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Abstract

In a 2011 paper by Beeler and Hoilman, the traditional game of peg
solitaire is generalized to graphs in the combinatorial sense. One of the
important open problems was to classify solvable trees. In this paper,
we give necessary and sufficient conditions for the solvability for all trees
with diameter four. We also give the maximum number of pegs that
can be left on such a graph under the restriction that we jump whenever
possible.

1 Introduction

Peg solitaire is a table game which traditionally begins with “pegs” in every space
except for one which is left empty (in other words, a “hole”). If in some row or
column two adjacent pegs are next to a hole (as in Figure 1), then the peg in x can
jump over the peg in y into the hole in z. In [2], peg solitaire is generalized to graphs.

A graph, G = (V,E), is a set of vertices, V , and a set of edges, E. If there are pegs
in vertices x and y and a hole in z, then we allow x to jump over y into z, provided
that xy, yz ∈ E. Such a jump will be denoted x·−→y ·z. For all undefined graph theory
terminology, refer to Chartrand [8].

A graph G is solvable if there exists some vertex s so that, starting with a hole in
s, there exists an associated terminal state consisting of a single peg. A graph G is
freely solvable if for all vertices s so that, starting with a hole in s, there exists an
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Figure 1: A Typical Jump in Peg Solitaire, x·−→y ·z
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associated terminal state consisting of a single peg. A graph G is k-solvable if there
exists some vertex s so that, starting with a hole in s, there exists an associated
minimum terminal state consisting of k nonadjacent pegs [2]. For more information
on traditional peg solitaire, refer to [1, 7]. For a variation of peg solitaire that allows
an additional move, refer to [9].

In [2, 3], the solvability of several families of graphs was determined. One of the
more important open problems in [2] was to classify the solvability of trees. In this
paper, we consider trees of a fixed diameter, in other words, the maximum distance
between any two vertices. We note that the only tree of diameter one is the path
on two vertices, which is trivially freely solvable. The trees of diameter two are
precisely the stars with n arms, denoted K1,n. These graphs are (n− 1)-solvable [2].
The trees of diameter three are precisely the double stars. A double star consists
of two adjacent vertices x and y1. The vertex x (y1) is adjacent to c (a1) pendant
vertices, where c ≥ a1 ≥ 1. The double star with parameters c and a1 is denoted
K1,1(c; a1). The solvability of double stars is given below.

Proposition 1.1 [3] The double star K1,1(c; a1) is freely solvable if and only if c = a1
and a1 �= 1; K1,1(c; a1) is solvable if and only if c ≤ a1 + 1; K1,1(c; a1) is (c − a1)-
solvable in all other cases.

We are motivated by the above comments to determine the solvability of all trees
of diameter four. Any tree of diameter four can be obtained by appending pendant
vertices to the existing vertices of K1,n. Label the center of the star as x and its arms
as y1, . . . , yn. Suppose that we append c pendant vertices to x, namely x1, . . . , xc and
ai pendant vertices to yi, namely yi,1, . . . , yi,ai for i = 1, . . . , n. Note that for i �= j
and for any � and m, the vertices yi,�, yi, x, yj , and yj,m induce a path of length four.
Thus, this construction gives all trees of diameter four. The resulting graph will be
denoted K1,n(c; a1, . . . , an). An example is shown in Figure 2.

For convenience of notation, we will denote the sets of vertices X = {x1, . . . , xc} and
Yi = {yi,1, . . . , yi,ai} for i = 1, . . . , n. The set of support vertices {y1, . . . , yn} will be
denoted N . The combination of a support vertex and a single pendant will be called
a leg. Without loss of generality, assume that a1 ≥ · · · ≥ an ≥ 1. This ensures that
each tree of diameter four has a unique parametrization under this notation.

To aid in our constructions, it is useful to define the dual of a configuration. The
dual of a peg configuration T , denoted T ′, is the state resulting from reversing the
roles of pegs and holes [5]. The relationship between the dual of a configuration and
whether it is a valid terminal state is given below.

