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Abstract

Let NR([k]) denote the set of words over the alphabet [k] = {1, . . . , k}
with no consecutive repeated letters. Given a word w = w1 . . . wn ∈
NR([k]), or more generally in [k]∗, we say that a pair 〈wi, wj〉 matches
the µ pattern if i < j, wi < wj, and there is no i < k < j such that
wi ≤ wk ≤ wj. We say that 〈wi, wj〉 is a trivial µ-match if wi + 1 = wj
and a nontrivial µ-match if wi + 1 < wj. For each word w in NR([k]),
let the weight of w be given by t|w|pntriv(w)qtriv(w), where |w| is the length
of w, ntriv(w) is the number of nontrivial µ-matches in w and triv(w) is
the number of trivial µ-matches in w. We study the generating functions
N i,j(p, q, t) that sum the weights of all words w in NR([3]) starting with
the letter i and ending with the letter j. In particular, we show that

N3,1(p, 1, t) =
∑
r≥0

t2r+2pr

(1− t− t2)r+1
so that the number of words in NR([3])

starting with 3, ending with 1, and having r nontrivial µ-matches is
counted by the convolutions of r + 1 copies of the Fibonacci numbers.
It follows that the coefficient of pr in N3,1(p, q, t) is a q-analogue of the
generating function of the convolution of r + 1 copies of the Fibonacci
numbers. The main goals of this paper are to compute the generating
functions N i,j(p, q, t) and prove a number of combinatorial properties of
their coefficients.

1 Introduction

Mesh patterns were introduced in [2] by Brändén and Claesson, and they were stud-
ied in a series of papers (e.g. see [5] by Kitaev and Liese, and references therein). A
particular class of mesh patterns is boxed patterns introduced in [1] by Avgustinovich,
Kitaev, and Valyuzhenich, who later suggested to call this type of pattern frame pat-
terns. The simplest frame pattern, which is called the µ pattern, is defined as follows.
Let Sn denote the set of all permutations of {1, . . . , n}. Given σ = σ1σ2 . . . σn ∈ Sn,
we say that a pair 〈σi, σj〉 matches the µ pattern or is a µ-match in σ if i < j, σi < σj,
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and there is no i < k < j such that σi < σk < σj. Similarly, we say that the pair
〈σi, σj〉 matches the µ′ pattern or is a µ′-match in σ if i < j, σi > σj, and there is
no i < k < j such that σi > σk > σj.

μ =

Figure 1: The simplest frame pattern, µ.

The µ pattern is shown in Figure 1 using the notation of [2]. This means that if
we graph a permutation σ as a set of dots with coordinates (i, σi), then a µ-match
is a pair of increasing dots such that the rectangle they define contains no other
dots. For example, Figure 2 shows the permutation 6741325 with the µ-match 〈3, 5〉
highlighted.

Figure 2: The graph of the permutation 6741325 with the occurrence 〈3, 5〉 high-
lighted.

Avgustinovich, Kitaev, and Valyuzhenich [1] were the first to study the avoidance
of frame patterns including µ and µ′ in permutations in the symmetric group Sn.
The distribution of µ-matches has also been studied in another setting, namely,
Jones, Kitaev, and Remmel [4] studied cycle-occurrences of the µ pattern in the
cycle structure of permutations.

The concept of a µ-match can easily be extended from permutations to words.
The authors began the study of µ-patterns in words in [6]. For any positive integer
k, we let [k] = {1, . . . , k}. We let [k]∗ denote the set of all words over the alphabet
[k]. We let ε denote the empty word and we say ε has length 0. If u = u1 . . . us and
v = v1 . . . vt are words in [k]∗, we let uv = u1 . . . usv1 . . . vt denote the concatenation
of u and v. We say that a word u = u1 . . . uj is a prefix of w if j ≥ 1 and there is
word v such that uv = w, we say that v = v1 . . . vj is a suffix of w if j ≥ 1 and there
is a word u such that uv = w, and we say that f = f1 . . . fj is a factor of w if j ≥ 1
and there are words u and v such that ufv = w. We let NR([k]) denote the set of
all words w ∈ [k]∗ such that w has no repeated letters, i.e., such that w has no factor
of the form ii for i ∈ [k]. Such words are sometimes called Smirnov words [3]. Now
suppose that n ≥ 1 and w = w1 . . . wn ∈ [k]∗. Then we let |w| = n denote the length
of w. We say that a pair 〈wi, wj〉 is a µ-match in w if i < j, wi < wj, and there is
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no i < k < j such that wi ≤ wk ≤ wj. We say that 〈wi, wj〉 is a trivial µ-match if
wi + 1 = wj and is a nontrivial µ-match if wi + 1 < wj. We then let trivµ(w) denote
the number of trivial µ-matches in w and ntrivµ(w) denote the number of nontrivial
µ-matches in w. For example, if w = 123121242416, then trivµ(w) = 5 since w has
three 〈1, 2〉-matches, one 〈2, 3〉-match, and one 〈3, 4〉-match. Also, ntrivµ(w) = 4 as
w has one 〈1, 6〉-match, two 〈2, 4〉-matches, and one 〈4, 6〉-match. Similarly, we say
that a pair 〈wi, wj〉 is a µ′-match in w if i < j, wi > wj, and there is no i < k < j
such that wi ≥ wk ≥ wj. We say that 〈wi, wj〉 is a trivial µ′-match if wi = wj + 1
and is a nontrivial µ′-match if wi > wj + 1. As is the case with permutations, the
correspondence that sends w = w1 . . . wn ∈ [k]∗ to its reverse wr = wn . . . w1 or to its
complement wc = (k + 1− w1) . . . (k + 1− wn) shows that the problem of studying
µ-matches in words is equivalent to the problem of studying µ′-matches in words.

In [6], the authors studied the generating functions

A(k)
µ (p, q, t) = 1 +

∑
n≥1

A(k)
n,µ(p, q)tn and

NR(k)
µ (p, q, t) = 1 +

∑
n≥1

NR(k)
n,µ(p, q)tn,

where
A(k)
n,µ(p, q) =

∑
w∈[k]n

qtrivµ(w)pntrivµ(w) and

NR(k)
n,µ(p, q) =

∑
w∈NR([k]),|w|=n

qtrivµ(w)pntrivµ(w).

Given a word w ∈ [k]∗, we can write w = wj11 w
j2
2 . . . w

js
s where w1 . . . ws has no

repeated letters. In such a situation, we say that w1 . . . ws is the contraction of
w and write cont(w) = w1 . . . ws. For example, if w = 112221123333222444, then
cont(w) = 1212324. It is easy to see that for any w ∈ [k]∗, trivµ(w) = trivµ(cont(w))
and ntrivµ(w) = ntrivµ(cont(w)). Moreover, if w1 . . . ws ∈ NR([k]) and n ≥ s, then
the number of u ∈ [k]n such that cont(u) = w equals the number of solutions to
j1 + · · ·+ js = n where each ji ≥ 1, which is the composition number

(
n−1
s−1

)
. Thus it

follows that for all n ≥ 1,

A(k)
n,µ(p, q) =

n∑
s=1

(
n− 1

s− 1

)
NR(k)

s,µ(p, q) and

A(k)
µ (p, q, t) = NR(k)

µ (p, q,
t

1− t
).

For this reason, [6] focused on computing the generating functions NR
(k)
µ (p, q, t).

It will be useful to consider some refinements of the generating functions
NR

(k)
µ (p, q, t) depending on the prefix or suffix of the words. Given any non-empty

words u, v ∈ NR([k]), we let

Pn,k,u = {w ∈ NR([k]) : |w| = n, u is a prefix of w},
Sn,k,v = {w ∈ NR([k]) : |w| = n, v is a suffix of w}, and

PSn,k,u,v = {w ∈ NR([k]) : |w| = n, u is a prefix of w, and v is a suffix of w}.
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Then we define the generating functions

NRu,(k)
µ (p, q, t) =

∑
n≥1

NRu,(k)
n,µ (p, q)tn,

NR(k),v
µ (p, q, t) =

∑
n≥1

NR(k),v
n,µ (p, q)tn, and

NRu,(k),v
µ (p, q, t) =

∑
n≥1

NRu,(k),v
n,µ (p, q)tn,

where

NRu,(k)
n,µ (p, q) =

∑
w∈Pn,k,u

qtrivµ(w)pntrivµ(w),

NR(k),v
n,µ (p, q) =

∑
w∈Sn,k,v

qtrivµ(w)pntrivµ(w), and

NRu,(k),v
n,µ (p, q) =

∑
w∈PSn,k,u,v

qtrivµ(w)pntrivµ(w).

