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Abstract

In 1999 in [J. Difference Equ. Appl. 5, 355–377], Noonan and Zeilberger
extended the Goulden-Jackson Cluster Method to find generating func-
tions of word factors. Then in 2009 in [Electron. J. Combin. 16(2),
RZZ], Kitaev, Liese, Remmel and Sagan found generating functions for
word embeddings and proved several results on Wilf-equivalence in that
setting. In this article, the authors focus on generalized interval embed-
dings, which encapsulate both factors and embeddings, as well as the
“space between” these two ideas. The authors present some results in
the most general case of interval embeddings. Two special cases of inter-
val embeddings are also discussed, as well as their relationship to results
in previous works in the area of pattern avoidance in words.

1 Introduction

Let a word w be comprised of letters w1, w2, w3, . . . ∈ P, where P is any set, called
our alphabet. Define the Kleene closure of P as

P∗ = {w = w1w2 · · ·wn | n ≥ 0 and wi ∈ P for all i}.
In this paper we set P = N = {1, 2, 3, . . .}, so that any word is simply a string of

positive integers. Let |w| denote the number of letters in w and Σw =
∑|w|

i=1wi,
and we define the weight of w to be wt(w) = t|w|xΣw. In the case where n = 0,
we define w = ε to be the empty word, and we have that wt(ε) = 1. Noonan and
Zeilberger [6] define u to be a factor of w if there is a string, v, of |u| consecutive
letters in w such that for all 1 ≤ i ≤ |u|, ui = vi, where ui and vi are the i-th letters
of u and v, respectively. For example, if u = 1443 and w = 841443117, then w has
u as a factor since w3w4w5w6 = u. Later, Kitaev, Liese, Remmel, and Sagan [2]
define that w embeds u if there is a string, v, of |u| consecutive letters in w such
that for all 1 ≤ i ≤ |u|, ui ≤ vi. For example, if u = 154 and w = 16563, then
w embeds u in two places, and 165 and 656 are said to be embeddings of u into w.
Further generalizations of this notion of embedding can be found in Langley, Liese,
and Remmel [3], [4]. Using completely different methods, Noonan and Zeilberger
[6] extend the Goulden-Jackson Cluster Method [1] to find generating functions of
word factors. In [2], [3], and [4], the authors find a myriad of results on generating
functions related to word embeddings, and they subsequently use these generating
functions to prove many results on Wilf-equivalence [7]. For instance, in [2] the
authors define the embedding set of a word u to be E(u) = {w ∈ P∗ | w embeds u},
and then define that the words u and v are Wilf-equivalent, denoted as u ∼ v, if
E(u; t, x) = E(v; t, x), where

E(u; t, x) =
∑

w∈E(u)
wt(w).

In this paper, we define a new notion of embedding which we call generalized
interval embedding. To begin, suppose that we are given a word u = u1u2 · · ·um
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and a sequence of the same length as u, A = (a1, a2, . . . , am), where each ai ∈
{0, 1, 2, 3, . . .} ∪ {∞}. We say that w = w1w2 · · ·wn interval embeds uA, written
as u ≤A w, if there is a string, v, of |u| consecutive letters in w such that for all
1 ≤ i ≤ |u|, vi ∈ [ui, ui+ai], where if ai =∞, we take this to mean that vi ∈ [ui,∞).
Letting ai = 0 for all i corresponds to interval embeddings which are factors, and
letting ai =∞ for all i gives interval embeddings which are embeddings.

We define the interval embedding set of uA to be

E(uA) = {w ∈ P∗ | u ≤A w}.
Similarly, we define the avoiding set of uA to be

A(uA) = {w ∈ P∗ | u 	≤A w},
and the suffix-embedding set of uA to be

S(uA) = {w ∈ P∗ | u ≤A w & uA only interval-embeds into the suffix of w},
where we say that for any 1 ≤ j ≤ n, wjwj+1 · · ·wn (respectively, w1w2 · · ·wj) is a
suffix (respectively, prefix ) of w. We also define the same length-embedding set of
uA to be

L(uA) = {w ∈ P∗ | u ≤A w, and |u| = |w|}.
We now define the corresponding weight generating functions to be

E(uA; t, x) =
∑

w∈E(uA)

wt(w), (1)

A(uA; t, x) =
∑

w∈A(uA)

wt(w), (2)

S(uA; t, x) =
∑

w∈S(uA)

wt(w), and (3)

L(uA; t, x) =
∑

w∈L(uA)

wt(w). (4)

It is worth noting that there is a straightforward formula for L(uA; t, x), which we
provide here and use in Section 3.

Lemma 1. Given a word u = u1 · · ·um and a sequence A = (a1, . . . , am),

L(uA; t, x) = tm
m∏
i=1

(
aj∑
j=0

xuj+j

)
.

Proof. Let w = w1w2 · · ·wm ∈ L(uA). Then we can compute L(uA; t, x) by comput-
ing the possible weights of each wi. Since wi ∈ {ui, ui + 1, . . . , ui + ai}, the sum of
all possible weights for wi is t(x

ui +xui+1+ · · ·+xui+ai). Multiplying the sums of the
possible weights for all letters of w yields the desired result.
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It was shown in [2] that the weight generating function for all words in P∗ is
given by

P (t, x) =
∑
w∈P∗

wt(w) =
1− x

1− x− tx.