Proposition 1.2 [2, 5] Suppose that S is a starting state of G with associated ter-
minal state T . Let S ′ and T ′ be the duals of S and T , respectively. It follows that T ′

is a starting state of G with associated terminal state S ′.
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Figure 2: The graph K1,3(4; 3, 2, 2)

2 Packages and purges

In an effort to streamline our main result, terminology from [7] will be introduced.
A package is a collection of vertices which satisfy a specific configuration of pegs and
holes such that a sequence of jumps will preserve the locations of certain pegs and
holes and remove the remaining pegs. When a package is used to remove pegs, it
is called a purge. The pegs and holes which are restored to their original locations
are called the catalyst. We will define five useful packages along with the associated
purges. Additional packages and purges on graphs were discussed in [6].

The wishbone package consists ofK1,2(1; 1, 1) with the hole in x. The wishbone purge
is y2,1·−→y2 ·x, x1·−→x ·y2, y1,1·−→y1 ·x, and y2·−→x ·x1. The wishbone purge removes two legs,
while the catalyst is x (hole) and x1 (peg).

The trident package consists of K1,3(1; 1, 1, 1) with the hole in x and pegs elsewhere.
The trident purge is y3,1·−→y3 ·x, x1·−→x ·y3, y2,1·−→y2 ·x, y3·−→x ·y2, y1,1·−→y1 ·x, and y2·−→x ·x1.
This purge removes three legs, while the catalyst is x (hole) and x1 (peg).

The spider(N) package consists of a K1,3(2; 1, 1, 1) with the hole in y1 and pegs
elsewhere. The spider(N) purge is x1·−→x ·y1, y1,1·−→y1 ·x, x2·−→x ·y1, y2,1·−→y2 ·x, x·−→y1 ·y1,1,
and y3,1·−→y3 ·x. Note that the spider(N) purge removes two pegs from X and two legs,
while y1 (hole), x (peg) and y1,1 (peg) are the catalyst.

The spider(x) package has the hole in x. The associated purge is y1,1·−→y1 ·x, x1·−→x ·y1,
y2,1·−→y2 ·x, x·−→y1 ·y1,1, y3,1·−→y3 ·x, and x2·−→x ·y1. The spider(x) purge removes two pegs
from X and two legs, while x (hole), y1 (peg), and y1,1 (peg) are the catalyst.

The double star package will consist of a K1,1(d; d) with a hole in x. The associated
purge to remove d pendants from each side of the double star is accomplished with the
moves y1,i·−→y1 ·x and xi·−→x ·y1 for i = 1, . . . , d [3]. This purge is denoted DS(Y1, X, d).
The catalyst is x (hole) and y1 (peg).

Illustrations of the graphs used for the wishbone, trident, and spider purges are given
in Figure 3. For each graph, the catalyst is placed in a box. The hollow vertex in
the box represents the initial hole for the purges.
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Figure 3: The graphs for the wishbone, trident, and spider(N), and spider(x) purges

3 The solvability of trees of diameter four

With the previous section in mind, we now proceed with our main result. Namely, we
provide necessary and sufficient conditions for the solvability of all trees of diameter
four. The strategy for solving K1,n(c; a1, . . . , an) will be to begin by performing
double star purges. Therefore, we introduce a new parameter, k = c− s+ n, where
s =

∑n
i=1 ai. This gives the number of pegs remaining in X after ai − 1 pegs have

been removed from Yi for i = 1, . . . , n using double star purges. We begin with the
case where a1 ≥ 2.

Theorem 3.1 The conditions for solvability of K1,n(c; a1, . . . , an) where a1 ≥ 2 are
as follows:

(i) The graph K1,n(c; a1, . . . , an) is solvable if and only if 0 ≤ k ≤ n+ 1.

(ii) The graph K1,n(c; a1, . . . , an) is freely solvable if and only if 1 ≤ k ≤ n.

(iii) The graph K1,n(c; a1, . . . , an) is (1 − k)-solvable if k ≤ −1. The graph
K1,n(c; a1, . . . , an) is (k − n)-solvable if k ≥ n+ 2.

