no member of C is extensive, while every pair (q, n) which is
not contained in the union C ∪U is an extensive one. The status whether
a pair from U is extensive or not remains undecided.

The proof is based on various combinatorial techniques: character
theory of finite fields, a sieving method, as well as variations of a counting
argument which culminate in a promising geometric argument.

1 The main result

Consider a finitely generated vector space E over a field F , say with dimension n,
and let τ be an F -endomorphism of E. With respect to τ , the vector space E is
turned into a module over the polynomial algebra F [x] by defining

f(x) · v := f(τ)(v) for all v ∈ E and all f(x) ∈ F [x].
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We denote by mτ and cτ the minimal and the characteristic polynomial of τ , respec-
tively. The τ-order of a vector v ∈ E is the monic polynomial g(x) ∈ F [x] of least
degree such that g(x) · v = 0; it is denoted by Ordτ (v). By definition, mτ is the least
common multiple of all τ -orders Ordτ (v), where v ∈ E. From basic linear algebra
(e.g. Lüneburg [16]) it is well known that there always exists a v ∈ E such that
Ordτ (v) = mτ .

Recall from the Cayley-Hamilton theorem that mτ is a divisor of cτ . Equality,
mτ = cτ , holds if and only if E is a cyclic vector space with respect to τ , which
means that there is a w ∈ E such that F [x] · w = E, where F [x] · w is the F [x]-
submodule of E which is generated by w. In this case, we say that τ is a cyclic
F -endomorphism of E, and we call every w satisfying F [x] ·w = E a τ-generator
of E. The τ -generators of a cyclic F -endomorphism τ are exactly the elements w ∈ E
which have τ -order equal to mτ .

In the present work we are interested in the case where the underlying field F is finite.
(For the basics on finite fields see Lidl and Niederreiter [15], and Jungnickel [13].)
We therefore let F := Fq be the Galois field with q elements (where q > 1 is some
prime power). As a vector space of dimension n over F we take the n-dimensional
Galois field extension E := Fqn. Assuming that τ is a cyclic F -endomorphism of E
we are then interested to establish the existence of a τ -generator of E that is likewise
a primitive element of E, i.e. a generator of the (cyclic) multiplicative group of E.

Definition 1.1 Given a cyclic endomorphism τ of Fqn/Fq, a primitive element of
Fqn that generates Fqn as Fq[x]-module with respect to τ is called a primitive τ-
generator of Fqn. �

For the particular case, where τ is the Frobenius automorphism of E/F (often de-
noted by σ), a primitive σ-generator is just a primitive normal bases generator of
E/F ; the existence of such an element (for any extension E/F ) has been established
by Lenstra and Schoof (1987) [14].

Already in 1952, Carlitz [1] could prove the existence of a primitive normal basis
generator for all but finitely many pairs (q, n), and Davenport [5] settled the existence
for all pairs (q, n) with q being a prime number. The basic approach in [1, 5, 14] is
to describe the characteristic function of the set of all primitive normal elements in
terms of multiplicative and additive characters of finite fields. A complete theoretical
solution (for all extensions) would not be achieveable without additional skillful ideas
together with the ‘art’ of arranging a proof, where a lot of different situations have
to be coped with. In this respect, a main ingredient responsible for the successful
attempt of Lenstra and Schoof can be described as the reduction from the order qn−1
of a primitive element to elements of order at least (qn − 1)/(q − 1) gcd(n, q − 1) in
combination with normality [14, (1.11–1.15)]; a further important tool is a flexible
upper bound for the number of distinct prime divisors of an integer [14, Lemma 2.6].

The key strategy in Cohen and Huczynska’s proof of the primitive normal basis
theorem [3] is a sieving method, developed by Cohen [2], which leads to improved
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estimates involving Gauss sums and which in the meantime has been applied suc-
cessfully to prove stronger versions of the primitive normal basis theorem, see for
instance Cohen and Huczynska [4], and, for a recent survey, Huczynska [12].

Although (as a generator of the Galois group of E/F ) the Frobenius automor-
phism is a very special F -endomorphism, it is apparent that the basic character
theoretical approach as well as the sieving method in principle apply to general
cyclic vector spaces as well (Sections 3, 4, 9). Next, having no particular cyclic
endomorphism τ in mind any more, one is inevitably led to the following definition.

Definition 1.2 For a prime power q > 1 and an integer n ≥ 2 the field exten-
sion Fqn/Fq as well as the pair (q, n) are extensive, provided that for every cyclic
endomorphism τ of Fqn/Fq there exists a primitive τ -generator of Fqn. �

In order to formulate our main result (Theorem 1.3), we let C be the set consisting
of the following five pairs:

(2, 2), (3, 2), (5, 2), (2, 4), (2, 6).

Furthermore, let U be the set consisting of the following 19 pairs:

(2, 8), (2, 10), (2, 12), (2, 14), (2, 15), (2, 16), (2, 18), (2, 20), (2, 24),
(3, 8), (3, 10), (3, 12), (4, 6), (4, 9), (4, 10), (4, 12), (5, 4), (7, 6), (8, 8).

Theorem 1.3 Let q > 1 be a prime power and n ≥ 2 an integer.

1. If (q, n) ∈ C, then (q, n) is not extensive.

2. If (q, n) �∈ C ∪ U , then (q, n) is extensive.

For the 19 pairs (q, n) from U the status of being extensive or not could not be
decided. We conjecture that from these remaing 19 pairs only the pair (5, 4) is not
extensive.

At this place we have to mention a recent work of Hsu and Nan [11], which have
studied the existence of primitive elements which additionally generate a so-called
finite Carlitz module. It turns out that their results are covered by our more general
notion of extensiveness: taking an element z of the extension field Fqn, the Fq-linear
mapping γz : v �→ zv + vq is a cyclic one, whose minimal polynomial is equal to
f(x)n/k−1, where k is the degree of z over Fq and f(x) is the minimal polynomial of
z over Fq. For every extension Fqn over Fq (i.e. for every pair (q, n)), Hsu and Nan
then consider all linear mappings of the form γz; taking z = 0 leads to the Frobenius
automorphism and a primitive normal basis.

Observe that for a fixed pair (q, n) there are qn endomorphisms of type γz,
whereas, in general, the number of all cyclic Fq-endomorphisms τ of Fqn is certainly
larger since there are already qn possible distinct minimal polynomials of degree n,
and since conjugate endomorphisms have the same minimal polynomial. Moreover,
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we achieve stronger results than Hsu and Nan. For the case where (q, n) = (2, 2),
Hsu and Nan have extracted a counterexample, and they leave open a list L of 63
undecided pairs (q, n) (see [11, Remark 3.5]). Apart from the instance (q, n) = (3, 12)
any pair of our list U is contained in L, and apart from the pair (2, 2) any member
of C is contained in L as well. So, our work resolves 41 instances of L — these are
definitely extensive, and therefore primitive generators in particular do exist for the
corresponding Carlitz modules as well. We shall briefly return to this discussion in
our final Section 11.

We finally like to comment that, although a lot of computations are involved,
our arguments certainly provide a theoretical justification of Theorem 1.3. They
do not rely on (exhaustive) searches for primitive τ -generators in specific extensions
E/F ; the computations rather test sufficient existence criteria, obtained from bounds
involving number theoretical properties of a pair (q, n). For the convenience of the
reader we have summarized most of the relevant computational details (such as the
number of distinct prime divisors of qn − 1, or the very essential number of distinct
monic divisors of mτ which are irreducible over the ground field) in various tables.
Only in our final Section 11 we are briefly going to report on attempts to resolve
some of the remaining instances by an exhaustive computer search.

2 Outline

In Section 3 we give a sufficient criterion for extensiveness, which is obtained from the
theory of finite field characters (Theorem 3.4), and which generalizes a corresponding
basic approach on primitive normal bases from [1, 5, 14]. Based on this criterion we
show in Section 4 that there are at most 84 pairs (q, n) that are not extensive; these
pairs are listed in Table 1. After that, these open instances are investigated further
with

• a simple counting argument (sca), Section 5,

• an improved counting argument (ica), Section 7,

• a sieving method (sm), Section 9 (adopted from [3]),

• and by geometric considerations (ga), Section 10.

We shall establish that 60 of the remaining 84 pairs are in fact extensive. We are also
able to determine that the five pairs of the set C (see Theorem 1.3) are not extensive
ones, i.e.

• counterexamples (ce), Sections 6 and 8.

This altogether reduces the previous list of 84 pairs to the set U of 19 pairs, whose
status of being extensive or not could not be decided (?).
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Table 1: The remaining pairs not covered by Theorem 3.4.

(2, 2) ce (2, 3) sca (2, 4) ce (2, 5) sca (2, 6) ce (2, 7) sca

(2, 8) ? (2, 9) ica (2, 10) ? (2, 11) ica (2, 12) ? (2, 14) ?

(2, 15) ? (2, 16) ? (2, 18) ? (2, 20) ? (2, 22) sm (2, 24) ?

(2, 28) sm (3, 2) ce (3, 3) ica (3, 4) ga (3, 5) ica (3, 6) ga

(3, 7) ica (3, 8) ? (3, 9) ica (3, 10) ? (3, 11) ica (3, 12) ?

(3, 15) ica (3, 16) sm (3, 18) sm (4, 2) sca (4, 3) ga (4, 4) ica

(4, 5) ica (4, 6) ? (4, 7) ica (4, 8) ica (4, 9) ? (4, 10) ?

(4, 12) ? (4, 14) sm (5, 2) ce (5, 3) ica (5, 4) ? (5, 5) ica

(5, 6) ga (5, 8) sm (5, 9) ica (5, 10) sm (5, 12) sm (7, 2) sca

(7, 3) ica (7, 4) ga (7, 5) ica (7, 6) ? (7, 7) ica (7, 9) sm

(8, 2) sca (8, 4) ica (8, 5) ica (8, 6) ica (8, 8) ? (9, 2) sca

(9, 3) sca (9, 4) ica (9, 6) sm (9, 8) sm (9, 9) ica (11, 2) sca

(11, 3) sca (11, 4) ica (11, 6) sm (13, 2) sca (13, 3) sca (13, 4) ica

(16, 2) sca (16, 3) sca (19, 2) sca (29, 2) sca (41, 2) sca (43, 2) sca

3 A sufficient criterion based on character theory

Throughout, we fix a pair (q, n) and let F = Fq and E = Fqn , and τ be a cyclic
F -endomorphism of E. Furthermore, let (C∗, ·) be the multiplicative group of the
field C of complex numbers. The C-algebra CE of all mappings from E to C contains
the characteristic function P of the set of all primitive elements of E (Subsection
3.1), as well as the characteristic function Γτ of the set of all τ -generators of E/F
(Subsection 3.2). The pointwise product P · Γτ , which is the characteristic function
of the set of all primitive τ -generators for E/F , can be described with the help of
finite field characters, which is the basis of an efficient existence criterion (Subsection
3.3).