Since the sets E(uA) and A(uA) partition the set P∗, we have that

E(uA; t, x) = 1− x
1− x− tx −A(u

A; t, x). (5)

Further, every word y ∈ E(uA) has a leftmost interval embedding of uA. Accordingly,
y = y′z, where y′ ∈ S(uA) and z is any word, giving that

E(uA; t, x) = S(uA; t, x) 1− x
1− x− tx, (6)

and
By Equations (6) and (5)

A(uA; t, x) = P (t, x)− E(uA; t, x) = P (t, x)− S(uA; t, x)P (t, x). (7)

It follows from the results in [2] that E(uA; t, x), A(uA; t, x), and S(uA; t, x) are each
the difference of rational functions, and thus rational themselves, although this is
not a main point of this paper. We say that two words, u and v, are interval
Wilf-equivalent with respect to the sequences A and B, respectively, if E(uA; t, x) =
E(vB; t, x), and we denote this by uA ∼ vB. It is helpful to note that by Equation (7),
interval Wilf-equivalence is also shown if S(uA; t, x) = S(vB; t, x) or A(uA; t, x) =
A(vB; t, x). One consequence of this definition is that any two words which are
interval Wilf-equivalent must have equal weights, and we prove this fact here so that
we may omit this condition in the statement of later theorems.

Lemma 2. If uA ∼ vB, then wt(u) = wt(v).

Proof. Assume uA ∼ vB, that is, E(uA; t, x) = E(vB; t, x). Given w ∈ E(uA), |w| ≥
|u| and Σw ≥ Σu. This gives that the lowest-order term in the power series expansion
of E(uA; t, x) is wt(u) = t|u|xΣu. Similarly, the lowest-order term in the power series
expansion of E(vB; t, x) is wt(v) = t|v|xΣv, and since these terms must be identical,
we have that wt(u) = wt(v).

For many of the results that follow, we are also interested in how many interval
embeddings can “occupy the same space.” To that end, we say that, for 0 ≤ p ≤ m−1,
uA has p-overlap if the last p letters of u can share an embedding with the first p
letters of u. In the special case where p = 0, we call uA non-overlapping. For
example, If u = 121, v = 138, and A = (3, 3, 3), then uA has both a 1-overlap and a
2-overlap; however, vA is non-overlapping.

The outline of the paper is as follows. In Section 2, we give results for Wilf-
equivalence in the most general of settings, that is, allowing our sequence A to be
arbitrary. In Section 3, we discuss a special case of generalized interval embeddings,
which we call k-embeddings.
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2 Generalized interval embeddings

In this section we define some basic terms to help us tackle the problems in this
generalized interval embeddings setting, and we discuss how to use these ideas to
give us results on Wilf-equivalence. First, suppose u and v are words such that
|u| = |v| = m and Σu = Σv, and let A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bm)
be two sequences made up of nonnegative integers and ∞’s, as defined in Section

1. Define ←−u = um · · ·u2u1 and
←−
A = (am, . . . , a2, a1) to be the reverses of u and

A, respectively. Define u+ to be the word obtained by increasing every letter of u
by 1. We now give the following theorem, which is a generalized version of Lemma
4.1 in [2]. Here we provide the proofs of (1.) and the first half of (2.) in order to
illustrate how one may prove other results in this setting, namely, by finding some
weight-preserving bijection from one embedding (or avoiding or suffix-embedding)
set to another. The proof second half of (2.) is omitted as it mirrors exactly the
proof given below for the first half of (2.), and we refer the reader to [2] for the ideas
behind the proof of (3.)

Theorem 3. Suppose that u and v are words, A and B are sequences such that
uA ∼ vB. Then the following hold.

1. uA ∼ ←−u ←−A .
2. (1u)A

′ ∼ (1v)B
′
and (u1)A

′′ ∼ (v1)B
′′
, where for any word u and sequence

A, 1u = 1u1u2 · · ·um, u1 = u1u2 · · ·um1, A′ = (∞, a1, a2, . . . , am), and A′′ =
(a1, a2, . . . , am,∞).

Proof. (1.) Suppose that w embeds uA. Then φ : E(uA)→ E(←−u ←−A ) given by φ(w) =←−w is a weight-preserving bijection.
(2.) Consider w ∈ A((1u)A′

). Then either u does not embed into w with respect
to A or it embeds into a prefix of w, giving that

A((1u)A′
) = A(uA) � {←−w | w ∈ S(←−u ←−A )},

where � represents a disjoint union of sets. A similar argument shows that

A((1v)B′
) = A(vB) � {←−w | w ∈ S(←−v ←−B )}.

By (1.) and the fact that uA ∼ vB, we have that A((1u)A′
) = A((1v)B′

).

Define a superset, [c, d] ⊆ N, of uA to be a set such that for all 1 ≤ i ≤ m,
[ui, ui + ai] ⊆ [c, d], where we set ui + ai = ∞ whenever ai = ∞, i.e., it may
be the case that [c, d] = [c,∞). We now give the following conjecture, which is a
generalization of Part (2.) of Theorem 3.