Proof. We begin by showing that k ≥ 0 is necessary for solvability. If k < 0, then
c− s + n < 0. It is necessary to remove all pegs in Yi for i = 1, . . . , n. To remove a
peg from a fixed (but arbitrary) Yi, there must first be a peg in yi. The only moves
that accomplish this are xp·−→x ·yi and yj·−→x ·yi for 1 ≤ p ≤ c and j �= i. Therefore,
the double star purges DS(Yi, X, d) and DS(Yi, N, d) are necessary to remove pegs
in Yi. Notice this is analogous to K1,1(s;n+ c), but s ≥ n + c + 1. As shown in [3],
in order to optimally solve K1,1(s;n + c), the initial hole must be in yi. However,
all of the elements of N are in the other side of the double star. Thus this is not
solvable. Since the double star purges are necessary and the initial hole is in N , at
least s−n− c pegs will remain in ∪n

i=1Yi after the double star purges [2]. Also, there
was a peg in x at the beginning of the game and there will be a peg in x when the
last move of the final double star purge is made. Therefore, this peg must be added
as well, meaning there will be at least s − n − c + 1 = 1 − k, pegs remaining when
k < 0. Thus, when k < 0 the graph is at best (1− k)-solvable. This establishes the
lower bound on the necessary condition in (i) and the first part of (iii).
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Now, we show that k ≤ n+1 is necessary for solvability. If k ≥ n+2, then s ≤ c−2.
Similar to above, DS(X, Yi, d) is the only way to remove pegs from X . Thus, we
leave at least c − s = k − n pegs when k ≥ n + 2. Hence the graph is at best
(k − n)-solvable. This establishes the upper bound on the necessary condition in (i)
and the second part of (iii).

To show sufficiency for (i), we give an algorithm to solve K1,n(c; a1, . . . , an) for 0 ≤
k ≤ n + 1. Begin with the hole in x and perform DS(Yn−i+1, X, an−i+1 − 1) for
i = 1, . . . , n. Without loss of generality, the last peg in Yi is in yi,1. We now have k
pegs remaining in X.

If k = 0 and n = 2, then begin by performing one less double star purge such that
the “extra pegs” are in y1,2 and xc. Now move y2,1·−→y2 ·x, xc·−→x ·y2, y1,2·−→y1 ·x, y2·−→x ·y1,
and y1,1·−→y1 ·x to solve with the final peg in x. If k = 0 and n ≥ 3, then eliminate the
remaining legs by using a combination of wishbone and trident purges with x and y1
as the catalyst. Finally, move y1,1·−→y1 ·x to solve. It will later be shown that the case
where k = 0 is not freely solvable.

If k = 1 and n = 2 or n = 3, then the double star purges will remove pegs from
all pendants except for x1, y1,1, y2,1, and (in the case where n = 3) y3,1. Ignoring
all pendants with the exception of y1,2 and those listed, the resulting subgraph is
K1,2(1; 2, 1) or K1,3(1; 2, 1, 1), respectively. In either case, the configuration has holes
in x and y1,2 and pegs elsewhere. If n ≥ 4, then we can use wishbone and trident
purges to remove additional pendants and their supports. Ignoring the purged pen-
dants and supports, the resulting graph is isomorphic to K1,2(1; 2, 1) with holes in
x and y1,2. It can be checked using [4] that both configurations can be solved with
the final peg located in any vertex. If our target vertex is in one of the vertices from
K1,2(1; 2, 1) or K1,3(1; 2, 1, 1), then we can also solve the graph with a hole in that
vertex. Otherwise, we simply relabel the target vertex to match one of the vertices
of K1,2(1; 2, 1) or K1,3(1; 2, 1, 1). For example, if we wanted our final peg in yi,j for
i �= 1, 2, then we instead label yi,j as y2,1 and proceed with the above method. Ergo,
K1,n(c; a1, . . . , an) is freely solvable when k = 1 by Proposition 1.2.

If 2 ≤ k ≤ n− 1 and k is odd, then perform the double star purges as above. Next,
perform the spider(x) purge k−1

2
times using x, y1, and y1,1 as the catalyst. The graph

has been reduced to the case of k = 1 with holes in x and y1,2. As shown above,
the final peg can now be located anywhere. Hence, the graph is freely solvable by
Proposition 1.2. If k is even, then begin the game with the initial hole in y1, and
make the move xc·−→x ·y1. Ignoring xc reduces this to the case when k is odd, with
the initial hole in x. Thus K1,n(c; a1, . . . , an) is freely solvable when 2 ≤ k ≤ n− 1.