3.1 Multiplicative characters and the primitivity condition

A multiplicative character of E is a group homomorphism ψ : (E∗, ·) → (C∗, ·),
where (E∗, ·) is multiplicative group of E. The set Ê∗ of all multiplicative characters
is turned into a group by defining ψ · η(v) := ψ(v)η(v) for all v ∈ E∗. The neutral
element ψ0 that maps every v ∈ E∗ to 1 is called the trivial multiplicative character.
The groups (Ê∗, ·) and (E∗, ·) are isomorphic, i.e. both cyclic of order qn − 1. For
v ∈ E∗ the (multiplicative) order is the least integer � ≥ 1 such that v� = 1; it is
denoted by ord(v). The same notation is used for multiplicative characters as well.
It is convenient to extend any multiplicative character ψ by ψ(0) := 1, if ψ = ψ0,
and by ψ(0) := 0, if ψ �= ψ0.

For the ring Z of integers, let ϕ and μ denote the Euler- and the Möbius function,



D. HACHENBERGER /AUSTRALAS. J. COMBIN. 64 (2) (2016), 289–326 294

respectively. Then ([1, 5, 14])

P :=
ϕ(qn − 1)

qn − 1
·
∑
ψ∈Ê∗

μ(ord(ψ))

ϕ(ord(ψ))
· ψ (3.1)

is the characteristic function of the set of all primitive elements of E, i.e. P (w) = 1
whenever w is a primitive element, and P (w) = 0, otherwise.

3.2 Additive characters and the τ-generator condition

Let us now turn to (E,+), the additive group of E. An additive character of E is
a group homomorphism χ : (E,+) → (C∗, ·). The set Ê of all additive characters
carries the structure of a group by defining χ ·λ(v) := χ(v)λ(v) for all v ∈ E (observe
that Ê is written multiplicatively). The neutral element χ0 that maps every v ∈ E
to 1 is the trivial additive character. The groups (E,+) and (Ê, ·) are isomorphic,
i.e. both elementary abelian.

Next, consider some F -endomorphism τ of E, and let mτ be its minimal polyno-
mial. By defining

[f(x) · χ](v) := χ(f(x) · v) = χ(f(τ)v)

(for all χ ∈ Ê, all v ∈ E and all f(x) ∈ F [x]), the additive character group (Ê,+)
is turned into an F [x]-module with respect to τ . In fact, (E,+) and (Ê, ·) are even
isomorphic as F [x]-modules with respect to τ (which can essentially be shown by
making use of Lemma 3.1 below). One therefore may apply the notion of τ -order
to additive characters as well: Ordτ (χ), the τ-order of χ, is the monic polynomial
g(x) ∈ F [x] of least degree such that g(x) · χ = χ0.

For a monic divisor g(x) of mτ (x) let

Vg := {w ∈ E : g(x) · w = 0} and Ig := {g(x) · w : w ∈ E}. (3.2)

Similar, on the side of additive characters, let

Cg := {χ ∈ Ê : g(x) · χ = χ0} (3.3)

be the kernel of g(τ) on Ê. For a subgroup V of (E,+) its dual group is

V ⊥ := {χ ∈ Ê : χ(u) = 1 for all u ∈ V }.

Lemma 3.1 Let τ be some F -endomorphism of E and assume that g(x) ∈ F [x] is
a monic divisor of mτ (x). Then Cg = I⊥g .

Proof: Let first χ ∈ Cg. If v ∈ Ig then there is a w ∈ E such that v = g(x) · w.
Therefore, χ(v) = χ(g(x) ·w) = [g(x) ·χ](w) = χ0(w) = 1 gives Ig ⊆ ker(χ) for every
χ ∈ Cg. Consequently, Cg ⊆ I⊥g .

If, on the other hand, λ ∈ I⊥g , then λ(g(x) · w) = 1 for all w ∈ E. But this implies
[g(x) · λ](w) = λ(g(x) · w) = 1 = χ0(w) for all w ∈ E, hence g(x) · λ = χ0 and
therefore λ ∈ Cg. �
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In the case where τ is a cyclic F -endomorphism (which we are going to assume from
now on), any Vg is a cyclic F [x]-module with respect to τ . Moreover, dimF (Vg) =
deg(g) and dimF (Ig) = n− deg(g) in that case.

Next, we let φq and μq denote the Euler-, respectively Möbius function for the

polynomial ring F [x]. Then the number of elements of E (and Ê as well) having
τ -order g is equal to φq(g) (for any monic g(x) ∈ F [x] dividing mτ ). For any such g,
let

Γg :=
φq(g)

|Vg| ·
∑
χ∈Cg

μq(Ordτ (χ))

φq(Ordτ (χ))
· χ. (3.4)

When g = mτ we however use the simpler notation Γτ instead of Γmτ , throughout.
Because of the multiplicativity of the number theoretical functions involved, it holds
that ΓgΓh = Γgh whenever g and h are relatively prime. Moreover, letting ν(g)
be the square-free part of g, we have Γg = Γν(g). Using elementary properties of
additive characters (see Jungnickel [13, Section 7.1]), one can show that Γr is the
characteristic function of the set E \ Ir whenever r(x) ∈ F [x] is a monic irreducible
divisor of mτ (x), i.e.

Γr(w) =

{
1 if w is not a member of Ir,
0 if w ∈ Ir.

(3.5)

Now, if r1, . . . , rt ∈ F [x] are the distinct monic irreducible divisors of mτ , then
Γτ =

∏t
i=1 Γri is the characteristic function of the complement of the set

⋃t
i=1 Iri in

E. On the other hand, since τ is assumed to be cyclic, Ig = Vh where h = mτ/g,
and therefore Γτ (w) = 1 if and only if w is not a member of any of the maximal τ -
invariant F -subspaces of E (and Γτ (w) = 0, else). This altogether gives the following
proposition.

Proposition 3.2 Assume that τ is a cyclic F -endomorphism of E. Then Γτ is the
characteristic function of the set of all τ -generators of E. �

3.3 Primitive τ-generators and extensiveness

From the above, letting τ again be a cyclic F -endomorphism of E, we obtain that∑
w∈E

P (w)Γτ(w) (3.6)

is the number of all primitive τ -generators of E/F . Using (3.1) and (3.4) (with
g = mτ ) gives that this number is equal to

ϕ(qn − 1)

qn − 1

φq(mτ )

qn
·
∑
ψ∈Ê∗

∑
χ∈Ê

μ(ord(ψ))μq(Ordτ (χ))

ϕ(ord(ψ))φq(Ordτ (χ))
·G(ψ, χ), (3.7)

where G(ψ, χ) is the Gauss sum
∑

w∈E ψ(w)χ(w). It is well known that G(ψ0, χ0) =
qn, and |G(ψ, χ)| = √

qn when ψ and χ both are non-trival characters; moreover, if
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either ψ or χ is trivial, then G(ψ, χ) = 0 (see Lidl and Niederreiter [15, Section 5.2]
or Jungnickel [13, Section 7.2]).

Next, assuming that there is no primitive τ -generator, using properties of the
Möbius functions involved, one derives from (3.7) the inequality

qn ≤
∑

ν(qn−1)
d �=1

∑
g|ν(mτ )

g �=1

√
qn

ϕ(d) · φq(g) ,

where ν yields the square-free part of its argument. The right hand side is equal
to (2ω − 1)(2Ωτ − 1)

√
qn, where ω denotes the number of distinct prime divisors of

qn − 1, while Ωτ is the number of distinct monic divisors of mτ from F [x] which are
irreducible. This altogether proves the following result.

Proposition 3.3 Consider the field extension E/F where E = Fqn and F = Fq. Let
ω = ω(q, n) be the number of distinct prime divisors of qn − 1. Let τ be a cyclic F -
endomorphism of E and let Ωτ = Ωτ (q, n) be the number of distinct monic irreducible
divisors of mτ in F [x]. Suppose that

√
qn > (2ω − 1)(2Ωτ − 1).

Then there exists a primitive τ -generator for E/F . �

An immediate consequence of Proposition 3.3 is a sufficent criterion for a pair to be
extensive:

Theorem 3.4 Consider the field extension Fqn over Fq. Let

Ω′ = Ω′(q, n) := max{Ωτ : τ a cyclic Fq-endomorphism of Fqn} (3.8)

and let ω = ω(q, n) be as in Proposition 3.3. Assume that
√
qn > (2ω − 1)(2Ω

′ − 1).
Then the pair (q, n) is extensive. �

4 Evaluation of the character theoretical criterion

Throughout, we denote the sufficient condition in Theorem 3.4 by (ctc). We are
going to evaluate this criterion in the present section and shall achieve the following
result.

Theorem 4.1 Let q > 1 be a prime power and n ≥ 2 an integer, and let ω = ω(q, n)
and Ω′ = Ω′(q, n) be as in Theorem 3.4. Then

√
qn > (2ω − 1)(2Ω

′ − 1) is satisfied if
and only if (q, n) does not belong to the list of 84 pairs given in Table 1.

The strategy for proving Theorem 4.1 is as follows: Obviously, (2ω − 1) · (2Ω′ − 1) ≤
2ω+Ω′

; we then use upper bounds u and U for ω and Ω′, respectively, and show that
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even u + U ≤ log2(
√
qn) for pairs (q, n) from a particular range. For the remaining

not yet covered pairs, we definitely test (ctc) by determining the exact values of ω
(by factorizing qn−1, for instance with the help of some Computer algebra system1)
and of Ω′ (by considering all monic irreducible polynomials of small degree over Fq

as possible divisors of mτ ). Most of the computational results are summarized in the
Tables 3–5. There, we have used the symbols • and ◦ to indicate whether

• √
qn > (2ω − 1)(2Ω

′ − 1) (showing that (q, n) is extensive), or

◦ √
qn ≤ (2ω − 1)(2Ω

′ − 1) (leaving open whether (q, n) is extensive or not).

4.1 Upper bounds for ω and Ω′

In order to derive upper bounds for ω, we use Lemma 2.6 of [14] (already mentioned
in Section 1). For M ∈ N

∗ let π(M) be the set of distinct prime divisors of M .
Furthermore, for an � ∈ N∗ let π� be the set of all primes r such that r < �. If Λ is
a set of primes such that π(M) ∩ π� ⊆ Λ ⊆ π�, and if L :=

∏
r∈Λ r, then

|π(M)| ≤ log(M)− log(L)

log(�)
+ |Λ|. (4.1)

Proposition 4.2 Consider the finite field Fqn. Then

ω = |π(qn − 1)| < n

6
log2(q) +

21

4
.

Proof: Taking � := 64 and Λ := π� gives |Λ| = 18 and log2(L)/ log2(�) ≥ 12.75.
Thus, (4.1) implies

ω ≤ log2(q
n − 1)− log2(L)

log2(�)
+ |Λ| < n

6
log2(q)− 12.75 + 18,

which is the desired upper bound. �

In order to obtain good upper bounds, or even the exact value for Ω′ when q is small,
we denote by iq(k) the number of distinct monic irreducible polynomials of degree k
over Fq. It is well known that iq(k) =

1
k

∑
d|k μ(

k
d
)qd. Furthermore, for an m ∈ N let

Iq(m) :=

m∑
k=1

kiq(k). (4.2)

Lemma 4.3 If n ≥ Iq(m), then

Ω′ ≤
m∑
k=1

iq(k) +

⌊
n− Iq(m)

m+ 1

⌋
.