Note if i, j ∈ [k], then 〈i, j〉 is a trivial (nontrivial) µ-match if and only if its
reverse complement 〈k + 1− j, k + 1− i〉 is a trivial (nontrivial) µ-match. It follows
that the map that sends any word w = w1 . . . wn to its reverse complement (k + 1−
wn) . . . (k + 1− w1) shows that for any i, j ∈ [k],

NRi,(k)
µ (p, q, t) = NR(k),k+1−i

µ (p, q, t) and

NRi,(k),j
µ (p, q, t) = NRk+1−j,(k),k+1−i

µ (p, q, t).

In [6], we studied the generating functions NR
i,(k)
µ (p, q, t) and NR

(k)
µ (p, q, t).

The main focus of this paper is to study the generating functions N i,j(p, q, t) :=

NR
i,(3),j
µ (p, q, t). That is, for i, j ∈ {1, 2, 3},

N i,j(p, q, t) =
∑
n≥1

N i,j
n (p, q)tn,

where
N i,j
n (p, q) =

∑
w∈PSn,3,i,j

qtrivµ(w)pntrivµ(w).

We shall show that the generating functions N i,j(p, q, t) are closely related to the
combinatorics of convolutions of Fibonacci numbers. For example, we shall show
that

N3,1(p, 1, t) =
∑
r≥0

t2r+2pr

(1− t− t2)r+1

so that the coefficient of pr in N3,1(p, 1, t) is t2r+2

(1−t−t2)r+1 , which is just a shifted version
of the generating function of the convolution of r+1 copies of the Fibonacci numbers.
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Hence the coefficient of pr in N3,1(p, q, t) is a q-analogue of the generating function
of the convolution of r + 1 copies of the Fibonacci numbers.

The outline of this paper is as follows. In Section 2, we show how to compute the
generating functions N i,j(p, q, t) for all i, j ∈ [3]. In Section 3, we give methods to
find exact formulas for the coefficients that appear in N3,1(p, q, t), since these coeffi-
cients come from q-analogues of convolutions of Fibonacci numbers. In Section 4, we
briefly discuss the combinatorics of the coefficients that arise in the other N i,j(p, q, t)
functions. In Section 5, we present some results on the parity of convolutions of
Fibonacci numbers.

2 Computing the generating functions N i,j(p, q, t)

In this section, we compute the generating functions N i,j(p, q, t) by showing that they
satisfy simple recursions. This allows us to compute all the N i,j(p, q, t) functions at
once by inverting a simple matrix. We note that this method does not scale well as
k increases because the recursions become increasingly complicated and the number
of equations quickly gets too large to solve even by computer. We developed an
alternative method using finite automata to compute NR(k)(p, q, t) in [6], which can
be extended to k = 4, 5. This method can be easily modified to compute the functions
N i,j(p, q, t) as well.

There is one observation that we should make initially. If we start with an
alphabet [k] where k ≥ 3, then the only factors that correspond to nontrivial µ-
matches are of the form iuj where i + 1 < j and u does not contain any letters s
such that i ≤ s ≤ j. Of course, when k = 3, then i must equal 1 and j must equal 3
in which case u must be empty. Therefore, the only way to get a nontrivial µ-match
over the alphabet [3] is to have a consecutive occurrence of 13.

First we will show that the generating functions N i,j(p, q, t) satisfy some simple
recursions. Let Di,j denote the set of all nonempty words w ∈ NR([3]) that start
with i and end with j. Then there are several cases.

Case 1. N1,1(p, q, t).
We can classify the words w ∈ NR([3]) that start and end with 1 as follows. That
is, either

(i) w = 1,

(ii) w = 12u where 2u ∈ D2,1,

(iii) w = 131u where 1u ∈ D1,1 (with u possibly empty), or

(iv) w = 132u where 2u ∈ D2,1.

Clearly, case (i) contributes t to N1,1(p, q, t). In case (ii), the fact that the second
letter is 2 ensures that the initial 1 can only form a µ-match with the second letter
in w so that the words in (ii) contribute qtN2,1(p, q, t) to N1,1(p, q, t). In case (iii),
the fact that the third letter is 1 ensures that the initial 1 in w can only form a
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µ-match with the second letter in w. Also, the 3 in position 2 in w cannot be part
of any other µ-match in w. Thus it follows that the words in case (iii) contribute
pt2N1,1(p, q, t) to N1,1(p, q, t). In case (iv), the 2 in position 3 of w ensures that the
initial 1 can only form a µ-match with second and third letters in w, and the 3 in
position 2 in w cannot be part of any other µ-match in w, so that the words in case
(iv) contribute qpt2N2,1(p, q, t) to N1,1(p, q, t). Thus it follows that

N1,1(p, q, t) = t+ pt2N1,1(p, q, t) + (qt+ qpt2)N2,1(p, q, t). (1)

This type of reasoning can be used in all the other cases of N i,j(p, q, t). Rather
than give a detailed explanation in each case, we shall just list the corresponding
subcases and the contribution of each subcase to N i,j(p, q, t).

Case 2. N1,2(p, q, t).
We can classify the words w ∈ NR([3]) that start with 1 and end with 2 as follows.
That is, either

(i) w = 12u where 2u ∈ D2,2 which contributes qtN2,2(p, q, t) to N1,2(p, q, t),

(ii) w = 131u where 1u ∈ D1,2 which contributes pt2N1,2(p, q, t) to N1,2(p, q, t),
or

(iii) w = 132u where 2u ∈ D2,2 which contributes qpt2N2,2(p, q, t) to N1,2(p, q, t).

Thus it follows that

N1,2(p, q, t) = pt2N1,2(p, q, t) + (qt+ qpt2)N2,2(p, q, t). (2)

Case 3. N1,3(p, q, t).
We can classify the words w ∈ NR([3]) that start with 1 and end with 3 as follows.
That is, either

(i) w = 12u where 2u ∈ D2,3 which contributes qtN2,3(p, q, t) to N1,3(p, q, t),

(ii) w = 13 which contributes pt2 to N1,3(p, q, t),

(iii) w = 131u where 1u ∈ D1,3 which contributes pt2N1,3(p, q, t) to N1,3(p, q, t),
or

(iv) w = 132u where 2u ∈ D2,3 which contributes qpt2N2,3(p, q, t) to N1,3(p, q, t).

Thus it follows that

N1,3(p, q, t) = pt2 + pt2N1,3(p, q, t) + (qt+ qpt2)N2,3(p, q, t). (3)

Case 4. N2,1(p, q, t).
We can classify the words w ∈ NR([3]) that start with 2 and end with 1 as follows.
That is, either
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(i) w = 21 which contributes t2 to N2,1(p, q, t),

(ii) w = 212u where 2u ∈ D2,1 which contributes qt2N2,1(p, q, t) to N2,1(p, q, t),

(iii) w = 2131u where 1u ∈ D1,1 which contributes qpt3N1,1(p, q, t) to N2,1(p, q, t),

(iv) w = 2132u where 2u ∈ D2,1 which contributes q2pt3N2,1(p, q, t) to N2,1(p, q, t),
or

(v) w = 23u where 3u ∈ D3,1 which contributes qtN3,1(p, q, t) to N2,1(p, q, t).

Notice that we must subdivide the words starting with 213 to determine whether the
1 in the second position is involved in a trivial 〈1, 2〉-match. Thus it follows that

N2,1(p, q, t) = t2 + qpt3N1,1(p, q, t) + (qt2 + q2pt3)N2,1(p, q, t) + qtN3,1(p, q, t). (4)

Case 5. N2,2(p, q, t).
We can classify the words w ∈ NR([3]) that start and end with 2 as follows.

(i) w = 2 which contributes t to N2,2(p, q, t),

(ii) w = 212u where 2u ∈ D2,2 which contributes qt2N2,2(p, q, t) to N2,2(p, q, t),

(iii) w = 2131u where 1u ∈ D1,2 which contributes qpt3N1,2(p, q, t) to N2,2(p, q, t),

(iv) w = 2132u where 2u ∈ D2,2 which contributes q2pt3N2,2(p, q, t) to N2,2(p, q, t),
or

(v) w = 23u where 3u ∈ D3,2 which contributes qtN3,2(p, q, t) to N2,2(p, q, t).