If k = n, then instead begin with the initial hole in y1. Move xc·−→x ·y1 and ignore
xc. This reduces to the case of k = n− 1 with the initial hole in x, which can have
the final peg in any location. Thus K1,n(c; a1, . . . , an) is freely solvable when k = n.
Note that this means that we have established the sufficient conditions for (ii) as
well.

If k = n+1, then instead begin with the initial hole in y1 and move xc·−→x ·y1. Ignoring
the hole in xc, this reduces this to the case when k = n and the initial hole is in x,
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which we know to be solvable. Next, we will show that the case where k = n + 1 is
not freely solvable.

Throughout the proof, it has been shown that the conditions given for K1,n(c; a1, . . . ,
an) to be freely solvable are sufficient. We now show that the conditions given in (ii)
are necessary. For K1,n(c; a1, . . . , an) and k = 0, consider K1,2(1; 2, 1), which is not
solvable if the initial hole is in X or N . If k = n + 1, consider K1,2(4; 2, 1), which
is not solvable if the initial hole is in x or in any Yi. These can be verified using an
exhaustive computer search [4]. We will now show that any K1,n(c; a1, . . . , an) where
a1 ≥ 2 and k = 0 or k = n+ 1 reduces to K1,2(1; 2, 1) or K1,2(4; 2, 1), respectively.

Note that when a double star purge is performed, we can ignore the empty pendants.
This results in a reduced graph that has the same value of k as the original graph. So,
we can append one “extra” vertex toX and one “extra” vertex to one Yi and k will not
change. Also, DS(Yi, X, 1) will remove the recently added pegs. Ignoring these now
empty vertices will result in the original K1,n(c; a1, . . . , an). The double star purges
are necessary, as shown earlier. Thus as many as desired of these “extra” vertices
can be added in pairs and the new tree will reduce to the original. Similarly, we
can append the set of vertices {xc+1, yn+1, yn+1,1, yn+1,2} without changing the value
of k. Further, yn+1,1· −→

yn+1·x, xc·−→x ·yn+1, yn+1,2· −→
yn+1·x, and xc+1·−→x ·xc will remove the

newly added vertices. This sequence of moves is analogous to a double star purge,
which we have argued is necessary. By using combinations of these two “addition”
methods, any diameter four tree with k = 0 or k = n + 1 can be constructed from
K1,2(1; 2, 1) and K1,2(4; 2, 1), respectively. Therefore, all such trees must reduce (via
purges) to either K1,2(1; 2, 1) or K1,2(4; 2, 1), both of which are not freely solvable.
Hence, the conditions given in (ii) are necessary for a graph to be freely solvable.

If the above algorithm is used on a diameter four tree with k ≥ n + 2, then the
remaining k−n pegs will be in X . In particular, if k = n+2, then this results in two
pegs that are distance 2 apart. This gives the second part of the sufficient condition
in (iii).

We now show that the first part of (iii) is sufficient. In this case, k ≤ −1 and a
different technique is required. Again, we begin with the hole in x and use the double
star purges as above until there are no pegs remaining in X. Now there are s − c
pegs left in the Yi and n pegs remaining in the support vertices. We remove the
remaining support vertices using a combination of wishbone and trident purges with
x and y1 as the catalyst. This removes an additional 2n − 2 pegs. After the final
move of y1,1·−→y1 ·x, there are s− c+n−1− (2n−2) = 1−k pegs remaining. Further,
we have −k pegs in Yi and one peg in x. In particular, if k = −1, then we have two
pegs that are distance 2 apart.

We now deal with the case when all of the ai = 1. We note that in this case,
k = c ≥ 0. For this reason, we give our conditions in terms of c.

Theorem 3.2 The conditions for solvability of K1,n(c; 1, . . . , 1) are as follows:

(i) The graph K1,2t(c; 1, . . . , 1) is solvable if and only if 0 ≤ c ≤ 2t and (t, c) �=
(1, 0). The graph K1,2t+1(c; 1, . . . , 1) is solvable if and only if 0 ≤ c ≤ 2t+ 2.
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(ii) The graph K1,n(c; 1, . . . , 1) is freely solvable if and only if 1 ≤ c ≤ n− 1.

(iii) The graph K1,2t(c; 1, . . . , 1) is (c − 2t + 1)-solvable if c ≥ 2t + 1. The graph
K1,2t+1(c; 1, . . . , 1) is (c− 2t− 1)-solvable if c ≥ 2t+ 3.