1We have made use of Maple.
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Table 2: Some values for Im(q) with q small.

m iq(m)
∑m

k=1 iq(k) Iq(m)

q = 5 1 5 5 5
q = 5 2 10 15 25
q = 5 3 40 55 85
q = 4 1 4 4 4
q = 4 2 6 10 16
q = 4 3 20 30 76
q = 3 1 3 3 3
q = 3 2 3 6 9
q = 3 3 8 14 33
q = 3 4 18 32 105
q = 2 1 2 2 2
q = 2 2 1 3 4
q = 2 3 2 5 10
q = 2 4 3 8 22
q = 2 5 6 14 52
q = 2 6 9 23 106

Proof: If n ≥ Iq(m), then the minimal polynomial mτ , which may be any polyno-
mial of degree n, can potentially have every irreducible polynomial r(x) ∈ F [x] with
degree ≤ m as a factor. If this is the case, then dividing mτ by all these irreducible
divisors r(x) leaves a polynomial of degree n − Iq(m). But this can have at most

n−Iq(m)
m+1

� further distinct irreducible factors that are different from those of degree
at most m, and therefore have degree at least m+ 1, each. �

Table 2 shows some relevant values of Iq(m) when q is small.

4.2 The range n ≥ 16 and q ≥ 16

Assume that min(q, n) ≥ 16. We take Ω′ ≤ n as a trivial upper bound for Ω′. Then
Proposition 4.2 implies ω +Ω′ ≤ n

6
log2(q) +

21
4
+ n, and this is less than or equal to

n
2
log2(q) if and only if

log2(q) ≥ 63

4n
+ 3. (4.3)

Since q ≥ 16, one has log2(q) ≥ 4 and as n ≥ 16, one has 63
4n

+ 3 ≤ 63
64

+ 3 < 4. This
shows that (q, n) is an extensive pair whenever min(q, n) ≥ 16.
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4.3 The range n ≤ 15 and q ≥ 16

For every fixed n with 2 ≤ n ≤ 15, the number of all q ≥ 16 such that log2(q) <
63
4n
+3

(see (4.3)) is finite. Letting

Q(n) := 23+63/(4n)�,
we obtain the following data.

n 15 14 13 12 11 10 9 8 7 6 5 4 3 2
Q(n) 16 17 18 19 21 23 26 31 38 49 71 122 304 1878

For all pairs (q, n) such that 2 ≤ n ≤ 15 and 16 ≤ q ≤ Q(n) a prime power, we have
tested whether

√
qn > (2ω − 1)(2n − 1) is satisfied. Observe that this is the bound

from Theorem 3.4, because Ω′ = n in that case, since n ≤ q− 1 in the present range.
It turned out that (ctc) is satisfied by all these pairs (q, n) except when

(q, n) ∈ {(16, 2), (19, 2), (29, 2), (41, 2), (43, 2), (16, 3)}.

4.4 The range q ∈ {7, 8, 9, 11, 13}
An improvement of the ω-bound in Proposition 4.2 is available by setting Λ :=
π64 \ {p}, where p is the characteristic of Fq.

2 If n ≥ q + 2, then we have taken the
bound

Ω′ ≤ q +
n− q

2
=

1

2
q +

1

2
n,

as the number of monic (irreducible) polynomials of degree 1 in Fq[x] is q. Then,
n
6
log2(q) +

21
4
+ 1

2
q + 1

2
n ≤ n

2
log2(q) if and only if

n ≥
21
4
+ q

2
1
3
log2(q)− 1

2

.

For q = 13 or q = 11 the latter is satisfied when n ≥ 17. For q = 9 it is satisfied
when n ≥ 18. For q = 8 it holds when n ≥ 19, and for q = 7 it is satisfied when
n ≥ 21.

Next, we have checked (ctc) for the remaining range (i.e. n ≤ 21) and obtained
that it is satisfied if and only if (q, n) does not belong to one of the following 25 pairs:

q n
7 2 3 4 5 6 7 9
8 2 4 5 6 8
9 2 3 4 6 8 9
11 2 3 4 6
13 2 3 4

The computational results rely on the data in Table 3.

2However, we did not make use of this.
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Table 3: Character theoretical criterion (ctc) for q ∈ {7, 8, 9, 11, 13}.

q = 13 n ω Ω′ q = 13 n ω Ω′ q = 13 n ω Ω′

• 16 7 14 • 15 6 14 • 14 6 13
• 13 5 13 • 12 8 12 • 11 6 11
• 10 6 10 • 9 4 9 • 8 6 8
• 7 3 7 • 6 5 6 • 5 3 5
◦ 4 5 4 ◦ 3 3 3 ◦ 2 3 2

q = 11 n ω Ω′ q = 11 n ω Ω′ q = 11 n ω Ω′

• 16 7 13 • 15 6 13 • 14 6 12
• 13 4 12 • 12 9 11 • 11 4 11
• 10 5 10 • 9 5 9 • 8 5 8
• 7 4 7 ◦ 6 6 6 • 5 3 5
◦ 4 4 4 ◦ 3 4 3 ◦ 2 3 2

q = 9 n ω Ω′ q = 9 n ω Ω′ q = 9 n ω Ω′

• 17 6 13 • 16 6 12 • 15 8 12
• 14 6 11 • 13 3 11 • 12 7 10
• 11 5 10 • 10 5 9 ◦ 9 6 9
◦ 8 5 8 • 7 3 7 ◦ 6 5 6
• 5 3 5 ◦ 4 3 4 ◦ 3 3 3
◦ 2 2 2

q = 8 n ω Ω′ q = 8 n ω Ω′ q = 8 n ω Ω′

• 18 6 13 • 17 5 12 • 16 9 12
• 15 6 11 • 14 6 11 • 13 4 10
• 12 8 10 • 11 4 9 • 10 6 9
• 9 3 8 ◦ 8 6 8 • 7 3 7
◦ 6 4 6 ◦ 5 3 5 ◦ 4 4 4
• 3 2 3 ◦ 2 2 2

q = 7 n ω Ω′ q = 7 n ω Ω′ q = 7 n ω Ω′

• 20 8 13 • 19 4 13 • 18 7 12
• 17 4 12 • 16 6 11 • 15 6 11
• 14 6 10 • 13 3 10 • 12 7 9
• 11 4 9 • 10 5 8 ◦ 9 5 8
• 8 4 7 ◦ 7 4 7 ◦ 6 4 6
◦ 5 3 5 ◦ 4 3 4 ◦ 3 3 3
◦ 2 2 2
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4.5 The range q ∈ {2, 3, 4, 5}
The proofs of the subsequent statements are based on the computational results
summarized in Table 4 and Table 5.

Let us first consider q = 5. Then (ctc) is satisfied for all n except when n is one of
the nine members from {2, 3, 4, 5, 6, 8, 9, 10, 12}.
Proof: Assume first that n ≥ 28. Then n ≥ 25 = I5(2) and therefore

Ω′ ≤ i5(1) + i5(2) +
n− I5(2)

3
=

1

3
n +

20

3
for these n.

Hence, ω+Ω′ ≤ n
6
log2(5)+

21
4
+ 1

3
n+ 20

3
. The latter is less than or equal to n

2
log2(5)

if and only if

n ≥
21
4
+ 20

3
1
3
log2(5)− 1

3

,

and this holds for all n ≥ 28.

- If n ∈ {25, 26, 27}, then the maximal m such that I5(m) ≤ n is m = 2. This

gives Ω′ = i5(1) + i5(2) + n−I5(2)
3

� = 15 + n−25
3

� for these n.

- If 5 ≤ n ≤ 24, then the maximal m such that I5(m) ≤ n is m = 1. Hence,

Ω′ = i5(1) + n−I5(1)
2

� = 5 + n−5
2
� for these n.

- If n ∈ {2, 3, 4}, then Ω′ = n. �

Let us consider next q = 4. Then (ctc) is satisfied for all n except when n is one of
the eleven members of {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14}.
Proof: Assume that n ≥ 30. Then n ≥ 33 = I4(2) and therefore

Ω′ ≤ i4(1) + i4(2) +
n− I4(2)

3
=

1

3
n +

14

3
for these n.

Consequently, ω + Ω′ ≤ n
6
log2(4) +

21
4
+ 1

3
· n + 14

3
= 2

3
n + 21

4
+ 20

3
, and the latter is

less than or equal to n
2
log2(4) = n if and only if n ≥ 3 · (21

4
+ 14

3

)
= 119

4
.

- If 16 ≤ n ≤ 29, then the maximal m such that I4(m) ≤ n is m = 2. Therefore

Ω′ = i4(1) + i4(2) + n−I4(2)
3

� = 10 + n−16
3

� for these n.

- If 4 ≤ n ≤ 15, then the maximal m such that I4(m) ≤ n is m = 1. Therefore

Ω′ = i4(1) + n−I4(1)
2

� = 4 + n−4
2
� for these n.

- If n ∈ {2, 3}, then Ω′ = n. �

Assume now that q = 3. Then (ctc) is satisfied for all n except when n is equal to
one of the 14 values from {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 18}.



D. HACHENBERGER /AUSTRALAS. J. COMBIN. 64 (2) (2016), 289–326 302

Proof: We use Table 2. Assume that n ≥ 40. Then n ≥ 33 = I3(3) and therefore

Ω′ ≤ i3(1) + i3(2) + i3(3) +
n− I3(3)

4
=

1

4
n+

23

4
.

Moreover, ω + Ω′ ≤ n
6
log2(3) +

21
4
+ 1

4
n + 23

4
. The latter is less than or equal to

n
2
log2(3) if and only if

n ≥ 11
1
3
log2(3)− 1

4

,

and this holds for all n ≥ 40.

- If 33 ≤ n ≤ 39, then the maximal m such that I3(m) ≤ n is m = 3. Therefore

Ω′ = i3(1) + i3(2) + i3(3) + n−I3(3)
4

� = 14 + n−33
4

� for these n.

- If 10 ≤ n ≤ 32, then the maximal m such that I3(m) ≤ n is m = 2. Hence,

Ω′ = i3(1) + i3(2) + n−I3(2)
3

� = 6 + n−9
3
� for these n.

- If 4 ≤ n ≤ 9, then the maximal m such that I3(m) ≤ n is m = 1, and therefore

Ω′ = i3(1) + n−I3(1)
2

� = 3 + n−3
2
� for these n.

- If n ∈ {2, 3}, then Ω′ = n. �

Finally let q = 2. Then (ctc) is satisfied for all n except when n is equal to one of
the 19 values in {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 22, 24, 28}.
Proof: We again use Table 2. Assume that n ≥ 64. Then n ≥ 52 = I2(5) and
therefore

Ω′ ≤ i2(1) + i2(2) + i2(3) + i2(4) + i2(5) +
n− I2(5)

6
=

1

6
n+

16

3
.

This gives ω + Ω′ ≤ n
6
log2(2) +

21
4
+ 1

6
n + 16

3
= 1

3
n + 21

4
+ 16

3
. The latter is less than

or equal to n
2
log2(2) =

n
2
if and only if n ≥ 6 · (21

4
+ 16

3

)
= 127

2
.

- If 52 ≤ n ≤ 63, then the maximal m such that I2(m) ≤ n is m = 5. Therefore

Ω′ = i2(1) + i2(2) + i2(3) + i2(4) + i2(5) + n−I2(5)
6

� = 14 + n−52
6

� for these n.