Thus it follows that

N2,2(p, q, t) = t+ qpt3N1,2(p, q, t) + (qt2 + q2pt3)N2,2(p, q, t) + qtN3,1(p, q, t). (5)

Case 6. N2,3(p, q, t).
We can classify the words w ∈ NR([3]) that start with 2 and end with 3 as follows.
That is, either

(i) w = 212u where 2u ∈ D2,3 which contributes qt2N2,3(p, q, t) to N2,3(p, q, t),

(ii) w = 213 which contributes qpt3 to N2,3(p, q, t),

(iii) w = 2131u where 1u ∈ D1,3 which contributes qpt3N1,3(p, q, t) to N2,3(p, q, t),

(iv) w = 2132u where 2u ∈ D2,3 which contributes q2pt3N2,3(p, q, t) to N2,3(p, q, t),
or

(v) w = 23u where 3u ∈ D3,3 which contributes qtN3,3(p, q, t) to N2,3(p, q, t).
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Thus it follows that

N2,3(p, q, t) = qpt3 + qpt3N1,3(p, q, t) + (qt2 + q2pt3)N2,3(p, q, t) + qtN3,3(p, q, t). (6)

Case 7. N3,1(p, q, t).
We can classify the words w ∈ NR([3]) that start with 3 and end with 1 as follows.
That is, either

(i) w = 31u where 1u ∈ D1,1 which contributes tN1,1(p, q, t) to N3,1(p, q, t), or

(ii) w = 32u where 2u ∈ D2,1 which contributes tN2,1(p, q, t) to N3,1(p, q, t).

Thus it follows that

N3,1(p, q, t) = tN1,1(p, q, t) + tN2,1(p, q, t). (7)

Case 8. N3,2(p, q, t).
We can classify the words w ∈ NR([3]) that start with 3 and end with 2 as follows.
That is, either

(i) w = 31u where 1u ∈ D1,2 which contributes tN1,2(p, q, t) to N3,2(p, q, t), or

(ii) w = 32u where 2u ∈ D2,2 which contributes tN2,2(p, q, t) to N3,2(p, q, t).

Thus it follows that

N3,1(p, q, t) = tN1,2(p, q, t) + tN2,2(p, q, t). (8)

Case 9. N3,3(p, q, t).
We can classify the words w ∈ NR([3]) that start and end with 3 as follows. That
is, either

(i) w = 3 which contributes t to N3,3(p, q, t),

(ii) w = 31u where 1u ∈ D1,3 which contributes tN1,3(p, q, t) to N3,3(p, q, t), or

(iii) w = 32u where 2u ∈ D2,3 which contributes tN2,3(p, q, t) to N3,1(p, q, t).

Thus it follows that

N3,1(p, q, t) = t+ tN1,3(p, q, t) + tN2,3(p, q, t). (9)

Putting (1), (2), (3), (4), (5), (6), (7), (8), and (9) together, we obtain the matrix
equation 

−t
0
−pt2
−t2
−t
−qpt3

0
0
−t


= M



N1,1(p, q, t)
N1,2(p, q, t)
N1,3(p, q, t)
N2,1(p, q, t)
N2,2(p, q, t)
N2,3(p, q, t)
N3,1(p, q, t)
N3,2(p, q, t)
N3,3(p, q, t)


, (10)
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where

M =



pt2 − 1 0 0 qt + qpt2 0 0 0 0 0

0 pt2 − 1 0 0 qt + qpt2 0 0 0 0

0 0 pt2 − 1 0 0 qt + qpt2 0 0 0

qpt3 0 0 qt2 + q2pt3 − 1 0 0 qt 0 0

0 qpt3 0 0 qt2 + q2pt3 − 1 0 0 qt 0

0 0 qpt3 0 0 qt2 + q2pt3 − 1 0 0 qt
t 0 0 t 0 0 −1 0 0
0 t 0 0 t 0 0 −1 0
0 0 t 0 0 t 0 0 −1


.

Thus if we multiply both sides of (10) by M−1, we can can solve for N i,j(p, q, t) for
i, j ∈ [3]. We have carried out this computation in Mathematica and found that if

D(p, q, t) = 1− 2qt2 − q2t3 − pt2(1 + q2t+ 2q(q − 1)t2), (11)

then

N1,1(p, q, t) = N3,3(p, q, t) =
t− qt3 + pq(1− q)t4

D(p, q, t)
,

N1,2(p, q, t) = N2,3(p, q, t) =
qt2 + qpt3

D(p, q, t)
,

N1,3(p, q, t) =
pt2 + q2t3 + 2qp(q − 1)t4

D(p, q, t)
,

N2,1(p, q, t) = N3,2(p, q, t) =
t2 + qt3 + p(q − 1)t4

D(p, q, t)
,

N2,2(p, q, t) =
t− pt3

D(p, q, t)
, and

N3,1(p, q, t) =
t2 + t3 − p(1− q)2t5

D(p, q, t)
.

Setting p = 0 and q = 1 in the equations above and simplifying where possible, we
see that

N1,1(0, 1, t) = N3,3(0, 1, t) =
t(1− t)

1− t− t2
,

N1,2(0, 1, t) = N2,3(0, 1, t) =
t2

1− 2t2 − t3
,

N1,3(0, 1, t) =
t3

1− 2t2 − t3
,

N2,1(0, 1, t) = N3,2(0, 1, t) =
t2

1− t− t2
,

N2,2(0, 1, t) =
t

1− 2t2 − t3
, and

N3,1(0, 1, t) =
t2

1− t− t2
.

One can obtain the generating function N
(3)
µ (p, q, t) by taking 1+

∑
i,j∈[3]N

i,j(p, q, t),
which gives

N (3)
µ (p, q, t) =

(1 + t)2(1 + t− p(q − 1)2t3)

1− 2qt2 − q2t3 − pt2(1 + q2t+ 2q(q − 1)t2)
.
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3 The combinatorics of the coefficients of N 3,1(p, q, t)

The generating function for the Fibonacci numbers Fn is
∑

n≥0 Fnt
n = 1

1−t−t2 . Our

next theorem follows immediately from the generating functions for N3,i(0, 1, t) for
i ∈ [3]. However we can also give a simple combinatorial proof.

Theorem 1. For all n ≥ 2,

N3,1
n (0, 1) = N3,2

n (0, 1) = Fn−2

and, for all n ≥ 3,
N3,3
n (0, 1) = Fn−3.

Proof. Since we have set p = 0, this means that we are only considering words in
NR([3]) that have no nontrivial µ-matches. By our observation at the start of the
last section, this means that we are only considering words in NR([3]) that have no
consecutive occurrences of the pattern 13. Our proofs proceed by induction of the
length of the words. Let Cn,i,j denote the set of all words of length n in NR([3]) that
start with i, end with j, and have no consecutive occurrences of 13.

The only words in C2,3,1 and C2,3,2 are 31 and 32 so that N3,1
2 (0, 1) = N3,2

2 (0, 1) =
1 = F0. The only words in C3,3,1 and C3,3,2 are 321 and 312 so that N3,1

3 (0, 1) =
N3,2

3 (0, 1) = 1 = F1. The only words in C4,3,1 and C4,3,2 are 3231, 3121, 3212, and
3232 so that N3,1

4 (0, 1) = N3,2
4 (0, 1) = 2 = F2.

For n ≥ 5, we classify the words u ∈ Cn,3,1 by their last three letters. That is, u is
either of the form (i) u = 3v121, (ii) u = 3v321, or (iii) 3v231. In the first case, 3v1
can be any word in Cn−2,3,1 so that there are Fn−4 such words by induction. In cases
(ii) and (iii), we can just remove the second to last letter and we we get all words of
the form 3v31 and 3v21 in N([k]) with no consecutive occurrence of 13. This clearly
is all words in Cn−1,3,1 so that the number of words in cases (ii) and (iii) is Fn−3 by
induction. Thus the number of words in Cn,3,1 is Fn−4 + Fn−3 = Fn−2.

Similarly, for n ≥ 5, all the words u in Cn,3,2 are either of the form (i) u = 3v12
or (ii) u = 3v232. In case (i), 3v1 can be any word in Cn−1,3,1 so that the number of
words in case (i) is Fn−3 by our previous result. In case (ii), 3v2 can be any word
in Cn−2,3,2 so that the number of words in case (ii) is Fn−3 by induction. Thus the
number of words in Cn,3,2 is Fn−4 + Fn−3 = Fn−2.

For words in u = Cn,3,3, for n ≥ 3, u must be of the form u = 3v23. However,
3v2 can be any word in Cn−1,3,2 so that by our previous result, there are Fn−3 such
words.

For any function G(x) =
∑

n≥0 gnx
n, we shall let G(x)|xn = gn denote the coeffi-

cient of xn in G(x). We have the following corollary of Theorem 1.