Proof. Using the argument from Theorem 3.1, K1,n(c; 1, . . . , 1) is at best (c − n)-
solvable when c ≥ n + 2. If n = 2 and c = 0, then the graph is the path on five
vertices, which is not solvable [2]. This establishes part of the necessary conditions
in (i). Additional necessary conditions will be discussed later.

If c = 0 and n ≥ 3, then begin with the initial hole in x. Remove n− 1 legs using a
combination of wishbone and trident purges, as in Theorem 3.1. Finally, use y1,1·−→y1 ·x
to solve the graph.

If 1 ≤ c ≤ n − 1 and c is odd, then start with the initial hole in x. Perform
c−1
2

spider(x) purges, then use wishbone and trident purges to reduce the graph to
K1,2(1; 1, 1) or K1,3(1; 1, 1, 1) with the hole in x. It can be checked using [4] that
K1,2(1; 1, 1) and K1,3(1; 1, 1, 1) with the hole in x can have the final peg located
anywhere except x. Thus, K1,n(c; 1, . . . , 1) is freely solvable when 1 ≤ c ≤ n− 1 and
c is odd by Proposition 1.2.

If 1 ≤ c ≤ n − 1 and c is even, then start with the initial hole in y1 and make the
move xc·−→x ·y1. Ignoring xc reduces this to the case when c is odd with the initial
hole in x. We have shown this case can have the final peg anywhere except x. If
the initial hole is in x, then use spider(x) purges to reduce to the case where c = 0.
Therefore, K1,n(c; 1, . . . , 1) is freely solvable when 1 ≤ c ≤ n− 1 and c is even. This
paragraph and the preceding one establishes the sufficient condition in (ii) and part
of the sufficient conditions for (i).

If c = n, then let the initial hole be in y1 and use the spider(N) purge
⌈
c
2

⌉− 1 times.
Ignoring the vertices cleared by the spider(N) purges reduces this to K1,1(1; 1) or
K1,2(2; 1, 1), depending on whether n is odd or even, respectively. Note that both
K1,1(1; 1) and K1,2(2; 1, 1) have the hole in y1. For K1,1(1; 1), move x1·−→x ·y1 and
y1,1·−→y1 ·x to solve. For K1,2(2; 1, 1), move y2·−→x ·y1, y1,1·−→y1 ·x, x2·−→x ·y2, y2,1·−→y2 ·x, and
x1·−→x ·y1 to solve.

If c = n + 1 and n is odd, then start with the initial hole in y1 and perform the
spider(N) purge n−1

2
times. This reduces to K1,1(2; 1) with the hole in y1, which is

a solvable double star with the final peg in y1. However, when n is even, spider(N)
purges will reduce the graph to K1,2(3; 1, 1), which is not solvable. We will show
that K1,2t(2t + 1; 1, . . . , 1) will reduce to K1,2(3; 1, 1) because spider(N) purges are
necessary. Begin with the initial hole in y1. If we make the initial jump y2·−→x ·y1,
then y1,1·−→y1 ·x is forced. This is essentially K1,2t−1(2t+ 1; 1, . . . , 1) with a hole in y1,
which is unsolvable. Thus, up to automorphism, the first two moves are x1·−→x ·y1
followed by y1,1·−→y1 ·x. As before, the move y2·−→x ·y1 will lead to an unsolvable graph.
Therefore, x2·−→x ·y1 and y2,1·−→y2 ·x are forced. Again, y1·−→x ·y2 will lead to an unsolvable
graph. Thus x·−→y1 ·y1,1 and y3,1·−→y3 ·x are forced. This concludes the exact moves of
the spider(N) purge. Since the spider purges are necessary, if the initial hole is not
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in y1, then the graph will reduce to a case that is not solvable by a similar argument.
This completes the proof of (i).

It has been shown that the conditions provided for K1,2t(c; 1, . . . , 1) and K1,2t+1(c; 1,
. . . , 1) to be freely solvable are sufficient. To complete the proof of (ii) we show that
these conditions are necessary. For K1,n(c; 1, . . . , 1) with c = 0, assume the initial
hole is in y1. Up to automorphism, the moves y2·−→x ·y1 and y1,1·−→y1 ·x are forced, which
clears the first leg. Therefore, the legs must be removed one at a time until the path
on five vertices remains, which is not solvable [2].