Conjecture 1. Suppose that u and v are words, A and B are sequences such that
uA ∼ vB, and [c, d] is s superset of both uA and vB. If cu = cu1u2 · · ·um, uc =
u1u2 · · ·umc, A′ = (d − c, a1, a2, . . . , am), and A′′ = (a1, a2, . . . , am, d − c), with cv,
vc, B′, and B′′ defined analogously, then (cu)A

′ ∼ (cv)B
′
and (uc)A

′′ ∼ (vc)B
′′
.
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Kitaev et al [2], also pose a conjecture, given below, relating to the rearrangement
of letters in two Wilf-equivalent words. This statement has come to be known as the
Rearrangment Conjecture.

Conjecture 2. If u ∼ v, then u and v must be rearrangements of one another.

In order to find the function S(u; t, x) for some arbitrary word u, the authors
of [2] construct an automata which recognizes the words w ∈ S(u). One particular
example (of many) given in that paper is that

123 ∼ 321 ∼ 231 ∼ 132 	∼ 213 ∼ 312,

i.e., the converse of Conjecture 2 is false. However, in the form of the following theo-
rem, we will show that there is an instance in which some form of rearrangement does
force Wilf-equivalence. To begin, given u = u1u2 · · ·um, A = (a1, a2, . . . , am), and a
permutation σ ∈ Sm, we define σ(u) = uσ1uσ2 · · ·uσm and σ(A) = (aσ1 , aσ2 , . . . , aσm).

Theorem 4. Suppose A = (a1, . . . , am) and B = (b1, . . . , bm) are rearrangements
of one another, and let uA and vB be non-overlapping with wt(u) = wt(v). If there
exists a permutation σ ∈ Sm such that σ(A) = B and σ(u)σ(A) is non-overlapping,
then uA ∼ vB.

In such a setting, uA ∼ σ(u)σ(A), and to see this, consider the word w ∈ E(uA).
Then either w ∈ E(uA) ∩ E(σ(u)σ(A)) or w ∈ E(uA) \ E(σ(u)σ(A)). In the first case
we do nothing, and in the second case, we can apply σ to each interval embedding
of uA and we will get a word, w′ ∈ E(σ(u)σ(A)) such that wt(w) = wt(w′). Since
uA and σ(u)σ(A) are non-overlapping, no embeddings can be created or destroyed by
this operation, so this map is also a bijection. As an example of this theorem, let
u = 711 and A = (0, 4, 2) while v = 225 and B = (0, 2, 4). Then uA and vB are
non-overlapping. Moreover, if σ = 132, we have that σ(A) = B and σ(u)σ(A) is non-
overlapping, and so uA ∼ vB. Before proving this theorem, we first start with some
simpler groundwork. To begin, assume A = (a1, a2, . . . , am) = B, and let uA and vB

be non-overlapping words with wt(u) = wt(v). We define ψ : A(vB) → A(uA) as
follows:

i. If w ∈ A(uA) ∩ A(vB), let ψ(w) = w.

ii. If w ∈ A(vB) \ A(uA), first set Δu,v = (δ1, δ2, . . . , δm), where δi = vi − ui.
We note here that since Σu = Σv, δ1 + δ2 + · · · + δm = 0, and unless u = v,
there exists some δj < 0, a fact we will use to prove Lemma 5. Given a word
p = p1p2 · · · pm we define Δu,v(p) to be the word whose i-th letter is pi + δi.
We now define Γ(w) to be the word obtained by once applying Δu,v to each
subword w′ ∈ L(uA) of w. If Γ(w) ∈ A(uA) \ A(vB), we set ψ(w) = Γ(w).
Otherwise, we keep applying Γ to our subsequent images until we arrive at
some Γj(w) ∈ A(uA) \ A(vB), and we set ψ(w) = Γj(w). We will refer to the
words w,Γ(w),Γ2(w), . . . ,Γj(w) = ψ(w) as the Γ-sequence of w.
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As an example of part (ii.) of our algorithm, consider the words u = 511 and
v = 133 with A = B = (0, 1, 3). Then uA and vB are both non-overlapping, and
Δu,v = (−4, 2, 2). The word w = 515128523 contains two interval embeddings of
uA, but w avoids vB, and so we have that w ∈ A(vB) \ A(uA). Thus, we apply
Δu,v to all embeddings of uA in w, and we keep applying Δu,v to embeddings in the
subsequent images, until we arrive at a word in A(uA) \ A(vB). We show this map
here, where embeddings of uA and are underlined in the top line and embeddings of
vB are overlined in the bottom line.

w = 515128523→ Γ(w) = 511348145→ Γ2(w) = 133348145 = ψ(w)

w = 515128523→ Γ(w) = 511348145→ Γ2(w) = 133158145 = ψ(w)

We now make two remarks before providing three technical lemmas which aid in the
proof of Theorem 4.

Remark 1. The leftmost letter of any word in our Γ-sequence can only be changed
by increments of δ1 at each step. Accordingly, if the first letter of any word in our Γ-
sequence ever increases (decreases), then the first letter can never decrease (increase)
in a later element of our Γ-sequence. A similar statement holds for the last letter of
the words of our Γ-sequence.