Corollary 2. For all r ≥ 0,

N3,1(p, 1, t)|pr =
t2r+2

(1− t− t2)r+1
,

so that for all n, r ≥ 0, N3,1
n (p, 1)|pr =

∑
j1,...,jr+1≥0

n−2r−2=
∑r+1
i=1 ji

Fj1 · · ·Fjr+1 .
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Proof. Let C(r)n,i,j denote the set of words w ∈ NR([3]) that start with i, end with j,

and have r consecutive occurrences of 13, and let C(r)i,j =
⋃
n≥0

C(r)n,i,j. Then

N3,1(p, 1, t)|pr =
∑
w∈C(r)3,1

t|w|.

But every word w ∈ C(r)3,1 can be factored uniquely as v1v2 . . . vr+1, where each vi is a
word in NR([3]) which starts with 3, ends with 1, and has no consecutive occurrences
of 13. It follows that

N3,1(p, 1, t)|pr =
r+1∏
i=1

N3,1(0, 1, t) =
t2r+2

(1− t− t2)r+1
.

Since this is the generating function for Fn−2 raised to the power r + 1, or the
generating function for the convolution of r+ 1 Fibonacci numbers, it holds that for
all n, r ≥ 0,

N3,1
n (p, 1)|pr =

∑
j1,...,jr+1≥0

n−2r−2=
∑r+1
i=1 ji

Fj1 · · ·Fjr+1 .

It follows from Theorem 1 and Corollary 2 that N3,1
n (0, q) is a q-analogue of

Fn−2 and N3,1
n (p, q)|pr is a q-analogue of

∑
j1,...,jr+1≥0

n−2r−2=
∑r+1
i=1 ji

Fj1 · · ·Fjr+1 . We compute the

generating functions for these q-analogues in the next theorem.

Theorem 3.

N3,1(0, q, t) =
t2(1 + t)

1− 2qt2 − q2t3
, (12)

and for r ≥ 1,

N3,1(p, q, t)|pr =
t2r+2(1 + tq + q(q − 1)t2)2(1 + q2t+ 2q(q − 1)t2)r−1

(1− 2qt2 − q2t3)r+1
. (13)
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n N3,1
n (0, q) n N3,1

n (0, q)
0 0 11 16q4 + 38q5 + q6

1 0 12 64q5 + 25q6

2 1 13 32q5 + 104q6 + 8q7

3 1 14 144q6 + 88q7 + q8

4 2q 15 64q6 + 272q7 + 41q8

5 2q + q2 16 320q7 + 280q8 + 10q9

6 5q2 17 128q7 + 688q7 + 170q9 + q10

7 4q2 + 4q3 18 704q8 + 832q9 + 61q10

8 12q3 + q4 19 256q8 + 1696q9 + 620q10 + 12q11

9 8q3 + 13q4 20 1536q9 + 2352q10 + 292q11 + q12

10 28q4 + 6q5 21 512q9 + 4096q10 + 2072q11 + 85q12

Table 1: The first few terms of N3,1(0, q, t).

Proof. Note that

N3,1(p, q, t) =
t2 + t3 − p(1− q)2t5

1− 2qt2 − q2t3 − pt2(1 + q2t+ 2q(q − 1)t2)

=
t2 + t3 − p(1− q)2t5

1− 2qt2 − q2t3

 1

1− p
(
t2(1+q2t+2q(q−1)t2)

1−2qt2−q2t3

)


=
t2 + t3 − p(1− q)2t5

1− 2qt2 − q2t3

(
1 +

∑
r≥1

pr
(
t2(1 + q2t+ 2q(q − 1)t2)

1− 2qt2 − q2t3

)r)

=
t2(1 + t)

1− 2qt2 − q2t3
+∑

r≥1

pr
t2r+2(1 + tq + q(q − 1)t2)2(1 + q2t+ 2q(q − 1)t2)r−1

(1− 2qt2 − q2t3)r+1
.

The first few terms of N3,1(0, q, t) are displayed in Table 1. Setting q = 1 recovers
the Fibonacci sequence, where the indices have been shifted by two.

Next, we shall explain all of the coefficients in this table. Given a polynomial
P (x), write P (q) = aqk +HOT if the lowest power of q that appears with a nonzero
coefficient in P (q) is qk and its coefficient is a. Similarly, write P (q) = bqn + LOT
if the highest power of q that appears with a nonzero coefficient in P (q) is qn and
its coefficient is b. Thus LOT stands for “lower order terms” and HOT stands for
“higher order terms.”

Note that it follows from equation (11), or from Theorem 3, that for n ≥ 4,

N3,1
n (0, q) = 2qN3,1

n−2(0, q) + q2N3,1
n−3(0, q). (14)
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This is easily proved directly. That is, for n ≥ 4, a word in Cn,3,1 is either of the
form (i) 3v121, (ii) 3v1231, (iii) 3v2321 or (iv) 3v3231. The words in (i) contribute
qN3,1

n−2(0, q) to N3,1
n (0, q) and the words in (ii) contribute q2N3,1

n−3(0, q) to N3,1
n (0, q).

For the words in (iii) and (iv), we can remove the second to last and third to last
letters to give words of the form (iii)∗ 3v21 and (iv)∗ 3v31 which together give us
all words in Cn−2,3,1. Thus the words in (iii) and (iv) contribute qN3,1

n−2,µ(0, q) to
N3,1
n (0, q).

Using the recursion (14) and initial values from Table 1, one can easily prove the
following by induction.

Theorem 4. 1. For n ≥ 1, N3,1
2n (0, q) = c2nq

n−1 + HOT where c2 = 1, c4 = 2,
and c2n = 2c2n−2 + 2n−3 for n ≥ 3.

2. For n ≥ 1, N3,1
2n+1(0, q) = 2n−1qn−1 +HOT .

3. For n ≥ 0, N3,1
3n+2(0, q) = q2n + LOT .

4. For n ≥ 1, N3,1
3n+1(0, q) = 2nq2n−1 + LOT .

5. For n ≥ 1, N3,1
3n (0, q) = (1 + 2n(n− 1))q2n−2 + LOT .

Proof. We shall only prove (1) and (2), as the proofs of (3), (4), and (5) are similar.
We proceed by induction on n. Table 1 verifies that the results hold for n ≤ 3.

We know from (14) that

N3,1
2n+1(0, q) = 2qN3,1

2n−1(0, q) + q2N3,1
2n−2(0, q).

By induction, the lowest power of q occurring in N3,1
2n−1(0, q) is qn−2 and the lowest

power of q occurring in N3,1
2n−2(0, q) is qn−2. Thus the lowest power of q occurring in

N3,1
2n+1(0, q) is qn−1 and it must be the case that

N3,1
2n+1(0, q)|qn−1 = 2N3,1

2n−1(0, q)|qn−2 = 2(2n−2) = 2n−1.

Similarly, we know

N3,1
2n (0, q) = 2qN3,1

2n−2(0, q) + q2N3,1
2n−3(0, q).

By induction, the lowest power of q occurring in N3,1
2n−2(0, q) is qn−2 and the lowest

power of q occurring in N3,1
2n−3(0, q) is qn−3. Thus the lowest power of q occurring in

N3,1
2n+1(0, q) is qn−1 and it must be the case that

N3,1
2n (0, q)|qn−1 = 2N3,1

2n−2(0, q)|qn−2 +N3,1
2n−3(0, q)|qn−3

= 2c2n−2 + 2n−3.
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One can also give direct combinatorial explanations of parts (2), (3) and (4) of
the previous theorem. That is, the word in C3n+2,3,1 with the maximum number of
trivial µ-matches is 3(123)n1, which has 2n trivial µ-matches, explaining (3). Then
one can obtain a word w ∈ C3n+4,3,1 with 2n + 1 trivial µ-matches simply inserting
either 23 or 12 immediately before any 1 in 3(123)n1. Thus the number of words in
C3n+4,3,1 with 2n + 1 trivial µ-matches is 2(n + 1), which justifies (4). For (2), to
create a word in C2n+1,3,1 with n − 1 nontrivial matches, start with the word 321.
Then insert a1a2 . . . a2n−3a2n−2 after the 2 where for each i = 0, . . . , n − 1, either
a2i+1a2i+2 = 12 or a2i+1a2i+2 = 32. It is easy to see that each additional a2i+1a2i+2

creates exactly one new trivial µ-match so that there are 2n−1 such words.
Given the facts that N3,1

2n (0, q) = c2nq
n−1 + HOT and N3,1

2n+1(0, q) = 2n−1qn−1 +

HOT , one can find formulas for all the coefficients in both N3,1
2n (0, q) and N3,1

2n+1(0, q).