- If 22 ≤ n ≤ 51, then the maximal m such that I2(m) ≤ n is m = 4. Hence, for

these n, one has Ω′ = i2(1) + i2(2) + i2(3) + i2(4) + n−I2(4)
5

� = 8 + n−22
5

�.
- If 10 ≤ n ≤ 21, then the maximal m such that I2(m) ≤ n is m = 3. Therefore

Ω′ = i2(1) + i2(2) + i2(3) + n−I2(3)
4

� = 5 + n−10
4

� for these n.

- If 4 ≤ n ≤ 9, then the maximal m such that I2(m) ≤ n is m = 2. Therefore

Ω′ = i2(1) + i2(2) + n−I2(2)
3

� = 3 + n−4
3
� for this range of n.

- Finally, if n ∈ {2, 3}, then Ω′ = n. �
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Table 4: Character theoretical criterion (ctc) for q ∈ {3, 4, 5}.

q = 5 n ω Ω′ q = 5 n ω Ω′ q = 5 n ω Ω′

• 27 8 15 • 26 5 15 • 25 7 15
• 24 8 14 • 23 3 14 • 22 6 13
• 21 5 13 • 20 8 12 • 19 4 12
• 18 7 11 • 17 3 11 • 16 6 10
• 15 6 10 • 14 5 9 • 13 2 9
◦ 12 6 8 • 11 2 8 ◦ 10 5 7
◦ 9 4 7 ◦ 8 4 6 • 7 2 6
◦ 6 4 5 ◦ 5 3 5 ◦ 4 3 4
◦ 3 2 3 ◦ 2 2 2

q = 4 n ω Ω′ q = 4 n ω Ω′ q = 4 n ω Ω′

• 29 6 14 • 28 8 14 • 27 6 13
• 26 7 13 • 25 7 13 • 24 9 12
• 23 4 12 • 22 7 12 • 21 6 11
• 20 7 11 • 19 3 11 • 18 8 10
• 17 3 10 • 16 5 10 • 15 6 9
◦ 14 6 9 • 13 3 8 ◦ 12 6 8
• 11 4 7 ◦ 10 5 7 ◦ 9 4 6
◦ 8 4 6 ◦ 7 3 5 ◦ 6 5 5
◦ 5 3 4 ◦ 4 3 4 ◦ 3 2 3
◦ 2 2 2

q = 3 n ω Ω′ q = 3 n ω Ω′ q = 3 n ω Ω′

• 39 6 15 • 38 5 15 • 37 3 15
• 36 9 14 • 35 5 14 • 34 6 14
• 33 5 14 • 32 6 13 • 31 4 13
• 30 8 13 • 29 4 12 • 28 6 12
• 27 6 12 • 26 3 11 • 25 4 11
• 24 7 11 • 23 3 10 • 22 5 10
• 21 4 10 • 20 5 9 • 19 3 9
◦ 18 6 9 • 17 3 8 ◦ 16 5 8
◦ 15 4 8 • 14 3 7 • 13 2 7
◦ 12 5 7 ◦ 11 3 6 ◦ 10 3 6
◦ 9 3 6 ◦ 8 3 5 ◦ 7 2 5
◦ 6 3 4 ◦ 5 2 4 ◦ 4 2 3
◦ 3 2 3 ◦ 2 1 2
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Table 5: Character theoretical criterion (ctc) for q = 2.

q = 2 n ω Ω′ q = 2 n ω Ω′ q = 2 n ω Ω′

• 63 6 15 • 62 3 15 • 61 1 15
• 60 11 15 • 59 2 15 • 58 6 15
• 57 4 14 • 56 8 14 • 55 6 14
• 54 6 14 • 53 3 14 • 52 7 14
• 51 5 13 • 50 7 13 • 49 2 13
• 48 9 13 • 47 3 13 • 46 4 12
• 45 6 12 • 44 7 12 • 43 3 12
• 42 6 12 • 41 2 11 • 40 7 11
• 39 4 11 • 38 3 11 • 37 2 11
• 36 8 10 • 35 4 10 • 34 3 10
• 33 4 10 • 32 5 10 • 31 1 9
• 30 6 9 • 29 3 9 ◦ 28 6 9
• 27 3 9 • 26 3 8 • 25 3 8
◦ 24 6 8 • 23 2 8 ◦ 22 4 8
• 21 3 7 ◦ 20 5 7 • 19 1 7
◦ 18 4 7 • 17 1 6 ◦ 16 4 6
◦ 15 3 6 ◦ 14 3 6 • 13 1 5
◦ 12 4 5 ◦ 11 2 5 ◦ 10 3 5
◦ 9 2 4 ◦ 8 3 4 ◦ 7 1 4
◦ 6 2 3 ◦ 5 1 3 ◦ 4 2 3
◦ 3 1 2 ◦ 2 1 2
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5 The simple counting argument

From Theorem 4.1 there are 84 open cases for which, at this stage, we do not know
whether the corresponding pair is extensive or not. In the present section we are
going to show that the 18 pairs (q, n) with

n = 2: q ∈ {4, 7, 8, 9, 11, 13, 16, 19, 29, 41, 43}
n = 3: q ∈ {9, 11, 13, 16}
q = 2: n ∈ {3, 5, 7}

are in fact extensive ones. In order to do so, we let

φ′
q(n) := min{φq(f) : f ∈ Fq[x] monic of degree n}. (5.1)

The following criterion is called the simple counting argument, (sca).

Theorem 5.1 Assume that ϕ(qn − 1) > qn − 1− φ′
q(n). Then (q, n) is extensive.

Proof: Let τ be any cyclic endomorphism. Then mτ has degree n. Let P be the
set of primitive elements of Fqn and Gτ the set of τ -generators of Fqn/Fq. Then

|P ∩ Gτ | = |P|+ |Gτ | − |P ∪ Gτ |
≥ |P|+ |Gτ | − (qn − 1)
= ϕ(qn − 1) + φq(mτ )− (qn − 1)
≥ ϕ(qn − 1) + φ′

q(n)− (qn − 1).

So, if ϕ(qn − 1)− (qn − 1− φ′
q(n)

)
is positive, then P ∩ Gτ is nonempty for every τ .

�

It turns out that (sca) works well for n = 2 and it is rather good when n = 3. In
order to apply it, we need information on the functions φq and φ

′
q. Let therefore

mτ (x) =

s∏
j=1

gj(x)
aj (5.2)

be the decomposition of mτ into monic irreducible polynomials (over Fq) and write
dj := deg(gj) for j = 1, . . . , s. Then

∑s
j=1 ajdj = n and

φq(mτ ) =

s∏
j=1

q(aj−1)dj · (qdj − 1). (5.3)

In this situation we call
Δτ := [da11 , d

a2
2 , . . . , d

am
m ] (5.4)
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Table 6: Simple counting argument (sca) for n ∈ {2, 3}.

n = 2 q ϕ(q2 − 1) q2 − 1− φ′
q(2)

◦ 2 2 2
◦ 3 4 4
• 4 8 6
◦ 5 8 8
• 7 16 12
• 8 36 14
• 9 32 16
• 11 32 20
• 13 48 24
• 16 128 30
• 19 96 36
• 29 192 56
• 41 384 80
• 43 480 84

n = 3 q ϕ(q3 − 1) q3 − 1− φ′
q(3)

◦ 3 12 18
◦ 4 36 36
◦ 5 60 60
◦ 7 108 126
• 9 288 216
• 11 432 330
• 13 720 468
• 16 1728 720

the factor pattern of mτ , a terminology which we also frequently use in the forth-
comming sections. We shall later however omit a superscript ai when ai = 1. Equa-
tion (5.3) shows that φq(mτ ) only depends on the factor pattern of mτ and we
therefore may also write

φq(Δτ ) for φq(mτ ).

If Δ′ is a factor pattern such that φq(Δ
′) = φ′

q(n), then Δ′ is called a worst case factor
pattern. When n ≤ q, hence Ω′ = n, one has φ′

q(n) = φ([1, . . . , 1]) = (q − 1)n. So,
for n = 2 we have φ′

q(2) = φq([1, 1]) = (q− 1)2, which yields q2 − 1− φ′
q(2) = 2q− 2.

And for n = 3 and q ≥ 3 we have φ′
q(3) = φ([1, 1, 1]) = (q − 1)3, which gives

q3−1−φ′
q(3) = 3q2−3q for q ≥ 3. The relevant computational results are summarized

in Table 6.

For the cases q = 2 and n ∈ {3, 5, 7} the numbers 23 − 1 = 7 and 25 − 1 = 31 and
27 − 1 = 127 are primes. Hence every nonzero element of Fqn is primitive, and the
corresponding pairs are trivially extensive.
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6 Three counterexamples

In the present section we consider the values q = 2, 3, 5 with n = 2. It is interesting
to see that the simple counting argument here just fails with equality (Table 6), and
we will show indeed that these pairs are not extensive.

6.1 The pair (q, n) = (2, 2)

Write E = F4 = {0, 1, ζ, ζ + 1}, where ζ is a primitive third root of unity, i.e.
ζ2 = ζ + 1. Observe that ζ, ζ2 is a primitive normal basis for F4 over F2.

The requirement is that mτ has factor pattern [1, 1]. This implies mτ = x(x−1).
Defining τ by τ(ζ) = 0 and τ(ζ2) = ζ2 gives the desired minimal polynomial, and
the only τ -generator is 1. Consequently, the pair (q, n) = (2, 2) is not extensive.

6.2 The pair (q, n) = (3, 2)

The polynomial y2 + y+ 2 is irreducible over F3. Let ζ be a root of that polynomial
(in the field F9). Then ζ is a primitive element of F9, and therefore the ϕ(32−1) = 4
primitive elements of F9 are ζ , ζ3 = 2ζ + 2, ζ5 = 2ζ and ζ7 = ζ + 1. The non-zero
elements which are not primitive are ζ2 = 2ζ + 1, ζ4 = 2, ζ6 = ζ + 2 and ζ8 = 1.

Now, take 1 together with ζ as a canonical basis of F9 over F3 and define the
F3-endomorphism τ on F9 by τ(1) := 2ζ and τ(ζ) := ζ . Then mτ = x(x − 1). The
eigenspace for the eigenvalue λ = 0 is E0 = {0, 2ζ + 2, 2ζ} and the eigenspace for
the eigenvalue λ = 1 is E1 = {0, ζ, ζ + 1}. Therefore, no primitive element is a
τ -generator. This shows that the pair (q, n) = (3, 2) is not extensive.

6.3 The pair (q, n) = (5, 2)

The polynomial y2 + y+ 2 is irreducible over F5. Let ζ be a root of that polynomial
(in the field F25). Then ζ is a primitive element of F25, all other primitive elements
are marked with an ∗ in Table 7, where the powers of ζ are expressed in the canonical
basis 1, ζ for F25 over F5.

The F5-subspace spanned by ζ is equal to {0, ζ, 2ζ, 3ζ, 4ζ}, while the F5-subspace
spanned by ζ5 is equal to {0, ζ + 1, 2ζ + 2, 3ζ + 3, 4ζ + 4}. Remarkably, the nonzero
elements of these two spaces are exactly the primitive elements of F25. These can be
made into the eigenspaces of an endomorphism τ with minimal polynomial mτ (x) =
(x − a)(x − b) for distinct a, b ∈ F5. In all these situations there is no primitive
element which is a τ -generator, and therefore the pair (q, n) = (5, 2) is not extensive.