Remark 2. As soon as Δu,v is applied to an interval embedding of uA, that interval
embedding is transformed into an interval embedding of vB, although it may also still
be an interval embedding of uA. It may also be the case that this interval embedding
of uA shifts to the left or right. In the example above, such a left shift occurs.

Lemma 5. If p ∈ A(vB) \ A(uA) such that |p| = |u|, then the Γ-sequence of p is
finite.

Proof. Let p = p1p2 · · · pm ∈ A(vB) \ A(uA) such that |p| = |u|, and let r be the
minimum number of times we must apply Γ to p in order to no longer have an
interval embedding of uA. Note that such an r must exist, since there exists some
δj < 0 where 1 ≤ j ≤ m, and so eventually we would be forced out of the interval
[uj , uj + aj ], even if aj = ∞. Now suppose that the word we get from applying Γ
r times to p is q = q1q2 · · · qm ∈ A(uA). Then for some 1 ≤ i ≤ m, qi = pi + rδi =
pi + r(vi − ui) /∈ [ui, ui + ai], but since r is minimal, it must also be the case that
ui ≤ pi + (r − 1)δi = pi + (r − 1)(vi − ui) ≤ ui + ai for every 1 ≤ i ≤ m. This gives
that

ui ≤ pi + rvi − rui − vi + ui ≤ ui + ai ⇒ vi ≤ pi + r(vi − ui) = qi ≤ vi + ai,

and so q ∈ L(vB). Thus, q ∈ A(uA) \ A(vB), giving that q = Γr(p) = ψ(p).

We now see that the only way in which this algorithm would fail to terminate
is if, when applying Γ, interval embeddings of uA could shift to the left or right ad
infinitum. However, our next lemma shows that this cannot happen.
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Lemma 6. Given non-overlapping words uA and vB of length m ≥ 1 and w ∈
A(vB) \ A(uA), the Γ-sequence of w is finite.

Proof. We proceed by induction on the length of the w.
Assume that [u1, u1 + a1] is finite, and let P (n) be the statement that if we are

given a word in A(vB)\A(uA) of length n, then the Γ-sequence of this word is finite.
By Lemma 5, P (m) is true, so assume that P (k) is true for some k ≥ m, and suppose
we are given w ∈ A(vB) \ A(uA) such that |w| = k + 1.

Since [u1, u1 + a1] is finite, Remark 1 gives us that the first letter of the words
of the Γ-sequence of w can change only a finite number of times. That is, there
exists t ≥ 0 such that the first letter of Γs(w) is fixed as y1 for every s ≥ t, and our
Γ-sequence of w is

w,Γ(w),Γ2(w), . . . ,Γt(w) = y1y2 · · · yk+1,Γ
t+1(w) = y1y

′
2 · · · y′k+1, . . . .

If we let y = y2y3 · · · yk+1, then since y1 is not changing after applying Γ t times to
w, our Γ-sequence of w can be written as

w,Γ(w), . . . ,Γt(w) = y1y,Γ
t+1(w) = y1Γ(y),Γ

t+2(w) = y1Γ
2(y), . . . ,

that is, after the t-th application of Γ to w, Γ is now only operating on the word y
and its subsequent images. As |y| = k, our inductive hypothesis guarantees that the
Γ-sequence of y, and consequently w, is finite.

Since uA is non-overlapping, it must be the case that at least one of the intervals
[u1, u1 + a1] and [um, um + am] must be finite. Accordingly, if [u1, u1 + a1] is not
finite, then [um, um + am] is finite, and so we may use the same ideas above on the
last letter of the words in the Γ-sequence of w, completing the proof.

Lemma 7. Suppose A = (a1, a2, . . . , am) = B, and let uA and vB be non-overlapping
with wt(u) = wt(v). Then uA ∼ vB.

Proof. Pick ŵ ∈ A(uA) \ A(vB). As vB is non-overlapping, repeatedly applying
Δv,u = −Δu,v to embeddings of vB in ŵ and to all interval embeddings of vB in
the subsequent images, we would arrive back at a word w ∈ A(vB) \ A(uA) such
that ψ(w) = ŵ, that is, ψ is invertible, i.e., a bijection from A(vB) \ A(uA) to
A(uA) \A(vB). Since ψ is the identity map on A(uA)∩A(vB), ψ is a bijection from
A(vB) to A(uA). Finally, |w| = |ψ(w)|, and since Σδi = 0, Σw = Σψ(w), so ψ is also
a weight-preserving map.

Since Wilf-equivalence is transitive and uA ∼ σ(u)σ(A), Theorem 4 now follows
from first applying the appropriate permutation σ ∈ S|u| to all interval embeddings
of uA in our word w ∈ A(vB), and then applying Lemma 7 to obtain σ(u)σ(A) ∼ vB.