To find formulas for the coefficients that appear in N3,1
2n+1(0, q), first let

F1(q, t) :=
(1 + t)

1− 2qt2 − q2t3
=
∑
n≥0

N3,1
n+2(0, q)t

n.

Thus

F2(q, t) :=
1

2t
(F1(q, t)− F1(q,−t)) =

∑
n≥0

N3,1
2n+3(0, q)t

2n.

Then one can compute that

F3(q, t) := F2(q, (
t

q
)1/2) =

∑
n≥0

N3,1
2n+3(0, q)

tn

qn
=

1− 2t+ qt

(1− 2t)2 − qt3

=

(
1

1− 2t
+

qt

(1− 2t)2

)
1

1− qt3

(1−2t)2

=
1

1− 2t
+
∑
k≥1

qk
(1− t)2t3k−2

(1− 2t)2k+1
.

Therefore, for all n ≥ 0,

N3,1
2n+3(0, q)|qn = F3(q, t)|q0tn =

1

1− 2t
|tn = 2n,

as was proven in Theorem 4 part (2). For k ≥ 1,

N3,1
2n+3(0, q)|qn+k = F3(q, t)|qktn =

(1− t)2t3k−2

(1− 2t)2k+1
|tn .

By Newton’s binomial theorem

1

(1− 2t)2k+1
=
∑
m≥0

(
2k +m

2k

)
2mtm.

Hence it follows that
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1. N3,1
2n+3(0, q)|qn+k = 0 for n < 3k − 2,

2. N3,1
2n+3(0, q)|qn+k =

∑
m≥0

(
2k +m

2k

)
2mtm|t0 = 1 for n = 3k − 2,

3. N3,1
2n+3(0, q)|qn+k = (1− 2t)

∑
m≥0

(
2k +m

2k

)
2mtm|t1 = 4k for n = 3k − 1, and

4. for n = 3k + j where j ≥ 0,

N3,1
2n+3(0, q)|qn+k = (1− 2t+ t2)

∑
m≥0

(
2k +m

2k

)
2mtm|tj+2

=

(
2k + j + 2

2k

)
2j+2 − 2

(
2k + j + 1

2k

)
2j+1 +

(
2k + j

2k

)
2j

= 2j
(

4

(
2k + j + 2

2k

)
− 4

(
2k + j + 1

2k

)
+

(
2k + j

2k

))
= 2j

(
4

(
2k + j + 1

2k − 1

)
+

(
2k + j

2k

))
.

Thus we have proven the following theorem.

Theorem 5. For n ≥ 0,

1. N3,1
2n+3(0, q)|qm = 0 for m < n,

2. N3,1
2n+3(0, q)|qn = 2n, and

3. for k ≥ 1,

N3,1
2n+3(0, q)|qn+k =


0 if n < 3k − 2,

1 if n = 3k − 2,

4k if n = 3k − 1, and

2j
(
4
(
2k+j+1
2k−1

)
+
(
2k+j
2k

))
if n = 3k + j where j ≥ 0.

We can use the same methods to find formulas for the coefficients in N3,1
2n (0, q).

That is, if we let

G2(q, t) :=
1

2
(F1(q, t) + F1(q,−t)) =

∑
n≥0

N3,1
2n+2(0, q)t

2n,

then one can compute that

G3(q, t) := G2(q, (
t

q
)1/2) =

∑
n≥0

N3,1
2n+2(0, q)

tn

qn
=

(1− t)2

(1− 2t)2 − qt3

=
(1− t)2

(1− 2t)2
+
∑
k≥1

qk
(1− t)2t3k

(1− 2t)2k+2
.
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Thus for all n ≥ 0,

N3,1
2n+2(0, q)|qn =

(1− t)2

(1− 2t)2
|tn

and, for k ≥ 1,

N3,1
2n+2(0, q)|qn+k =

(1− t)2t3k

(1− 2t)2k+2
|tn .

In this case, Newton’s binomial theorem says that

1

(1− 2t)2k+2
=
∑
m≥0

(
2k + 1 +m

2k + 1

)
2mtm.

We see that

N3,1
2 (0, q)|q0 =

(1− t)2

(1− 2t)2
|t0 = 1,

N3,1
4 (0, q)|q1 =

1

(1− 2t)2
|t1 − 2

1

(1− 2t)2
|t0 = 4− 2(1) = 2,

and, for n ≥ 2,

N3,1
2n (0, q)|qn =

1

(1− 2t)2
|tn − 2

1

(1− 2t)2
|tn−1 +

1

(1− 2t)2
|tn−2

= (n+ 1)2n − 2n2n−1 + (n− 1)2n−2

= (n+ 3)2n−2.

Similarly for k ≥ 1, we have

1. N3,1
2n+2(0, q)|qn+k = 0 for n < 3k,

2. N3,1
2n+2(0, q)|qn+k =

∑
m≥0

(
2k + 1 +m

2k + 1

)
2mtm|t0 = 1 for n = 3k,

3. N3,1
2n+2(0, q)|qn+k = (1− 2t)

∑
m≥0

(
2k + 1 +m

2k + 1

)
2mtm|t1 = 4k + 2 for n = 3k + 1,

and

4. for n = 3k + 2 + j where j ≥ 0,

N3,1
2n+2(0, q)|qn+k = (1− 2t+ t2)

∑
m≥0

(
2k + 1 +m

2k + 1

)
2mtm|tj+2

=

(
2k + j + 3

2k + 1

)
2j+2 − 2

(
2k + j + 2

2k + 1

)
2j+1 +

(
2k + j + 1

2k + 1

)
2j

= 2j
(

4

(
2k + j + 3

2k + 1

)
− 4

(
2k + j + 2

2k + 1

)
+

(
2k + j + 1

2k + 1

))
= 2j

(
4

(
2k + j + 2

2k

)
+

(
2k + j + 1

2k + 1

))
.
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n N3,1
n (p, q)|p n N3,1

n (p, q)|p
0 0 11 66q4 + 62q5 + 2q6

1 0 12 28q4 + 162q5 + 45q6

2 0 13 172q5 + 230q6 + 18q7

3 0 14 64q5 + 475q6 + 202q7 + 3q8

4 1 15 432q6 + 768q7 + 108q8

5 2q 16 144q6 + 1320q7 + 789q8 + 32q9

6 2q + 3q2 17 1056q7 + 2388q7 + 522q9 + 4q10

7 8q2 + 2q3 18 320q7 + 3528q8 + 2802q9 + 215q10

8 5q2 + 14q3 + q4 19 2528q8 + 7048q9 + 2196q10 + 50q11

9 24q3 + 14q4 20 704q8 + 9152q9 + 9281q10 + 1142q11 + 5q12

10 12q3 + 51q4 + 8q5 21 5952q9 + 19984q10 + 8376q11 + 378q12

Table 2: The first few terms of N3,1(p, q, t)|p.

Thus we have proven the following theorem.

Theorem 6. For n ≥ 0,

1. N3,1
2n+2(0, q)|qm = 0 for m < n,

2.

N3,1
2n+2(0, q)|qn =


1 if n = 0,

2 if n = 1, and

(n+ 3)2n−2 if n ≥ 2,

and

3. for all k ≥ 1,

N3,1
2n+2(0, q)|qn+k =


0 if n < 3k,

1 if n = 3k,

4k + 2 if n = 3k + 1, and

2j
(
4
(
2k+j+2

2k

)
+
(
2k+j+1
2k+1

))
if n = 3k + 2 + j where j ≥ 0.

One can carry out a similar analysis for

N3,1(p, q, t)|p =
t4(1 + tq + q(q − 1)t2)2

(1− 2qt2 − q2t3)2
, (15)

which comes from setting r = 1 in (13) from Theorem 3. We have computed the
first few terms of N3,1(p, q, t)|p, which are displayed in Table 2.
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Note that since (1−2q2−q2t3)2 = 1−4qt2−2q2t3 +4q2t4 +4q3t5 +q4t6, it follows
from the generating function of N3,1(0, q, t) that for n ≥ 7,

N3,1
n (p, q)|p = 4qN3,1

n−2(p, q)|p + 2q2N3,1
n−3(p, q)|p − 4q2N3,1

n−4(p, q)|p (16)

− 4q3N3,1
n−5(p, q)|p − q4N

3,1
n−6(p, q)|p.

Using the recursion (16) and the initial values from our table, one can easily prove
the following theorem by induction.

Theorem 7. 1. For n ≥ 0, N3,1
2n+4(p, q)|p = d2n+4q

n + HOT where d4 = 1 and
d2n+4 = (n+ 3)2n−2 for n ≥ 1.