For instance, choosing a = 1 and b = −1 gives mτ = x2 − 1, which is the same
minimal polynomial as that of the Frobenius automorphism of F25 over F5. But
for the Frobenius automorphism a primitive generator does exist by the primitive
normal basis theorem!
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Table 7: The quadratic extension of F5.

� ζ� � ζ�

2 4ζ + 3 13∗ 4ζ
3 4ζ + 2 14 ζ + 2
4 3ζ + 2 15 ζ + 3
5∗ 4ζ + 4 16 2ζ + 3
6 2 17∗ ζ + 1
7∗ 2ζ 18 3
8 3ζ + 1 19∗ 3ζ
9 3ζ + 4 20 2ζ + 4
10 ζ + 4 21 2ζ + 1
11∗ 3ζ + 3 22 4ζ + 1
12 4 23∗ 2ζ + 2

7 The improved counting argument

The simple counting argument from Section 5 is rather limited when n ≥ 4. In the
present section we therefore establish an improvement of Theorem 5.1 (see Theorem
7.3). This criterion is in fact a forerunner of the geometric approach we are going to
consider in Section 10. Here, we prove that the following 25 pairs are extensive:

q = 2: n ∈ {9, 11}
q = 3: n ∈ {3, 5, 7, 9, 11, 15}
q = 4: n ∈ {4, 5, 7, 8}
q = 5: n ∈ {3, 5, 9}
q = 7: n ∈ {3, 5, 7}
q = 8: n ∈ {4, 5, 6}
q = 9: n ∈ {4, 9}
(q, n) = (11, 4) and (q, n) = (13, 4)

The idea is to study the problem from a projective point of view. This means that
we are now going to consider E = Fqn as an (n − 1)-dimensional projective space
over the ground field F = Fq, i.e. as Π := PGn−1(q). (For the basics on projective
geometry see Hirschfeld [10].) The points of Π are the one-dimensional subspaces of
E. For a nonzero v ∈ E, we let

F ∗v = {λv : λ ∈ F, λ �= 0}
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be the set of nonzero elements of the point Fv. A point Fv is called primitive, if
there is a primitive element in F ∗v. In order to determine the number of primitive
elements contained in a primitive point, we let

q − 1 =

k∏
i=1

raii ·
�∏

j=1

s
bj
j and qn − 1 =

k∏
i=1

raii ·
�∏

j=1

s
b′j
j ·

m∏
k=1

tckk (7.1)

be the prime power factorizations of q − 1 and qn − 1, respectively, where the ri
and the sj are the common primes of these two numbers, and where bj < b′j for all
j = 1, . . . , �. Let further

R :=
k∏
i=1

raii and S :=
�∏

j=1

s
bj
j . (7.2)

The following is a consequence from basic group theory. For a proof we refer to [8,
Section 5].

Proposition 7.1 Assume that v is a primitive element. Then the primitive point
Fv contains exactly ϕ(R) · S primitive elements. �

Later, we will often refer to ϕ(R) · S as a multiplier. Moreover, in Section 10,
the extension field E will sometimes also be considered as a projective space over
some intermediate field K of E/F , and then the K-points have the form Kv, and a
corresponding multiplier for E/K then counts the number of primitive elements in
some primitive K-point.

Consider next the decomposition of mτ as in (5.2) of Section 5. For every monic
irreducible divisor gi ∈ F [x] of mτ , let Mi := mτ/gi and Vi := VMi

. Then Vi, the
subspace of E that is annihilated by Mi, is a maximal τ -invariant subspace of E.
Furthermore, let

Cτ :=

s⋃
i=1

Vi. (7.3)

Then Cτ consists of all elements of E that are not τ -generators of E, and therefore
|Cτ | = qn − φq(mτ ). Since Cτ is closed under the multiplication with field elements
λ ∈ F , we may consider Cτ as a configuration of points from the underlying
projective space Π; when doing so, we use the calligraphic notation Cτ . The number
of points of Cτ is therefore equal to

|Cτ | = |Cτ | − 1

q − 1
. (7.4)

Proposition 7.2 Let (q, n) and a cyclic Fq-endomorphism τ of Fqn be given. As-
sume that

|Cτ | · ϕ(R) · S < ϕ(qn − 1).

Then there exists a primitive τ -generator in Fqn.
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Proof: The total set P of primitive elements of E gives

ϕ(qn − 1)

ϕ(R) · S
primitive points in the projective geometry Π. If this number is larger than |Cτ |,
then there exists a primitive point outside the configuration Cτ . Consequently, any
primitive element of such a point is a τ -generator of E. �

The consideration of a worst case leads to the following sufficient criterion for ex-
tensiveness. We call it the improved counting argument (ica), and therefore
let

c′ = c′(q, n) :=
qn − 1− φ′

q(n)

q − 1
, (7.5)

where φ′
q(n) is defined in (5.1).

Theorem 7.3 Let (q, n) be given. Assume that

c′ · ϕ(R) · S < ϕ(qn − 1).

Then (q, n) is extensive. �

As mentioned at the end of Section 5, for q ≥ n the worst case arises always when
mτ splits into distinct linear factors. This gives

c′ =
qn − 1− (q − 1)n

q − 1
.

When however q < n, then c′ is derived from a worst case factor pattern Δ′ giving
φq(Δ

′) = φ′
q(n). Some relevant data is summarized in Table 8.

The positive results obtained by an application of Theorem 7.3 are summarized in
Table 9. The improved counting argument failed for all other open pairs.

8 Two further counterexamples

In the present section we consider the two pairs (2, 4) and (2, 6). We will see that
these pairs are not extensive.

8.1 The pair (q, n) = (2, 4)

As a model for E = F24 we choose the irreducible polynomial

z4 + z + 1
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Table 8: Worst case factor patterns for certain pairs (q, n).

q n worst case pattern Δ′

3 5 [1, 1, 1, 2]
4 5 [1, 1, 1, 12]
3 7 [1, 1, 1, 2, 2]
4 7 [1, 1, 1, 12, 2]
4 8 [1, 1, 1, 1, 2, 2]
2 9 [1, 13, 2, 3]
3 9 [1, 1, 1, 2, 2, 2]
5 9 [1, 1, 1, 1, 1, 2, 2]
2 11 [1, 12, 2, 3, 3]
3 11 [1, 1, 13, 2, 2, 2]
3 15 [1, 1, 1, 2, 2, 2, 3, 3]

from F2[z], whose roots are in fact primitive elements of E, here primitive 15th
roots of unity. So, we take 1, z, z2, z3 as an F -basis of E. Now, let τ be the F -
endomorphism of E, which, with respect to this basis is represented by the matrix⎛

⎜⎜⎝
0 0 1 1
1 0 0 1
0 1 0 0
0 0 1 1

⎞
⎟⎟⎠ .

Then τ(1) = z and τ(z) = z2 and τ(z2) = z3+1 and τ(z3) = z3+z+1 show that the
τ -order of 1 is equal to x4 + x3 = x3(x + 1). Hence, τ is a cyclic F2-endomorphism
and mτ = x3(x+ 1). This implies that there are exactly

φq(mτ ) = (23 − 22) · (2− 1) = 4

τ -generators of E. Apart from 1, these are the elements

(x2 + x+ 1) · 1 = τ 2(1) + τ(1) + 1 = z2 + z + 1 = z10,
(x3 + x+ 1) · 1 = τ 3(1) + τ(1) + 1 = z3 + z = z9,
(x3 + x2 + 1) · 1 = τ 3(1) + τ 2(1) + 1 = z3 + z2 = z6.

Since none of the z-exponents of these elements is relatively prime to 24 − 1 = 15,
i.e. either divisible by 3 or by 5, none of these elements is primitive. This shows that
there is no primitive τ -generator and therefore the pair (2, 4) is not extensive.

8.2 The pair (q, n) = (2, 6)

As a model for E = F26 we choose the irreducible polynomial

Φ9(y) = y6 + y3 + 1
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Table 9: Application of Theorem 7.3 (ica).

q n c′ R S c′ · ϕ(R) · S ϕ(qn − 1)

3 3 9 2 1 9 12
5 3 15 4 1 30 60
7 3 21 2 3 63 108
4 4 58 3 1 116 128
8 4 242 7 1 1 452 1 728
9 4 308 1 8 2 464 2 560
11 4 464 5 2 3 712 3 840
13 4 6 532 3 4 5 216 6 144
3 5 89 2 1 89 110
4 5 233 3 1 466 600
5 5 525 4 1 1 050 1 400
7 5 1 505 6 1 3 010 5 600
8 5 2 280 7 1 13 680 27 000
8 6 20 642 7 1 123 852 139 968
3 7 837 2 1 837 1 092
4 7 3 841 3 1 7 682 10 584
7 7 90 601 6 1 181 202 264 992
4 8 15 770 3 1 31 540 32 768
2 9 427 1 1 427 432
3 9 7 793 12 1 7 793 9 072
5 9 340 825 4 1 681 650 894 240
9 9 31 650 345 8 1 126 601 380 141 087 744
2 11 1 753 1 1 1 753 1 936
3 11 70 141 2 1 70 141 84 700
3 15 5 790 005 2 1 5 790 005 6 019 200
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from F2[y], whose roots are the primitive 9th roots of unity. So, we take 1, y, y2, y3,
y4, y5 as an F -basis of E. Now let τ be the F -endomorphism of E that is represented
by the matrix ⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0
1 1 1 1 0 1
1 1 0 1 1 0
1 1 0 0 1 1
1 0 0 1 0 0
1 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

with respect to this basis.

1. Let X := y + 1. Then τ(X) = τ(y + 1) = y4 + 1 and τ(y4 + 1) = y4 + y and
therefore

(τ 2 + τ + 1)(X) = y4 + y + y4 + 1 + y + 1 = 0

shows that X = y+ 1 has τ -order x2 + x+1. The τ -orders of Y := y4 + 1 and
X + Y = y4 + y are equal to x2 + x+ 1 as well.

2. Let A := y3. Then τ(A) = y4 + y2 + y and τ(y4 + y2 + y) = 0, which shows
that A has τ -order x2. Also, B := y4 + y3 + y2 + y has τ -order x2 while A+B
has τ -order x.

3. Let C := y3+ y2+1. Then τ(C) = y5+ y3+ y+1 and τ(y5+ y3+ y+1) = C,
which shows that C has τ -order x2 + 1 = (x+ 1)2. Also, D := y5 + y3 + y + 1
has τ -order (x+ 1)2 while C +D = y5 + y2 + y has τ -order x+ 1.

This altogether implies that the minimal polynomial of τ is equal to

mτ = (x2 + x+ 1)x2(x+ 1)2,

and that τ is a cyclic F2-endomorphism. Next, let z := y + 1. Then z is a primitive
element of E. All the τ -generators are as follows, expressed as powers of z:

X + A+ C = z57, X + A+D = z28,
X +B + C = z35, X +B +D = z15,
Y + A+ C = z51, Y + A+D = z30,
Y +B + C = z56, Y +B +D = z7,

X + Y + A+ C = z54, X + Y + A+D = z45,
X + Y +B + C = z63, X + Y +B +D = z27.