Conjecture 3. Suppose A = (a1, . . . , am) and B = (b1, . . . , bm) are rearrangements
of one another, and let uA and vB be non-overlapping with wt(u) = wt(v). Then
uA ∼ vB.
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Conjecture 3 is the full generalization of Theorem 4, and all empirical evidence
suggests that this conjecture holds true. However, the method used in the proof
of Theorem 4 is no longer valid. In particular, when we try to find σ such that
σ(A) = B, it may be the case that σ(u)σ(A) is no longer non-overlapping, and so
when we try to apply ψ to words in A(vB) \A(σ(u)σ(A)), ψ may not be well-defined.

3 k-embeddings

Returning to our original alphabet, P = N, let k ≥ 0 and set A = (k, k, . . . , k). Here,
we denote uA as uk, and we refer to embeddings in this case as k-embeddings. We
denote the corresponding interval Wilf-equivalences of two words, u and v, as u ∼k v.
When k = 0 the k-embedding is equivalent to a factor, and when k → ∞ the k-
embedding is equivalent to an embedding; in fact, by choosing k ∈ N, k-embeddings
represent the “missing space” between factors and embeddings. For example, we will
show in Theorem 8 that

E(1k; t, x) = tx(xk+1 − 1)(1− x)
(x− 1 + txk+2)(1− x− tx) . (8)

Letting k = 0 in Equation (8) gives the generating function for all words which
contain the word u = 1 as a factor

G(1; t, x) =
tx(x− 1)(1− x)

(x− 1 + tx2)(1− x− tx) .

Similarly, let k → ∞ in Equation (8) gives the generating function for all words
which contain an embedding of u = 1, i.e., all words. Taking this limit we see that
we do, in fact, get

lim
k→∞
E(1k; t, x) = tx

1− x− tx = P (t, x).

Although it was defined in Section 1, we give a reformulation of the definition of
p-overlap in the special case of k-embeddings. Here, given that |u| = m, we say that
uk has a p-overlap if there exists some p ≤ m such that for a length p suffix v of u,
|ui − vi| ≤ k for all i ∈ [1, p]. A word u is non-overlapping if there is no p with this
property.

3.1 Non-overlapping words

In this section we discuss those k-embeddings in the case where uk is non-overlapping,
and we begin by finding a generating function for words which k-embed such uk.

Theorem 8. Let k ≥ 0 and let uk be a non-overlapping word with |u| = m. Then,

E(uk; t, x) = xΣutm(1− xk+1)m(1− x)
[(1− x)m−1(1− x− tx) + xΣutm(1− xk+1)m](1− x− tx) .
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Proof. Our strategy for finding E(uk; t, x) involves first finding S(uk; t, x). Take a
word, v, that avoids uk, then append any k-embedding of uk of length |u| to the
right end to create an element of S(uk). Because uk is non-overlapping, we know
that we have not created an earlier occurrence of uk with a portion of our avoiding
word and a portion of the k-embedding of uk. Translating this into the world of
generating functions gives that

S(uk; t, x) = A(uk; t, x)L(uk; t, x)

= A(uk; t, x)
[
tm

m∏
i=1

(
aj∑
j=0

xuj+j

)]
, by Lemma 1

= A(uk; t, x)tmxΣu(1 + x+ · · ·+ xk)m

= A(uk; t, x)tmxΣu

(
1− xk+1

1− x
)m

.

Recalling that

P (t, x) =
1− x

1− x− tx and using Equations (6), (5), and (7),

we obtain our generating function

E(uk; t, x) = xΣutm(1− xk+1)m(1− x)
[(1− x)m−1(1− x− tx) + xΣutm(1− xk+1)m](1− x− tx) .

We see here that finding the generating function in Theorem 8 uses only the
weight of the word u and the fact that uk is non-overlapping, giving us the following
corollary.

Corollary 9. Let k ≥ 0 and let uk and vk be non-overlapping words such that
wt(u) = wt(v). Then u ∼k v.

Indeed, this corollary gives that in the case of non-overlapping words and k-
embeddings, Lemma 2 becomes an if and only if statement.

3.2 Connections to other sequences

Since interval embeddings of words of length one are always k-embeddings and such
words are, by default, non-overlapping, we can use the ideas in Theorem 8 to find
generating functions for the avoiding sets of words of length one.

Corollary 10. Let k ≥ 0 and suppose q is a word of length one. Then

A(qk; t, x) = 1− x
1− x+ t(xq − x− xq+k+1)

. (9)
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Using Equation (9), we see that

A(1k; t, x) = 1− x
1− x− txk+2

.

By expanding this out as a power series for k = 1 and k = 2 and setting t = 1, i.e.,
disregarding the length of w, we obtain the following:

A(11; 1, x) = 1 + x3 + x4 + x5 + 2x6 + 3x7 + 4x8 + 6x9 + 9x10 + · · ·
A(12; 1, x) = 1 + x4 + x5 + x6 + x7 + 2x8 + 3x9 + 4x10 + 5x11 + · · · .

Searching in the OEIS for the sequences created from the coefficients of xn in both
of these polynomials, we see that they correspond to the sequences A000930 and
A003269, respectively, and this leads us to the following result.