2. For n ≥ 0, N3,1
2n+5(p, q)|p = d2n+5q

n+1 +HOT where d5 = 2 and
d2n+5 = (18 + 13n+ n2)2n−3 for n ≥ 1.

3. For n ≥ 0, N3,1
3n+3(p, q)|p = n(2n2 − 2n+ 3)q2n + LOT .

4. For n ≥ 1, N3,1
3n+4(p, q)|p = 2n2q2n+1 + LOT .

5. For n ≥ 1, N3,1
3n+5(p, q)|p = nq2n+2 + LOT .

By using the same type of series manipulations that we did for N3,1(0, q, t), one
can also show that

∑
n≥0

N3,1
2n+3(p, q)|p

tn

qn
=

O(p, q)

((1− 2t)2 − qt3)2

=
O(p, q)

(1− 2t)4
1(

1− qt3

(1−2t)2

)2
= O(p, q)

∑
m≥0

(m+ 1)
qmt3m

(1− 2t)2m+4
, (17)

where

O(p, q) = 2t(1− t)(1− 2t)(1− t− t2) + 2t2(1− t)(1− 3t2)q + 2t4(1− t)q2.

Similarly, one can show that∑
n≥0

N3,1
2n+4(p, q)|p

tn

qn
=

E(p, q)

((1− 2t2)− qt3)2

= E(p, q)
∑
m≥0

(m+ 1)
qmt3m

(1− 2t)2m+4
, (18)

where

E(p, q) = (t− 1)2(1− 2t)2 + t(3− 10t+ 9t2 − 2t3 + t4)q + t2(1− t2 − 2t3)q2 + t5q3.
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For any fixed k ≥ 0, one can use (17) and (18) to extract closed forms for the
series ∑

n≥0

(
N3,1

2n+3(p, q)|pqn+k
)
tn and

∑
n≥0

(
N3,1

2n+4(p, q)|pqn+k
)
tn.

These closed forms will always be of the form
P (t)

(1− 2t)j
, which will in turn allow one

to give explicit formulas for N3,1
2n+3(p, q)|pqn+k and N3,1

2n+3(p, q)|pqn+k as functions of n
and k.

4 The combinatorics of the coefficients of N i,j(p, q, t) for (i, j)
6= (3, 1)

In the last section, we focused on the combinatorics of the coefficients of N3,1(p, q, t)
because they gave us q-analogues of the Fibonacci numbers and convolutions of Fi-
bonacci numbers. There are similarly interesting phenomena for the other N i,j(p, q, t)
functions.

In this section, we shall limit ourselves to understanding the coefficients of the
highest and lowest powers of q in N i,j(0, q, t), although series manipulations and
Newton’s binomial theorem could be used to find formulas for the other coefficients,
as in the previous section. Our calculations in Section 2 showed that there are
only six different generating functions of the form N i,j(0, q, t) so that we need only
consider the generating functions N1,1(p, q, t), N1,2(p, q, t), N1,3(p, q, t), N2,1(p, q, t),
N2,2(p, q, t), and N3,1(p, q, t). When we evaluate these generating functions at p = 0,
we find that

N1,1(0, q, t) =
t(1− qt2)

1− 2q2 − q2t3
,

N1,2(0, q, t) =
qt2

1− 2q2 − q2t3
,

N1,3(0, q, t) =
q2t3

1− 2q2 − q2t3
,

N2,1(0, q, t) =
t2(1 + qt)

1− 2q2 − q2t3
,

N2,2(0, q, t) =
t

1− 2q2 − q2t3
, and

N3,1(p, q, t) =
t2(1 + t)

1− 2q2 − q2t3
.

Notice that N1,2(0, q, t) = qtN2,2(0, q, t) and N1,3(0, q, t) = qtN1,2(0, q, t) =
q2t2N2,2(0, q, t). Thus up to powers of t and q, there are only three other cases
that we have to consider, namely, N1,1(0, q, t), N2,1(0, q, t), and N2,2(0, q, t).

First we consider what happens for N i,j
n (0, 1) in such cases.

Theorem 8. 1. N2,2
1 (0, 1) = 1 and for all n ≥ 2,

N2,2
n (0, 1) = Fn−2 + (−1)n−1.
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2. N1,1
1 (0, 1) = 1, N1,1

2 (0, 1) = 0, and for all n ≥ 3,

N1,1
n (0, 1) = Fn−3.

3. N2,1
1 (0, 1) = 0 and for all n ≥ 2,

N2,1
n (0, 1) = Fn−2.

Proof. Notice that C1,2,2 = {2} so N2,2
1 (0, 1) = 1 as claimed. It is easy to see

that C2,2,2 = ∅ and C3,2,2 = {212, 232} so that N2,2
2 (0, 1) = 0 = F0 + (−1)2−1 and

N2,2
3 (0, 1) = 2 = F1 + (−1)3−1. Additionally, C4,2,2 = {2312} so that N2,2

4 (0, 1) = 1 =
F2 + (−1)4−1.

For n ≥ 5, the elements of Cn,2,2 are either of the form (i) 2v212, (ii) 2v2312, or
(iii) 2v232. The words in cases (i) and (iii) are clearly each counted by N2,2

n−2(0, 1) if

we remove the last two letters. The words in case (ii) are counted by N2,2
n−3(0, 1) if

we remove the last three letters. Thus by induction,

N2,2
n (0, 1) = 2(N2,2

n−2(0, 1)) +N2,2
n−3(0, 1)

= 2(Fn−4 + (−1)n−3) + Fn−5 + (−1)n−4

= Fn−2 + (−1)n−1,

which proves part (1).
Now, observe that C1,1,1 = {1} so that N1,1

1 (0, 1) = 1 and C2,1,1 = ∅ so that
N1,1

2 (0, 1) = 0. Moreover, C3,1,1 = {121} so that N1,1
3 (0, 1) = 1 = F0 and C4,1,1 =

{1231} so that N1,1
4 (0, 1) = 1 = F1 .

For n ≥ 5, the elements of Cn,1,1 either take the form (i) 12v21 or (ii) 12v231. The
words in case (i) are counted by N2,2

n−2,µ(0, 1) by removing the first and last letters.

The words in case (ii) are counted by N2,2
n−3,µ(0, 1) by removing the first letter and

the last two letters. The result of part (1) gives

N1,1
n (0, 1) = N2,2

n−2,µ(0, 1) +N2,2
n−3,µ(0, 1)

= Fn−4 + (−1)n−3 + Fn−5 + (−1)n−4

= Fn−3,

which proves part (2).
To prove part (3), notice that C1,2,1 = ∅ so that N2,1

1 (0, 1) = 0. Also, C2,2,1 = {21}
so that N2,1

2 (0, 1) = 1 = F0 and C3,2,1 = {231} so that N2,1
3 (0, 1) = 1 = F1.

For n ≥ 4, the elements of Cn,2,1 either take the form (i) 2v21 or (ii) 2v231. The
words in case (i) are counted by N2,2

n−1,µ(0, 1) by removing the last letter, and the

words in case (ii) are counted by N2,2
n−2,µ(0, 1) by removing the last two letters. The

result of part (1) gives

N2,1
n (0, 1) = N2,2

n−1,µ(0, 1) +N2,2
n−2,µ(0, 1)

= Fn−3 + (−1)n−2 + Fn−4 + (−1)n−3.

= Fn−2.
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n N1,1
n (0, q) n N1,1

n (0, q)
0 0 11 16q5 + 18q6

1 0 12 48q6 + 7q7

2 0 13 32q6 + 56q7 + q8

3 q 14 112q7 + 32q8

4 q2 15 64q7 + 160q8 + 9q9

5 2q2 16 256q8 + 120q9 + q10

6 3q3 17 128q8 + 432q9 + 50q10

7 4q3 + q4 18 576q9 + 400q10 + 11q11

8 8q4 19 256q9 + 1120q10 + 220q11 + q12

9 8q4 + 5q4 20 1280q10 + 1232q11 + 72q12

10 20q5 + q6 21 512q10 + 2816q11 + 840q12 + 13q13

Table 3: The first few terms of N1,1(0, q, t).

n N2,1
n (0, q) n N2,1

n (0, q)
0 0 11 48q5 + 7q6

1 0 12 32q5 + 56q6 + q7

2 1 13 112q6 + 32q7

3 q 14 64q6 + 160q7 + 9q8

4 2q 15 256q7 + 120q8 + q9

5 3q2 16 128q7 + 432q8 + 50q9

6 4q2 + q3 17 576q8 + 400q9 + 11q10

7 8q3 18 256q8 + 1120q9 + 220q10 + q11

8 8q3 + 5q4 19 1280q9 + 1232q10 + 72q11

9 20q4 + q5 20 512q9 + 2816q10 + 840q11 + 13q12

10 16q4 + 18q5 21 2816q10 + 3584q11 + 364q12 + q13

Table 4: The first few terms of N2,1(0, q, t).