Since none of the z-exponents of these elements is relatively prime to 26 − 1 = 63,
i.e. either divisible by 3 or by 7, none of these elements is primitive. This shows that
there is no primitive τ -generator and therefore the pair (2, 6) is not extensive.
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9 The sieving method

As mentioned in the introduction, Cohen and Huczynska’s proof of the primitive
normal basis theorem [3] is based on a sieving method. We adopt this approach
(culminating in Theorem 9.2 below) for the present problem as well, and argue that
the following 12 pairs are extensive:

q = 2: n ∈ {22, 28}
q = 3: n ∈ {16, 18}
(q, n) = (4, 14)

q = 5: n ∈ {8, 10, 12}
(q, n) = (7, 9)

q = 9: n ∈ {6, 8}
(q, n) = (11, 6)

Recall the definitions of the functions P and Γg from Section 3, see (3.1) and (3.4),
where g ∈ F [x] is a monic divisor of mτ . We define

#(g) :=
∑
w∈E

P (w)Γg(w). (9.1)

Then #(1) = ϕ(qn − 1) is just the number of primitive elements, and for g �= 1 the
function #(g) counts the number of primitive elements w ∈ E with the property
that w is not of the form r(τ)(v) for every irreducible divisor r of g. On the lines
of the argumentation of the proof of Proposition 3.3, one may derive the following
result which corresponds to [3, Corollary 3.2] (again, ω is the number of distinct
prime divisors of qn − 1).

Proposition 9.1 With g(x) ∈ F [x] being a monic divisor of mτ , it holds that

qn − 1

ϕ(qn − 1)
·#(g) ≤ φq(g)

qdeg(g)
· (qn − εg + (2ω − 1)(2Ω(g) − 1)

√
qn
)

and
qn − 1

ϕ(qn − 1)
·#(g) ≥ φq(g)

qdeg(g)
· (qn − εg − (2ω − 1)(2Ω(g) − 1)

√
qn
)
,

where εg = 1, if g = 1, and εg = 0, otherwise. Furthermore, Ω(g) denotes the number
of distinct monic irreducible F -divisors of g. �



D. HACHENBERGER /AUSTRALAS. J. COMBIN. 64 (2) (2016), 289–326 315

This generalized counting function is necessary in order to formulate the basic siev-
ing inequality (9.2); compare with [3, Proposition 4.1]: Assume that g1, . . . , gs are
monic divisors of g (all polynomials from F [x]) such that lcm(g1, . . . , gs) = g and
gcd(gi, gj) = g0 for all i �= j. Then g1, . . . , gs is called a list of complementary divisors
of g with common factor g0. In that case, one has

#(g) ≥
(

s∑
i=1

#(gi)

)
− (s− 1) ·#(g0). (9.2)

Proposition 9.1 and (9.2) imply the announced sufficient criterion for the existence
of a primitive τ -generator.

Theorem 9.2 Let g1, . . . , gs be a list of complementary divisors of mτ with common
factor g0. Let

lhs :=

s∑
i=1

φq(gi)

qdeg(gi)
· (qn − (2ω − 1)(2Ω(gi) − 1)

√
qn
)

and

rhs := (s− 1) · φq(g0)
qdeg(g0)

· (qn − εg0 + (2ω − 1)(2Ω(g0) − 1)
√
qn
)
.

Assume that lhs is greater than rhs. Then there exists a primitive τ -generator for
E = Fqn over F = Fq. �

Observe that this argument only depends on the factorization pattern of the list of
complementary divisors. When g0 = 1, then rhs = (s − 1) · (qn − 1). We are able
to successfully apply this argument in the subsequent situations; in the Subsections
9.1-9.7 (i.e. for the seven pairs (11, 6), (9, 8), (9, 6), (7, 9), (5, 12), (5, 10), (5, 8)) we
could always choose g0 = 1.

As in Proposition 3.3, we let Ωτ be the number of distinct monic irreducible
divisors of mτ in Fq[x].

9.1 The pair (q, n) = (11, 6)

Here, ω = 6. If Ωτ ≤ 4, then Proposition 3.3 gives the existence of a primitive τ -
generator. It therefore remains to consider the cases where Ωτ = 5 or Ωτ = 6. In all
these cases we shall take s = 3, and the polynomials gi are quadratic for i = 1, 2, 3.
The right hand side (rhs) in Theorem 9.2 always attains the value 3 543 120.

1. Assume first that Ωτ = 6. Then mτ splits into distinct linear factors. Then
the left hand side (lhs) in Theorem 9.2 is equal to 3 768 600.

2. Assume next that Ωτ = 5. There are two possible factor patterns of mτ to
be considered, namely [1, 1, 1, 1, 12] or [1, 1, 1, 1, 2]. In the first case, let g1 and
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g2 have factor pattern [1, 1], while the pattern of g3 is [12]; then the left hand
side of Theorem 9.2 gives 4 046 680. In the second case, we let g1 and g2 have
type [1, 1], while g3 has type [2]; then the left hand side of Theorem 9.2 gives
4 186 160.

Altogether, this shows that (11, 6) is extensive.

9.2 The pair (q, n) = (9, 8)

Here, ω = 5. If Ωτ ≤ 7, then Proposition 3.3 gives the existence of a primitive τ -
generator. Therefore, it remains to consider the case where Ωτ = 8, and this means
that mτ splits into eight distinct linear factors. Let now s = 4, and let each gi (for
i = 1, 2, 3, 4) have factor pattern [1, 1]. Then, in Theorem 9.2 the left hand side is
equal to 134 120 448 while the right hand side is equal to 129 140 160. This shows
that (9, 8) is extensive.

9.3 The pair (q, n) = (9, 6)

Here, again ω = 5. If Ωτ ≤ 4, then Proposition 3.3 implies the existence of a primitive
τ -generator. It remains to consider the cases Ωτ = 5 or Ωτ = 6. In both cases we
take s = 3; furthermore, the gi are quadratic polynomials and g1 and g2 have factor
pattern [1, 1], each. The right hand side gives 1 062 880 in both cases.

1. Assume first that Ωτ = 6. Then mτ splits into distinct linear factors. In
Theorem 9.2 the left hand side is then equal to 1 099 008.

2. Assume next that Ωτ = 5. There are two possible factor patterns, namely
[1, 1, 1, 1, 12] or [1, 1, 1, 1, 2]. In the first case, with g3 having pattern [12], the
left hand side of Theorem 9.2 gives 1 184 976. In the second case, with g3 having
pattern [2], the left hand side of Theorem 9.2 is 1 235 232.

Altogether, this shows that (9, 6) is extensive.

9.4 The pair (q, n) = (7, 9)

Here, we have ω = 5. If Ωτ ≤ 7, Proposition 3.3 gives the existence of a primitive
τ -generator. It therefore remains to consider the cases where Ωτ ≥ 8. But then
Ωτ = 8, and mτ splits as [1, 1, 1, 1, 1, 1, 1, 2]. We try again s = 3 and build g1 and g2
with pattern [1, 1, 1], while g3 has pattern [1, 2]. Then in Theorem 9.2 the left hand
side attains the value 49 088 204+ 33 386 865 = 82 475 069, while the right hand side
is equal to 80 707 212. This shows that (7, 9) is extensive.
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9.5 The pair (q, n) = (5, 12)

Here, ω = 6. If Ωτ ≤ 7, then Proposition 3.3 implies the existence of a primitive
τ -generator. Hence, it remains to consider the cases where Ωτ ≥ 8. But then Ωτ = 8,
and mτ splits as [1, 1, 1, 1, 12, 2, 2, 2] or as [1, 1, 1, 1, 2, 2, 2, 2].

In the first case, we take s = 4 and build four patterns of type [1, 2] for the gi.
Then in Theorem 9.2 the left hand side is equal to 740 928 000 while the right hand
side is equal to 732 421 872.

For the second case, we take s = 3 and build groups of the form [12] and [1, 1, 1, 1]
and [2, 2, 2]. Then in Theorem 9.2 the left hand side is equal to the sum of the three
values 194 525 000, 93 952 000 and 209 903 616 which altogether is 498 380 616, and
which is greater than 488 281 248, the evaluation of the right hand side of Theorem
9.2.

Consequently, (5, 12) is extensive.

9.6 The pair (q, n) = (5, 10)

Here, ω = 5. If Ωτ ≤ 6, then Proposition 3.3 gives the existence of a primitive
τ -generator. It therefore remains to consider the cases where Ωτ ≥ 7. But then
Ωτ = 7, and mτ splits as [1, 1, 1, 1, 12, 2, 2] or as [1, 1, 1, 1, 2, 2, 2]. We always take
s = 2 and therefore obtain 510 − 1 = 9 765 624 in the right hand side.

Consider first the case [1, 1, 1, 1, 2, 2, 2]. Build the two groups [1, 1, 1, 1] and
[2, 2, 2]. Then in Theorem 9.2 the left hand side is equal to the sum of 3 404 800
and 8 040 038.4, which is 11 444 838.4. Let mτ next have pattern [1, 1, 1, 1, 12, 2, 2].
Build the groups [1, 1, 1, 1, 12] and [2, 2]. Then in Theorem 9.2 the left hand side is
equal to the sum of the two values 2 215 936 and 8 732 160, which is 10 948 096.

Consequently, (5, 10) is extensive.

9.7 The pair (q, n) = (5, 8)

Here, ω = 4. If Ωτ ≤ 5, then Proposition 3.3 gives the existence of a primitive τ -
generator. It therefore remains to consider the cases where Ωτ ≥ 6. But then Ωτ = 6
and mτ splits as [1, 1, 1, 1, 12, 2], or as [1, 1, 1, 1, 2, 2], or as [1, 1, 1, 1, 1, 3]. We always
take s = 2, whence the right hand side of Theorem 9.2 is 58 − 1 = 390 624.

Consider first [1, 1, 1, 1, 12, 2] grouped as [1, 1, 1, 1, 12] and [2]; then the left hand
side of Theorem 9.2 gives 398 768. If mτ has pattern [1, 1, 1, 1, 2, 2], take the blocks
[1, 1, 1, 1] and [2, 2]; the left hand side of Theorem 9.2 then attains the value 436 480.
Assume finally that mτ has pattern [1, 1, 1, 1, 1, 3]; take the blocks [1, 1, 1, 1, 1] and
[3]; then the left hand side of Theorem 9.2 gives 410 968.

This altogether shows that (5, 8) is extensive.
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9.8 The pair (q, n) = (4, 14)

Here, ω = 4. If Ωτ ≤ 8, then Proposition 3.3 shows the existence of a primitive τ -
generator. Hence, it remains to consider the cases where Ωτ ≥ 9. But then Ωτ = 9,
and mτ definitely splits as [1, 1, 1, 1, 2, 2, 2, 2, 2]. We are going to take g0 of type
[1, 1, 1, 1] (so for the first time g0 �= 1) and s = 2 with g1 of type [1, 1, 1, 1, 2, 2, 2] and
g2 of type [1, 1, 1, 1, 2, 2]. The left hand side of Theorem 9.2 gives a value which is
greater than 92 373 696. The right hand side is equal to 89 833 536.

This shows that (4, 14) is extensive.