Theorem 11. For k ≥ 1, the coefficient of xn in the power series expansion of
A(1k; 1, x) is the number of words w = w1w2 · · ·wn−k−2 such that for all i, wi ∈
{1, k + 2}.
Proof. Take a word w of length n − k − 2 whose letters are elements of {1, k + 2},
and form the word w′ by appending the letter k + 2 to the front of w. We will now
form a word z ∈ A(1k) such that Σz = n in the following way. First, starting from
the left of w′, sum from k+2 to the end of the largest string of consecutive 1’s after
this k + 2, and let that be the first letter of z. Then sum the second k + 2 with
the largest string of 1’s immediately after it, and let that be the second letter of
z. We continue this algorithm until the word w′ has been exhausted. Since every
letter of z is at least k + 2, z ∈ A(1k). Moreover, by construction, Σw′ = Σz, and
Σw′ = n − k − 2 + (k + 2) = n. Finally, this is a bijection, since this process is
reversible. In particular, given a word y ∈ A(1k) with Σy = n, we replace any letter,
yi, of y which is greater than k + 2 with the word �i = (k + 2)11 · · ·1 such Σ�i = yi,
and we leave the letters k+2 untouched. This gives the a word v′ which begins with
the letter k + 2, and we remove this first letter to get v, the preimage y.

As an example of the bijection just described, consider the word w = 4114141111
with k = 2. Then w′ = 44114141111, and so z = (4)(4+1+1)(4+1)(4+1+1+1+1) =
4658 ∈ A(12).

In general, words which avoid k-embeddings of single-letter words are related to
pattern avoidance in binary words. To see this, let Bi denote the binary word of
length i+ 1 which begins with a 0 and ends with i 1’s, and let Bi,0 denote the word
Bi with a 0 added after the i 1’s. Then each word w = w1w2 · · ·wt ∈ N

∗ can be
transformed into a unique binary word by replacing each wi with Bi. This operation
is invertible, and in fact, ΣBi = wi. Using this bijection, we get the following
theorem, where the proof results from a direct application of this transformation.

Theorem 12. For q ∈ N and k ≥ 1, the coefficient of xn in the power series
expansion of A(qk; 1, x) is the number of binary words b with Σb = n that avoid exact
macthes of all patterns in the set

Υq,k = {Bq,0, Bq+1,0, . . . , Bq+k,0}.
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This theorem is another example of how k-embeddings fill in some gap between
factors and embeddings. It is in the vein of many results found in Miceli and Remmel
[5], where this same bijection is used to find generating functions for words which
contain certain sets of patterns as factors.

3.3 p-overlapping words

In this section we look at words which have p-overlap for some p > 0, and we begin
with a generalization of Theorem 8.

Theorem 13. Let k ≥ 0 and suppose u is a word of length m such that there exists
exactly one p such that uk has a p-overlap. If |u| ≥ 2p, then

E(uk; t, x) =
1− x

1− x− tx ×
(1− x)(1− xk+1)mtmxΣu

((1− x)m +D(1− x− tx) + (1− x)tmxΣu(1− xk+1)m)
,

where

D := (1− x)ptm−px
∑p

j=1 max{uj ,um−p+j}+
∑m−2p

r=1 up+r ×

(1− xk+1)m−2p
m−2p∏
l=1

(1− xk+1−|ul−um−p+l|).

Recall that in the proof of Theorem 8, we created the suffix-embedding set of uk

by taking any word that avoided uk and appending any k-embedding of uk of length
|u| to the right. Let’s call the set of words created this way S1. If we try the same
strategy here, we encounter the difficulty that, because of the p-overlap that occurs,
some of the words in S1 would be in E(uk; t, x) and not in S(uk; t, x). For example,
when k = 2 and u = 141, then uk has one instance of p-overlap with p = 1. But, take
the word 625, which contains no 2-embedding of 141, and append a 2-embedding of
141, such as 241, to obtain the word w = 625241. We see that w /∈ S(1412), even
though w ∈ E(1412). Thus the strategy from Theorem 8 has given us the set S1

which contains all the words in S(1412), but unfortunately some others as well. To
fix this overcounting, we subtract the instances where there is an earlier embedding.
Thus we want to subtract the set of words formed by taking any word that avoids
uk and appending any word w of length 2m− p with two embeddings of uk. We will
call this set S2. (Note that since we know that there exists exactly one p such that
uk has p-overlap, these two embeddings in w must begin and end w). Taking S1−S2

we have thus subtracted all words that were not in S(1412). However, we have also
subtracted some words which were never in the original set S1! For example, with
u = 141, 1625241 ∈ S2, because it is made of the word 16, which avoids 141 when
k = 2, and the word w = 25241, which has two embeddings of u2. But 1625241 is
not in S1, because the word 1625 does not avoid u2. So we must add back in those
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words that are formed by taking any word that avoids uk and appending any word
of length 3m− 2p with three embeddings of uk. We call this set S3. This adds back
in all the elements of S2 − S1 that were inappropriately removed. However, just as
before, S3 contains some words which are not in S(uk), which we must subtract via a
similarly defined set S4. We continue this process in an inclusion-exclusion manner,
finding that

S(uk) = S1(u
k)− S2(u

k) + S3(u
k)− S4(u

k) + . . . .