Recall our earlier observation that N1,2(0, q, t) = qtN2,2(0, q, t) and N1,3(0, q, t) =
qtN1,2(0, q, t) = q2t2N2,2(0, q, t). It is easy to see that every u ∈ Cn,1,2 is of the form
12v2 where 2v2 ∈ Cn−1,2,2 so that N1,2

n (0, 1, t) = N2,2
n−1(0, q, t) for n ≥ 3. Similarly,

every u ∈ Cn,1,3 is of the form 1v23 where 1v2 ∈ Cn−1,1,2 so that N1,3
n (0, 1, t) =

N1,2
n−1(0, q, t) for n ≥ 3. Thus the three cases in the previous theorem are sufficient

to determine N i,j(0, q, t) for any pair (i, j) 6= (3, 1).
We have computed the first few terms of N1,1(0, q, t), N2,1(0, q, t), and N2,2(0, q, t)

in Tables 3, 4, and 5, respectively.

For all (i, j) ∈ {(1, 1), (2, 1), (2, 2)}, we have that

N i,j
n (0, q) = 2qN i,j

n−2(0, q) + q2N i,j
n−3(0, q)
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n N2,2
n (0, q) n N2,2

n (0, q)
0 0 11 32q5 + 24q6

1 0 12 80q6 + 8q7

2 0 13 64q6 + 80q7 + q8

3 2q 14 192q7 + 40q8

4 q2 15 128q7 + 240q8 + 10q9

5 4q2 16 488q8 + 160q9 + q10

6 4q3 17 256q8 + 672q9 + 60q10

7 8q3 + q4 18 1024q9 + 560q10 + 12q11

8 12q4 19 512q9 + 1792q10 + 280q11 + q12

9 16q4 + 6q5 20 2304q10 + 1792q11 + 84q12

10 32q5 + q6 21 1024q10 + 4608q11 + 1120q12 + 14q13

Table 5: The first few terms of N2,2(0, q, t).

for n ≥ 4. We can use this recursion to find the coefficients of the lowest and highest
powers of q that occur in each N i,j

n (0, q), just as we did in Theorem 4. Thus we will
simply state the next results without proof.

Theorem 9. 1. For n ≥ 2, N1,1
2n (0, q) = n2n−3qn +HOT .

2. For n ≥ 1, N1,1
2n+1(0, q) = 2n−1qn +HOT .

3. For n ≥ 1, N1,1
3n (0, q) = (2n− 1)q2n−1 + LOT .

4. For n ≥ 0, N1,1
3n+1(0, q) = q2n + LOT .

5. For n ≥ 0, N1,1
3n+2(0, q) = 2n2q2n + LOT .

Theorem 10. 1. For n ≥ 1, N2,1
2n (0, q) = 2n−1qn−1 +HOT .

2. For n ≥ 1, N2,1
2n+1(0, q) = (n+ 1)2n−2qn +HOT .

3. For n ≥ 1, N2,1
3n (0, q) = q2n−1 + LOT .

4. For n ≥ 1, N2,1
3n+1(0, q) = 2n2q2n−1 + LOT .

5. For n ≥ 0, N2,1
3n+2(0, q) = (2n+ 1)q2n + LOT .

Theorem 11. 1. For n ≥ 1, N2,2
2n (0, q) = (n− 1)2n−2qn +HOT .

2. For n ≥ 0, N2,2
2n+1(0, q) = 2nqn +HOT .

3. For n ≥ 1, N2,2
3n (0, q) = 2nq2n−1 + LOT .

4. For n ≥ 0, N2,2
3n+1(0, q) = q2n + LOT .

5. For n ≥ 0, N2,2
3n+2(0, q) = 2n(n+ 1)q2n + LOT .
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5 Parity Patterns

In this section, we shall briefly discuss some results on how our work relates to the
parity of convolutions of Fibonacci numbers. First we consider the parity of the
Fibonacci numbers themselves. It is well known that if we define Fn by F0 = F1 = 1
and Fn = Fn−1 + Fn−2, then F3n and F3n+1 are odd for all n ≥ 0 and F3n+2 are even
for all n ≥ 0. This is straightforward to prove by induction. The work of this section
is inspired by a question of Bruce Sagan, who, when looking at the table of N3,1

n (0, q)
on page 177, asked about the parity of the coefficients appearing in N3,1

n (0, q). It
turns out we can prove the following theorem, which gives an alternative way to
prove the parity conditions satisfied by the Fibonacci numbers.

Theorem 12. 1. For all n ≥ 1, all of coefficients that appear in N3,1
3n+1(0, q) are

even.

2. For all n ≥ 0, N3,1
3n+2(0, q) is a degree 2n polynomial in q, N3,1

3n+2(0, q)|q2n is odd,

and for all i < 2n, N3,1
3n+2(0, q)|qi is even.

3. For all n ≥ 1, N3,1
3n (0, q) is a degree 2n − 2 polynomial in q, N3,1

3n (0, q)|q2n−2 is
odd, and for all i < 2n− 2, N3,1

3n (0, q)|qi is even.

Proof. For part (1), we note from (12) that

N3,1(0, q, t) =
∑
n≥2

N3,1
n (0, q)tn =

t2(1 + t)

1− 2qt2 − q2t3
.

Thus if we let

M3,1(q, t) :=
t(1 + t)

1− 2qt2 − q2t3
,

then one can compute that∑
n≥1

N3,1
3n+1(0, q)t

3n =
1

3

(
M3,1(q, t) +M3,1(q, e

2πi
3 t) +M3,1(q, e

4πi
3 t)
)

=
2qt3(1 + 2qt3 − q2t3)

1− 3q2t3 − 8q3t6 + 3q4t6 − q6t9
.

The factor of 2 in the numerator shows that all of the coefficients that appear in
N3,1

3n+1(0, q) are even.
For part (2), we have already shown in Theorem 4 part (3) that for n ≥ 0, the

highest power of q which appears in N3,1
3n+2(0, q) is q2n and N3,1

3n+2(0, q)|q2n = 1. Now
let

R3,1(q, t) :=
(1 + t)

1− 2qt2 − q2t3

Then ∑
n≥1

N3,1
3n+2(0, q)t

3n =
1

3

(
R3,1(q, t) +R3,1(q, e

2πi
3 t) +R3,1(q, e

4πi
3 t)
)
.
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But then one can compute that(∑
n≥1

N3,1
3n+2(0, q)t

3n

)
− 1

1− q2t3
=

2qt3(1 + q2t3)2

1− 4q2t3 − 8q3t6 + 6q4t6 + 8q5t9 − 4q6t9 + q8t12
,

which shows that for all i < 2n, the coefficient of qi in N3,1
3n+2(0, q) is even.

For part (3), note that we have already shown in Theorem 4 part (5) that for n ≥
1, the highest power of q which appears in N3,1

3n (0, q) is q2n−2 and N3,1
3n (0, q)|q2n−2 =

1 + (2n(n− 1)), which is clearly odd. To show that the coefficients of the remaining
powers of q are even, we can proceed as follows. First let

P 3,1(q, t) :=
∑
n≥1

N3,1
3n (0, q)t3n

=
1

3

(
N3,1(0, q, t) +N3,1(0, q, e

2πi
3 t) +N3,1(0, q, e

4πi
3 t)
)
.

Then let

P 3,1
1 (q, t) :=

1

t2
P 3,1(q, t2/3)

=
∑
n≥0

N3,1
3n+3(0, q)t

2n.

Since the highest power of q that appears in N3,1
3n+3(0, q) is q2n, it follows that coeffi-

cient of the highest power of q in N3,1
3n+3(0, q) is the coefficient of the constant term

in q2nN3,1
3n+3(0, 1/q) and for all i < 2n,

N3,1
3n+3(0, q)|qi =

(
q2nN3,1

3n+3(0, 1/q)
)
|q2n−i .

By replacing q with 1/q and t with qt in P 3,1
1 (q, t), one can compute that the resulting

function is

P 3,1
2 (q, t) :=

∑
n≥0

q2nN3,1
3n+3(0, 1/q)t

2n

=
(1 + t2)2

1− 3t2 + (8q − 3)t4 + t6
.