9.9 The pair (q, n) = (3, 18)

Here, ω = 6. If Ωτ ≤ 8, then Proposition 3.3 gives the existence of a primitive
τ -generator. It therefore remains to consider the cases where Ωτ ≥ 9. But then
Ωτ = 9, and mτ definitely splits as [1, 1, 1, 2, 2, 2, 3, 3, 3]. We are going to take g0 of
type [1, 1, 1] and s = 2 with g1 of type [1, 1, 1, 2, 2, 2] and g2 of type [1, 1, 1, 3, 3, 3].
The left hand side of Theorem 9.2 then gives the sum of 64 364 544 and 81 833 856,
which is 146 198 400, while the right hand side is equal to 117 363 168.

This shows that (3, 18) is extensive.

9.10 The pair (q, n) = (3, 16)

Here, ω = 5. If Ωτ ≤ 7, then Proposition 3.3 gives the existence of a primitive
τ -generator. Therefore, it remains to consider the cases where Ωτ ≥ 8. But then
Ωτ = 8, and there are three possible factor patterns for mτ . In any case, we take
s = 2. In the first two cases we take g0 of type [1, 1, 1], and let g0 have type [1, 1, 12]
in the last case.

1. Assume first the pattern is [1, 1, 1, 2, 2, 2, 3, 4]. Take g1 of type [2, 2, 2, 1, 1, 1]
and g2 of type [3, 4, 1, 1, 1]. We divide both sides of the inequality in Theorem
9.2 by the common term (3 − 1)3 · 38−3 and then obtain on the left a sum
which is greater than 3 236 + 5 326 = 8 562, while the right hand side gives
38 + 31 · 7 = 6 778.

2. Consider next the pattern [1, 1, 1, 2, 2, 3, 3, 3]. Take now g1 of type [2, 2, 1, 1, 1]
and g2 of type [3, 3, 3, 1, 1, 1]. Again, we divide both sides of the inequality in
Theorem 9.2 by the common term (3 − 1)3 · 38−3 and then obtain on the left
a sum which is greater than 4 424 + 4 114 = 8 538, while the right hand side
gives again 6 778.

3. Consider finally the pattern [1, 1, 12, 2, 2, 2, 3, 3]. We are going to take g1 of
type [1, 1, 12, 2, 2, 2] and g2 of type [1, 1, 12, 3, 3]. Dividing both sides of the
inequality in Theorem 9.2 by the common term (3− 1)2 · (32 − 3) · 38−2−2 gives
on the left a sum greater than 3 236 + 5 192 = 8 428, while the right hand side
yields once more 6 778.
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Table 10: Factor patterns for the pair (2, 28).

mτ g0 g1 g2
[1, 1, 2, 3, 3, 4, 4, 4, 6] [1, 1] [3, 3, 6] [2, 4, 4, 4]
[1, 12, 2, 3, 3, 4, 4, 4, 5] [1, 12] [3, 3, 5] [2, 4, 4, 4]
[1, 13, 2, 3, 3, 4, 4, 4, 4] [1, 13] [3, 3, 4] [2, 4, 4, 4]
[12, 12, 2, 3, 3, 4, 4, 4, 4] [12, 12] [3, 3, 4] [2, 4, 4, 4]
[1, 1, 22, 3, 3, 4, 4, 4, 4] [1, 1] [22, 3, 3] [4, 4, 4, 4]

This altogether shows that (3, 16) is extensive.

9.11 The pair (q, n) = (2, 22)

Here, ω = 4. If Ωτ ≤ 7, then the character sum criterion gives the existence of a
primitive τ -generator. Therefore, it remains to consider the cases where Ωτ ≥ 8.
But then Ωτ = 8 and there is only one possible factor pattern for mτ , namely
[1, 1, 2, 3, 3, 4, 4, 4]. We are going to take g0 of type [1, 1] and s = 2 with g1 of type
[1, 1, 2, 3, 3] and g2 of type [1, 1, 4, 4, 4]. We divide both sides of the inequality in
Theorem 9.2 by the common term 211−2 and then obtain on the left a sum which is
greater than 795+ 1 304 = 2 099, while the right hand side gives 211 +15 · 3 = 2 078.

This shows that (2, 22) is extensive.

9.12 The pair (q, n) = (2, 28)

Here, ω = 6. If Ωτ ≤ 8, then the character sum argument gives the existence of
a primitive τ -generator. Therefore, it remains to consider the cases where Ωτ ≥ 9.
But then Ωτ = 9. Nevertheless, there are five possible factor patterns for mτ . For
every pattern, the strategy is the same. We let s = 2 and g0 have a pattern of the
form [1a, 1b]. Furthermore, let g1 := g1/g0 and g2 := g2/g0; the factor patterns of g1
have the form [3, 3, 4] or [3, 3, 5] or [3, 3, 6] or [22, 3, 3], while that of g2 have the form
[2, 4, 4, 4] or [4, 4, 4, 4]. Table 10 shows all possibilities.

We may always divide out the common term
√
228 · φ2(g0)/q

deg(g0); after that the
relevant summands are as follows:

- [22, 3, 3] gives a value greater than 8 286,

- [3, 3, 4] gives a value greater than 10 358,

- [3, 3, 5] gives a value greater than 10 703,

- [3, 3, 6] gives a value greater than 10 876,

- [2, 4, 4, 4] gives a value greater than 7 672,
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- [4, 4, 4, 4] gives a value greater than 9 590.

The right hand sides are always equal to 214+63 · 3 = 16 573. Now, for the left hand
side,

- pattern [1, 1, 2, 3, 3, 4, 4, 4, 6] gives 10 876 + 7 672 = 18 548,

- pattern [1, 12, 2, 3, 3, 4, 4, 4, 5] gives 10 703 + 7 672 = 18 375,

- pattern [1, 13, 2, 3, 3, 4, 4, 4, 4] and pattern [12, 12, 2, 3, 3, 4, 4, 4, 4] both give

10 358 + 7 672 = 18 030,

- pattern [1, 1, 22, 3, 3, 4, 4, 4, 4] also gives 8 286 + 9 590 = 17 876.

This altogether shows that the pair (2, 28) is extensive.

We have not been able to successfully apply the sieving method to the remaining
pairs.

10 The geometric approach

The geometric approach (ga) is a development of the improved counting argument
from Section 7. It works well at least for small values of n (say n ≤ 6), and has
been successfully applied in order to determine good lower bounds for the number
of primitive normal elements in cubic and quartic extensions of Galois fields in [8]
(see also [9]). Similar to the spirit of the handling of the pairs (5, 6) and (3, 6)
below, we currently explore the number of primitive completely normal elements
in six-dimensional extensions of Galois fields. (An element w ∈ Fqn is completely
normal over Fq, if it is normal over every intermediate field Fqd of Fqn over Fq, see
[7].) Basically, as in Section 7, we consider the extension E as PGn−1(F ), and for
an F -endomorphism τ , we let Cτ be the configuration of points which are covered
by the maximal τ -invariant subspaces of E (see (7.3) and the remark afterwards).
We now have a closer look at the subspace arrangement Cτ . Instead of a systematic
treatment, we have looked individually at the remaining pairs and could succesfully
apply (ga) to prove the extensiveness of five further pairs, namely

(q, n) ∈ {(4, 3), (3, 4), (7, 4), (3, 6), (5, 6)}.
We use the terminology as introduced in Section 7.

10.1 The pair (4, 3)

The number of primitive elements is equal to ϕ(43 − 1) = 36. Consider E as a
projective plane Π = PG2(F ) of order 4. The number of points of that plane is
42 + 4 + 1 = 21. Since a primitive point contains exactly 3 primitive elements (see
Proposition 7.1), we conclude that there are altogether 36/3 = 12 primitive points.
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If mτ has pattern [3] or [2, 1] or [13] or [12, 1], then the number of points covered
by the configuration Cτ is equal to 0 or 6 or 5 or 9, respectively. This is less than
12. It therefore remains to consider those τ where mτ has pattern [1, 1, 1], leading
to exactly 12 points in the configuration Cτ (which coincides with the 36 elements
that are not τ -generators, then). We want to prove that there is a primitive point
outside Cτ .

Assume that this is not the case. Let mτ = abc. Then the three lines Vab, Vac
and Vbc cover exactly 3 · (4 + 1) − 3 = 12 points, and these must all be primitive
by assumption. Next, consider E also as a module with respect to the Frobenius
automorphism σ over F . We have mσ = x3−1 = (x−1)(x−λ)(x−λ2), where λ ∈ F
is a primitive 3rd root of unity. Let u have σ-order3 x−λ and let v have σ-order x−λ2.
Then u and v are primitive 9th roots of unity, whence the corresponding points are
not primitive. Consequently, the line G through u and v, which in fact is the kernel
of the (E, F )-trace-mapping, intersects the configuration Cτ in three distinct points;
these are the points on G that are different from Fu and Fv, hence represented by
u+ λv and u+ λ2v and u+ v, all primitive by assumption. Since every element of a
primitive point is primitive as well, this gives rise to 3 · 3 = 9 primitive elements in
E that have (E, F )-trace equal to 0 (in fact with σ-order x2+x+1). These together
with the six primitive 9th roots of unity and the zero-element determine then all of
the 42 elements of the (E, F )-trace kernel. However, the 7th cyclotomic polynomial
splits over F as Φ7(x) = (x3 + x2 +1)(x3 + x+1); the trace coefficient of the second
factor is equal to 0, and we therefore obtain a contradiction, because there are also
three primitive 7th roots of unity in the kernel of the (E, F )-trace mapping. The
pair (4, 3) is therefore extensive.

10.2 The pair (3, 4)

Here, we have ω = 2 and ϕ(34 − 1) = 32. Unfortunately, the criterion from Propo-
sition 3.3 fails whenever Ωτ ≥ 2. The multiplier ϕ(R) · S (see Proposition 7.1 and
the remark afterwards) only gives 1, i.e. a reduction to the simple counting argu-
ment. Anyway, for a given τ , with pattern Δτ and with configuration Cτ , we let
δ := ϕ(34 − 1)− |Cτ | be the discrepancy (compare with Proposition 7.2). If positive,
the existence of a τ -generator is guaranteed. The relevant data is summarized in
Table 11.

In order to cope with the remaining cases, our geometric reasoning is as follows.
Consider E first as a projective space Π = PG3(F ). Every primitive F -point has
two primitive elements. Hence Π contains 32/2 = 16 primitive F -points.

Next, let K = F9 be the intermediate field of E/F , and consider E now as a
projective line Γ = PG1(K) over K. Since |K∗| = 32 − 1 = 8, every primitive
K-point has exactly 8 primitive elements. This shows that there are 32/8 = 4
primitive K-points. Any point in Γ gives rise to a projective line PG1(F ) (with
exactly q + 1 = 4 points of type F ). In the present situation, any primitive K-

3Instead of σ-order often the notion q-order is used.
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Table 11: The pair (3, 4).

Δτ φ3(Δτ ) |Cτ | = 34 − 1− φ3(Δτ ) δ

[2, 2] (32 − 1)2 = 64 16 32− 16 = 16
[1, 3] 2 · (33 − 1) = 52 28 32− 28 = 4 = 84
[12, 2] (32 − 3) · (32 − 1) = 48 32 32− 32 = 0
[12, 12] (32 − 3)2 = 36 44 32− 44 = −12
[1, 1, 12] 22 · (32 − 3) = 24 56 32− 56 = −24
[1, 1, 2] 22 · (32 − 1) = 32 48 32− 48 = −16

point considered as an F -line consists entirely of primitive F -points. The important
feature is that pairwise distinct K-points lead to pairwise skew F -lines, i.e. they have
pairwise empty intersection.