Then to find the generating function S(uk; t, x), we need only find the generating
functions for the Si’s and sum them with appropriate signs. Fortunately each Si has
a straightforward generating function. For example

S1(u
k; t, x) = A(uk; t, x)tmxΣ(u)([k]x)

m,

and

S2(u
k; t, x) = A(uk; t, x)t2m−pxΣ(u)

[
p∏

i=1

xmax{ui,um−p−i}
]
xup+1 · · ·xum−p

×
[
m−2p∏
i=1

[k]x[p− |ui − um−p+i|]x

]
,

where for any x ∈ R and k ∈ N, [k]x := (1 + x+ · · ·+ xk) =
1− xk+1

1− x .

Continuing in this manner and factoring when possible, we see that S(uk; t, x)
has the form

A(uk; t, x)tmxΣ(u)([k]x)
m ×

∞∑
i=0

(
−tm−px

∑p
j=1 max{uj ,um−p+j}+

∑m−2p
r=1 up+r

[
m−2p∏
l=1

[k]x[k − |ul − um−p+l|]x
])i

,

so that

S(uk; t, x) = A(u
k; t, x)tmxΣ(u)(1− xk+1)m

(1− x)m +D
,

where D is defined in the statement of Theorem 13. Using Equations (6), (5), and
(7) on this expression for S(uk; t, x), the formula from Theorem 13 follows.

Whereas the last theorem dealt with words containing exactly one p-overlap, our
next result pertains to the opposite case of p-overlapping. To begin, let q ∈ N and
let q� denote the �-length word comprised solely of the letter q. In this case, q� has
a p-overlap for every 1 ≤ p ≤ �− 1.

Theorem 14. Let k ≥ 0 and � ∈ N. For any q ∈ N,

E(qk� ; t, x) =
(1− x)D

(1− x− tx)(1 − x− tx+D)
,

where D := t�(xq − x1+k+q) + t1+k(1− x)−�(xq − x1+k+q)�(x− xq + x1+k+q).
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Proof. We see that if w = w1w2 · · ·wt ∈ S(qk� ), each of the last � digits of w must be
in [q, q + k], and when t > �, it is also necessary for the letter wt−� /∈ [q, q + k], since
otherwise there will be a k-embedding of q� not contained in the last � letters of w.
Thus, if |w| > �, w = uxv, where u ∈ A(qk� ), x ∈ N− [q, q+ k], and v ∈ S(qk� ), giving
that

S(qk� ; t, x) = A(qk� ; t, x)tk+1(xq[k]x)
�

(
x− xq
1− x +

xq+k+1

1− x
)
+ L(qk� ; t, x)

= A(qk� ; t, x)tk+1(xq[k]x)
�

(
x− xq
1− x +

xq+k+1

1− x
)
+ t�(xq[k]x)

�

Using Equations (6), (5), and (7) to solve for E(qk� ; t, x) yields the desired result.

It is worth noting, as well, that in terms of Wilf equivalence, there is a funda-
mental, structural difference between non-overlapping words and words which have
p-overlap for some p > 0. For example, u = 181 and v = 262 have the same weights
and both have a single p-overlap for p = 1, but 181 �1 262. Thus, Corollary 9 no
longer holds even in the simplest cases of non-zero p-overlaps. Moreover, we have
the following theorem.

Theorem 15. Let k ≥ 0, u be a nonoverlapping word, and v be a word with p-overlap
for some p > 0. Then u �k v.

Proof. We again consider S(uk; t, x) = A(uk; t, x)L(uk; t, x), ss in the proof of Theo-
rem 8.

Let S̃(vk) be the set of all words w which have a k-embedding of v in the last
|v| letters of w and which also have at least one other earlier k-embedding of v in
the last 2|v| − 1 letters of w. Define S̃(vk; t, x) to be the weight-generating function
for S̃(vk). Note that S̃(vk) is non-empty since v is a p-overlapping word, so that
S̃(vk; t, x) 	= 0. With these definitions, we have that S(vk) = A(vk)L(vk) − S̃(vk),
giving that S(vk; t, x) = A(vk; t, x)L(vk; t, x)− S̃(vk; t, x).

Now, assume for the sake of contradiction that u ∼k v. Then A(uk; t, x) =
A(vk; t, x) and by Lemma 2, L(uk; t, x) = L(vk; t, x). This gives that

S(uk; t, x) = A(uk; t, x)L(uk; t, x)
= A(vk; t, x)L(vk; t, x)
	= A(vk; t, x)L(vk; t, x)− S̃(vk; t, x)
= S(vk; t, x).

3.4 δk-disjoint words and conjectures

Finally, we wish to provide an example of one more type of word which has some
interesting properties. In this section, because of the inadequacy of examples in
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which the words consist only of single-digit letters, we must use some words which
contains double-digit letters. To that end, we will write words with commas between
the letters, and in this way, we can differentiate between the letter one followed by
the letter three (1,3) and the letter thirteen (13).