Thus, plugging q = 0 into this rational function gives

P 3,1
2 (0, t) =

(1 + t2)2

(1− t2)3
,

which is the generating function for the coefficients appearing in Theorem 4 part (5).
We have that

P 3,1
2 (q, t)− P 3,1

2 (0, t) =
8qt4(1− t2)2

(1− t2)3(1− 3t3 + (3− 8q)t4 − t6)
,

which shows that for all i < 2n, N3,1
3n+3(0, q)|qi is divisible by 8 and, hence, is certainly

even.
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We can apply similar techniques to determine the parity of convolutions of the
Fibonacci numbers. That is, let

L3,1(q, t) := N3,1(p, q, t)|p =
t4(1 + tq + q(q − 1)t2)2

(1− 2qt2 − q2t3)2

from (15). Then we know that

L3,1(q, t) =
∑
n≥0

L3,1
n (q)tn,

where

L3,1
n (1) =

{
0 if n ≤ 3 and∑

i+j=n−4 FiFj if n ≥ 4.

Hence L3,1(1, t) is the generating function of the convolution of two Fibonacci num-
bers. Thus we can study the parity of convolutions of two Fibonacci numbers by
studying the generating function L3,1(q, t). First observe that

L3,1(1, t) =
t4(1 + t)

(1− 2t2 − t3)2
(19)

and that
(1− 2t2 − t3)2 = 1− 4t2 − 2t3 + 4t4 + 4t5 + t6.

This means that for n ≥ 6,

L3,1
n (1) = 4L3,1

n−2(1) + 2L3,1
n−3(1)− 4L3,1

n−4(1)− 4L3,1
n−5(1)− L3,1

n−6(1). (20)

Thus for all n ≥ 6, L3,1
n (1) and L3,1

n−6(1) have the same parity. One can compute that
the initial terms of the sequence {L3,1

n (1)}n≥4 are

1, 2, 5, 10, 20, 38, 71, 130, 235, 420, 744, 1308, 2285, 3970, 6865, . . . ,

which appear in “The on-line encyclopedia of integer sequences” as sequence A001629
[7]. Notice that these are the same numbers that appear if we set q = 1 in the table

for N
(3,1)
n (p, q)|p on page 182. Using these initial values and the recursion (20), one

can show that the following theorem holds.

Theorem 13. For all n ≥ 1,

(0) L3,1
6n is odd, (1) L3,1

6n+1 is even, (2) L3,1
6n+2 is even,

(3) L3,1
6n+3 is even, (4) L3,1

6n+4 is odd, and (5) L3,1
6n+5 is even.

We also have an analogue of Theorem 12 in this case. That is, by using the same
type of techniques that we used to prove Theorem 12, we can prove the following.

Theorem 14. 1. For n ≥ 1, the highest power of q that appears in L3,1
6n (q) is

q2+4(n−1), L3,1
6n (q)|q2+4(n−1) is odd, and for i < 2 + 4(n− 1), L3,1

6n (q)|qi is even.
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2. For n ≥ 1, the highest power of q that appears in L3,1
6n+1(q) is q3+4(n−1) and all

the coefficients that appear in L3,1
6n+1(q) are even.

3. For n ≥ 1, the highest power of q that appears in L3,1
6n+2(q) is q4n, L3,1

6n+2(q)|q4n is

odd, L3,1
6n+2(q)|q4n−1 is even, L3,1

6n+2(q)|q4n−2 is odd, and for i < 4n−2, L3,1
6n+2(q)|qi

is even.

4. For n ≥ 1, the highest power of q that appears in L3,1
6n+3(q) is q4n and all the

coefficients that appear in L3,1
6n+3(q) are even.

5. For n ≥1, the highest power of q that appears in L3,1
6n+4(q) is q4n+1, L3,1

6n+4(q)|q4n+1

is even, L3,1
6n+4(q)|q4n is odd, and for i < 4n, L3,1

6n+4(q)|qi is even.

6. For n ≥ 1, the highest power of q that appears in L3,1
6n+5(q) is q4n+2 and all the

coefficients that appear in L3,1
6n+5(q) are even.

One might be led to conjecture that the period for the parity of convolutions of
r Fibonacci numbers is 3r, but this is not the case. For example, let

J3,1(q, t) := N3,1(p, q, t)|p2 =
t6(1 + tq + q(q − 1)t2)2(1 + q2t+ 2q(q − 1)t2)

(1− 2qt2 − q2t3)3
,

which comes from setting r = 2 in (13) from Theorem 3. Then we know that

J3,1(q, t) =
∑
n≥0

J3,1
n (q)tn,

where

J3,1
n (1) =

{
0 if n ≤ 5 and∑

i+j+k=n−6 FiFjFk if n ≥ 6.

Hence J3,1(1, t) is the generating function of the convolution of three Fibonacci num-
bers. Thus we can study the parity of convolutions of three Fibonacci numbers by
studying the generating function J3,1(q, t). First observe that

J3,1(1, t) =
t6(1 + t)3

(1− 2t2 − t3)3

=
t6(1 + t)3(1− 2t2 − t3)

(1− 2t2 − t3)4
.

Since

(1−2t2− t3)4 = 1−8t2−4t3 +24t4 +24t5−26t6−48t8−8t8 +28t9 +24t10 +8t11 + t12,

this implies that for n ≥ 12,

J3,1
n (1) = 8J3,1

n−2(1) + 4J3,1
n−3(1)− 24J3,1

n−4(1)− 24J3,1
n−5(1) + 26J3,1

n−6(1)+

48J3,1
n−7(1) + 8J3,1

n−8(1)− 28J3,1
n−9(1)− 24J3,1

n−10(1)− 8J3,1
n−11(1)− J3,1

n−12(1).
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Thus for all n ≥ 6, J3,1
n (1) and J3,1

n−12(1) have the same parity. One can compute that
the initial terms of the sequence {J3,1

n (1)}n≥6 are

1, 3, 9, 22, 51, 111, 233, 474, 942, 1836, 3522, 6666, 12473, 23109, 42447, 77378, 140109,

252177, 451441, . . . ,

which form sequence A001628 in “The on-line encyclopedia of integer sequences” [7].
With these initial terms, we can prove the following theorem.

Theorem 15. For all n ≥ 1,

(0) J3,1
12n is odd, (1) J3,1

12n+1 is even, (2) J3,1
12n+2 is even,

(3) J3,1
12n+3 is even, (4) J3,1

12n+4 is even, (5) J3,1
12n+5 is even,

(6) J3,1
12n+6 is odd, (7) J3,1

12n+7 is odd, (8) J3,1
12n+8 is odd,

(9) J3,1
12n+9 is even, (10) J3,1

12n+10 is odd, and (11) J3,1
12n+11 is odd.

Similarly, the parity patterns for convolutions of four Fibonacci numbers will also
exhibit a period of size 12. That is, let

H3,1(q, t) := N3,1(p, q, t)|p3 =
t8(1 + qt(1− t) + q2t2)2(1− 2qt2 + q2t(1 + 2t)2

(1− 2qt2 + q2t3)4
.

Then we know that
H3,1(q, t) =

∑
n≥0

H3,1
n (q)tn,

where

H3,1
n (1) =

{
0 if n ≤ 7 and∑

i+j+k+`=n−8 FiFjFkF` if n ≥ 8.

Hence H3,1(1, t) is the generating function of the convolution of four Fibonacci num-
bers. Thus we can study the parity of convolutions of four Fibonacci numbers by
studying the generating function H3,1(q, t). First observe that

H3,1(1, t) =
t8(1 + t)4

(1− 2t2 − t3)4
. (21)

So we can argue as in the case of J3,1(1, t) that for n > 12, the parity of H3,1
n (1) and

H3,1
n−12(1) are the same.

By examining the first few terms of the generating function for H3,1(1, t), one can
show that the following theorem holds.

Theorem 16. For all n ≥ 1,

(0) H3,1
12n is odd, (1) H3,1

12n+1 is even, (2) H3,1
12n+2 is even,

(3) H3,1
12n+3 is even, (4) H3,1

12n+4 is even, (5) H3,1
12n+5 is even,

(6) J3,1
12n+6 is even, (7) H3,1

12n+7 is even, (8) H3,1
12n+8 is odd,

(9) H3,1
12n+9 is even (10) H3,1

12n+10 is even, and (11) H3,1
12n+11 is even.

It is not difficult to prove by induction that (1 − 2t2 − t3)2n is a polynomial of
degree 6n with constant term 1, leading coefficient 1, and all other coefficients even.
This will allow one to show that patterns in the parities of convolutions of 2k − 1
Fibonacci numbers, and also 2k Fibonacci numbers, exhibit periods of size 6k.
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