So, consider the factor patterns from above with nonpositive discrepancy δ. There
are at most three different irreducible factors in mτ , and the corresponding maximal
τ -invariant subspaces may therefore be imbedded into at most three F -hyperplanes in
Π. Because of the skewness of theK-points, any such hyperplane can contain at most
one primitive F -line. Consequently, there is at least one (from the four) primitive
F -lines which is not contained in some of these hyperplanes. Take one of these lines.
It intersects any hyperplane in exactly one point (by reasons of dimension). Since
there are four points on the line, but at most three hyperplanes, there is a point
of that line which is outside the union of the hyperplanes. This point is primitive,
and since the configuration Cτ is covered by the hyperplanes, this gives a primitive
τ -generator.

The pair (q, n) = (3, 4) is therefore extensive.

10.3 The pair (7, 4)

First of all, 74 − 1 = 25 · 3 · 52 gives ω = 3 and ϕ(74 − 1) = 16 · 2 · 20 = 640. The
criterion from Proposition 3.3 fails whenever Ωτ ≥ 3.

But, when Ωτ = 3, then Proposition 7.2 shows the existence of a primitive τ -
generator: Here, 7 − 1 = 2 · 3 and therefore the relevant multiplier is equal to
ϕ(R)·S = ϕ(3)·2 = 4. If the pattern is [1, 1, 2] then |Cτ | = (q4−1)−(q2−1)(q−1)2 =
2400−48 ·36 = 672; if the pattern is [1, 1, 12], then |Cτ | = (q4−1)−(q2−q)(q−1)2 =
2400 − 42 · 36 = 888. Since already 888

7−1
· 4 = 592 < 640, τ -generators always exist,

when Ωτ = 3.

It remains to consider the case where Ωτ = 4, in which case Δτ = [1, 1, 1, 1],
and therefore |Cτ | = (q4 − 1)− (q − 1)4 = 2 400 − 1 296 = 1 104. Here, Proposition
7.2 fails, because 1 104

6
· 4 = 736 > 640. So, consider E = F74 first as a projective

line Γ = PG1(K) over K = F72 . Since 72 − 1 = 48 = 24 · 3, the K-multiplier (see
Proposition 7.1) is here equal to ϕ(R) · S = ϕ(3) · 24 = 25 = 32. And this means
that every primitive K-point contains exactly 32 elements, and Γ therefore contains
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exactly 640/32 = 20 primitive K-points (and a total number of 72 + 1 = 50 points
of type K). When considering E as a projective space Π = PG3(F ) over F = F7,
every K-point is an F -line consisting of 7 + 1 = 8 points of type F . Since the F -
multiplier is equal to 4 (see above), the 20 primitive elements of a primitive K-point
are distributed into 20/4 = 5 primitive F -points. I.e., every primitive K-point as an
F -line contains exactly 5 primitive F -points.

Now, the configuration Cτ corresponding to τ is a union of four hyperplanes of Π
(since Δτ = [1, 1, 1, 1]). Because of the skewness of the K-points (compare with the
case (q, n) = (3, 4)), any hyperplane contains at most one (possibly primitive) K-
point. So there are plenty of primitive K-points which are not contained in one of the
hyperplanes. Let G be such a point, considered as an F -line. Then G intersects each
of the four hyperplanes in one F -point. Consequently, G carries at least 8 − 4 = 4
points that are outside the configuration Cτ . But as G has five primitive F -points,
at least one of these is a primitive one, and this shows that (7, 4) is extensive.

Observe that the argument even shows that there are at least (20 − 3) · 4 = 68
primitive τ -generators.

10.4 The pair (5, 6)

We have 56−1 = 15 624 = 23 ·32 ·7·31 and therefore ϕ(56−1) = 4·6·6·30 = 4 320 and
ω = 4. The character sum criterion of Proposition 3.3 therefore fails when Ωτ ≥ 4.
On the other hand, for this pair, Ωτ is at most 5.

The factor patterns with Ωτ = 4 are

[1, 1, 1, 13], [1, 1, 12, 12], [1, 1, 12, 2], [1, 1, 1, 3], [1, 1, 2, 2], [1, 1, 1, 3],

and the only pattern with Ωτ = 5 is [1, 1, 1, 1, 2]. The geometric argument will be
applicable to all these cases.

Let E = F56 and K = F53 and F = F5. Consider E first as a projective line
Γ = PG1(K) over K. Since |K∗| = 124 = 22 · 31, the K-multiplier (see once more
Proposition 7.1) is equal to ϕ(R) ·S = ϕ(31) ·22 = 120, and therefore every primitive
K-point of Γ contains exactly 120 primitive elements (and four elements with a
smaller order). When however considering E as a projective space Π = PG5(F ), then
every primitive F -point has exactly 4 primitive elements (because the F -multiplier
is ϕ(R) · S = ϕ(1) · 22 = 4). Since K has dimension three over F , each K-point Q
gives rise to a projective F -plane of order 5, i.e. with 52 + 5+ 1 = 31 points. If Q is
primitive, then, as an F -plane, Q has exactly 30 primitive F -points, i.e. all except
one.

Now, in any of the above cases, the configuration Cτ can be covered by a config-
uration Hτ of at most five F -hyperplanes of Π. Since the F -planes corresponding
to the K-points of Γ are pairwise skew, each such Hτ -hyperplane can contain at
most one K-point. So, from the 4320/120 = 36 primitive K-points there are at
least 36 − 5 = 31 which are not part of one of these hyperplanes. Any of these
primitive K-points Q, considered as an F -plane, intersects each hyperplane of Hτ
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in an F -line. So, the maximal number of F -points from Q that are contained in Cτ
is 5 · (6 − 1) + 1 = 26; this corresponds to the worst case of five lines meeting in a
point (which in fact cannot occur, since all hyperplanes together have only trivial
intersection). Anyway, there are at least five F -points of Q which are outside the
configuration Cτ , and at least four of them are primitive.

Thus, (5, 6) is extensive.

10.5 The pair (3, 6)

The geometric situation in this case is comparable with that from the pair (5, 6). Let
us start with the fact that 36 − 1 = 728 = 23 · 7 · 13, and therefore ϕ(36 − 1) = 288
and ω = 3. Hence Proposition 3.3 fails when Ωτ ≥ 3. On the other hand, Ωτ ≤ 4,
since q = 3. When Ωτ = 4, the possible factor patterns are

[1, 1, 12, 2] and [1, 1, 1, 3] and [1, 1, 2, 2].

There are however plenty of factor patterns when Ωτ = 3 (namely 12), but we do
not have to look at them individually.

Let E = F36 and K = F33 and F = F3. Consider E first as a projective line
Γ = PG1(K) over K. Since |K∗| = 26 = 2 · 13, the K-multiplier is equal to
ϕ(R) ·S = ϕ(13) ·2 = 24, and therefore every primitive K-point of Γ contains exactly
24 primitive elements (and two elements with a smaller order). The total number of
primitive K-points of Γ is 288/24 = 12. When considering E as a projective space
Π = PG5(F ), every primitive F -point has 2 primitive elements (because here the
F -multiplier is ϕ(R) · S = ϕ(1) · 2 = 2). Since K has dimension three over F , each
K-point Q gives rise to a projective F -plane of order 3, i.e. with 32 + 3 + 1 = 13
points. If Q is primitive, then, as an F -plane, Q has exactly 24/2 = 12 primitive
F -points, i.e. all its F -points are primitive, except one.

Assume now, that Ωτ = 3. In any of these cases, the configuration Cτ is contained
in the union of three hyperplanes (corresponding to the maximal divisors of mτ ).
So, from the 12 primitive K-points there are at least 9 which are not contained in
one of these hyperplanes. Every other K-point Q, when considered as an F -plane,
intersects each hyperplane in a line. Now, the three intersection lines of Q with the
arrangement Hτ of hyperplanes are either three lines through a point or a triangle.
In the first case, 3 · (4− 1) + 1 = 10 of the F -points of Q are covered by Hτ ; in the
second case, there are covered only 3 · (3+1)− 3 = 9 of the F -points of Q. So, there
are at least three F -points of Q that are outside Cτ . At least two of these F -points
are primitive ones, and therefore primitive τ -generators exist for all these patterns,
i.e. when Ωτ = 3.

Consider finally the case where Ωτ = 4. Each of the patterns now gives rise to a
configuration that can be covered by an arrangement Hτ of four hyperplanes. Again,
there are plenty of primitive K-points that are not contained in one of the covering
hyperplanes (12− 4 = 8). Take such a primitive K-point Q.
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1. If the pattern is [1, 1, 1, 3], let H1, H2, H3 and A be the corresponding maximal
subspaces of Cτ . Since the dimension of A is 3 (giving rise to a projective
plane), at most one of the possible eight points Q has a line together with A
(skewness). So, the typical intersection of Q (considered as an F -plane) with
Cτ are three lines and a point. Hence, the number of F -points of Q that are
outside Cτ is at least 13− (10 + 1) = 2, at least one of which is primitive.

2. If the pattern is [1, 1, 2, 2], let H1, H2 and L1, L2 be the corresponding maximal
subspaces of Cτ . The worst case arising here is that a primitive K-point Q
intersects each of these maximal spaces in a line. But since H1 ∩H2 ∩ L1 ∩ L2

is the zero-space, the four lines cannot meet in a point, and therefore there are
at most 4 ·4−3−2 = 11 F -points of Q that are inside Cτ . From the remaining
two F -points at least one is primitive.

3. The same argument as in (2) applies to the pattern [1, 1, 12, 2] as well.

Hence, (3, 6) is extensive.

11 Concluding remarks

Let us finally return to the discussion about the work of Hsu and Nan [11] from the
end of Section 1. After all, it makes sense to call a pair (q, n) Carlitz-extensive,
provided that for every z ∈ Fqn there exists a primitive element which generates Fqn

as a cyclic Fq-vector space with respect to the Fq-linear mapping γz : v �→ zv + vq.
As explained in Section 1, every extensive pair is Carlitz-extensive as well. As a part
of his master thesis [6], Thomas Gruber, a former student of mine, found out by a
complete enumeration that from the 23-element set

(C \ {(2, 2)}) ∪ U

(see Section 1) the 16 pairs

(2, 4), (2, 6), (2, 8), (2, 10), (2, 12), (2, 14), (2, 15), (2, 16),
(3, 2), (3, 8), (3, 10), (4, 6), (4, 9), (5, 2), (5, 4), (7, 6)

are in fact Carlitz-extensive. Thomas Gruber used an implementation within the
computer algebra system Sage (which is a free open-source mathematics software
system, see http://www.sagemath.org/). Given that the pair (3, 12) is not contained
in Hsu and Nan’s list of possible exceptions, there altogether just remain six pairs
for which the status of Carlitz-extensiveness is not decided:

(2, 18), (2, 20), (2, 24), (4, 10), (4, 12), (8, 8).
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