Let u = u1, u2, . . . , um be a nonempty word in N
∗ and let δ ∈ N such that δ

divides |u| = m. Given i ∈ {1, 2, . . . , δ}, we define the sequence

Ui = (ui, uδ+i, u2δ+i, . . . , um−δ+i),

and we define the collection of sequences U1, U2, . . . , Uδ to be the δ-sequences of u.
Given k > 0, we say that uk is δk-disjoint if for all i, j ∈ {1, . . . , δ} with i 	= j

1. |x− y| ≤ k whenever x, y ∈ Ui, and

2. |x− y| > k whenever x ∈ Ui and y ∈ Uj.

To put this definition in terms of some of our embedding sets, suppose we create a
word vi of lengthm/δ by using each letter of Ui exactly once, and suppose we similarly
form a word vj using the letters of Uj . Then uk is δk-disjoint if L(vki ) ∩ L(vkj ) = ∅
for every i 	= j. As an example, consider the word u = 1, 6, 11, 2, 7, 12, 3, 8, 13. For
δ = 3, the δ-sequences of u are U1 = (1, 2, 3), U2 = (6, 7, 8), and U3 = (11, 12, 13),
and we also see that u2 is 32-disjoint. Similarly, if δ = 2 and v = 7, 1, 6, 2, 7, 3, then
our δ-sequences are V1 = (7, 6, 7) and V2 = (1, 2, 3); moreover, v2 and v3 are 22 and
23-disjoint, respectively.

Given a sequence X = (x1, x2, . . . , xm) and k ∈ {0, 1, . . . , m − 1}, we define the
k-shift of X to be the sequence X ′ = (x′1, x

′
2, . . . x

′
m) where xi = x′

i+k mod m
, that is,

X ′ is obtained by cycling all elements of X to the right by k spaces. For example,
the 3-shift of X = (1, 2, 3, 4, 5, 6, 7) is X ′ = (5, 6, 7, 1, 2, 3, 4). Let σ = σ1σ2 · · ·σδ ∈
{0, 1, 2, . . . , m

δ
−1}∗. We then define the σ-shift of u, σ(u), to be the word constructed

by replacing the letters of u corresponding to the δ-sequences U1, U2, . . . , Uδ with
those that correspond to U ′1, U

′
2, . . . , U

′
δ, where U

′
i is obtained from a σi-shift of Ui. As

an example, again consider the 32-disjoint word u = 1, 6, 11, 2, 7, 12, 3, 8, 13. Letting
σ = 102, we get that

U1 = (u1, u4, u7) = (1, 2, 3) �→ U ′1 = (u′1, u
′
4, u
′
7) = (u7, u1, u4) = (3, 1, 2),

and similarly, U ′2 = (6, 7, 8) and U ′3 = (12, 13, 11), so that

σ(u) = 3, 6, 12, 1, 7, 13, 2, 8, 11.

Using this notion of shifts in δ-disjoint words, and based on computational data, we
arrive at the following conjecture.

Conjecture 4. If u is a word with no repeated letters and k ≥ 0 such that uk is
δk-disjoint, then if τ and σ are shifts of u and τ is a rearrangement of the letters of
σ, then σ(u) ∼k τ(u).
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As an example, consider again the word u = 1, 6, 11, 2, 7, 12, 3, 8, 13, which we saw
above is 32-disjoint. Computational results show that if σ, τ ∈ {100, 010, 001}, then
σ(u) ∼2 τ(u). However, if σ ∈ {100, 010, 001} and τ ∈ {0, 1, 2}3 \ {100, 010, 001},
then σ(u) 	∼2 τ(u).

We also did a great deal of investigation into the behavior of δk-disjoint words
in which one δ-sequence contains repeated letters, and this leads us to the following
conjecture.

Conjecture 5. Suppose u is a word and k ≥ 0 such that uk is δk-disjoint. Further
suppose that Ui is the only δ-sequence of u that has repeated letters. Then, if τ and σ
are shifts of u and σ1σ2 · · ·σi−1σi+1 · · ·σδ is a rearrangement of τ1τ2 · · · τi−1τi+1 · · · τδ
and σi, τi are shifts such that Ui remains unchanged, then σ(u) ∼k τ(u).

Here, consider the word u = 1, 5, 11, 2, 7, 12, 1, 6, 13, 2, 8, 14, which is 32-disjoint.
In this case, our δ-sequences are U1 = (1, 2, 1, 2), U2 = (5, 7, 6, 8), and U3 =
(11, 12, 13, 14), so that if U1 is 2-shifted, then it is the same as leaving U1 unshifted.
Our conjecture then states, for example, that

210(u) ∼2 201(u) ∼2 010(u) ∼2 001(u),

a result which may be computationally verified.

4 Further work and acknowledgements

Finding the generating function for uA with more than one p-overlap remains an
open question for general sequences A, and the implicit inclusion/exclusion argu-
ments needed for such problems may show themselves to be messy to give explicit
combinatorial formulae. Even in the special case of k-embeddings, finding generating
functions and proving results on Wilf equivalence is difficult, and more firepower may
be necessary. These issues are the subject of future work, where variations of the i
Goulden-Jackson Cluster Method [1] will be employed.

Special thanks to Professor Mohamed Elgindi, to the NSF for their support of
our research, i and to Professor Jeff Liese for modifying his computer program from
[4], which allowed us to easily compute generating functions for interval embeddings.
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