If n = 2t and c = n, then we have shown that spider(N) or spider(x) purges are
necessary. Hence, up to automorphism, the initial hole must be in y1, x, or X to be
solvable. If n = 2t+1 and c = n+1, then spider(N) purges are necessary. Therefore,
up to automorphism on the vertices, the initial hole must be in y1 or X.

Consider K1,2t+1(c; 1, . . . , 1), where c ≥ 2t+ 3. If the hole is in y1, then t spider(N)
purges reduce the graph to K1,1(c − 2t; 1) with the hole in y1. After the moves
xc−2t·−→x ·y1, y1,1·−→y1 ·x, and xc−2t−1·−→x ·y1, there are c− 2t− 2 pegs in X and 1 peg in
y1. In particular, if c = 2t + 3, then the remaining two pegs are distance 2 apart.
This shows that second part of (iii) is sufficient.

Similarly, for K1,2t(c; 1, . . . , 1), where c ≥ 2t + 1, the t − 1 spider(N) purges will
reduce the graph to K1,2(c− 2t + 2; 1, 1) with a hole in y1. After making the jumps
xc−2t+2·−→x ·y1, y2,1·−→y2 ·x, xc−2t+1·−→x ·y2, y1,1·−→y1 ·x, and y2·−→x ·xc−2t+1, there are c−2t+1
pegs in X. In particular, if c = 2t+ 1, then the final two pegs are distance 2 apart.
This shows that first part of (iii) is sufficient.

These results imply a more general theorem. This theorem was confirmed for all
trees with twelve vertices or less using an exhaustive computer search [4].

Theorem 3.3 Let T be a tree with maximum degree Δ(T ), n(T ) vertices, and c
pendants adjacent to the vertex of maximum degree. If Δ(T ) ≥ n(T )− c+1, then T
is not solvable.

Proof. As shown in [2, 3], the above bound holds for trees of diameter three or less.
Hence, we may assume that T is a tree with a diameter of at least four. Choose x
to be a vertex of maximum degree. Denote the set of pendants adjacent to x as X
such that |X| = c. In order for T to be solvable, every peg must be removed from X.
Recall that for trees of diameter four, a peg in X can only be removed using a peg
in one of the Yi, which is distance three away from X. For a tree of larger diameter,
the Yi position may be filled by another peg that is greater than distance three away
from X. Doing so removes additional pegs that are also greater than distance three
away from X and eventually reduces to a diameter four tree. Therefore, the upper
bound for solvability of diameter four trees, k ≤ n+1 can be used to determine when
T is not solvable. Note that this is equivalent to c ≤ s+ 1.

In a tree of diameter four, there are s + n vertices remaining when x and X are
excluded. In the general case, there are n(T )− c− 1 vertices remaining. Since T is
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being treated as a diameter four tree, s + n = n(T ) − c − 1. The upper bound for
diameter four trees can be now be manipulated to become s + 1 = n(T ) − c − n.
Since n = Δ(T )−c, s+1 = n(T )−Δ(T ). Hence, if c > s+1, then c > n(T )−Δ(T ).
Therefore, Δ(T ) ≥ n(T )− c+ 1 implies that T is not solvable.

Notice that there are solvable trees with Δ(T ) = n(T ) − c. An infinite class of
examples are double stars of the form K1,1(c + 1; c). Therefore, the above bound is
sharp.

4 Fool’s solitaire

Fool’s solitaire is a variation of peg solitaire where the goal is to have the maximum
number of pegs possible remaining at the end of the game under the caveat that the
player jumps whenever possible. The fool’s solitaire number of a graph G, denoted
Fs(G), is the cardinality of the largest terminal state T that is associated with a
starting state consisting of a single hole. A terminal state T is a fool’s solitaire
solution if the cardinality of T is equal to Fs(G) [5]. If G is a connected graph,
then a sharp upper bound for the fool’s solitaire number is Fs(G) ≤ α(G), where
α(G) denotes the independence number of G. The fool’s solitaire number for stars is
Fs(K1,n) = n [5] and double stars is Fs(K1,1(c; a1)) = c + a1 [3]. Additional results
about fool’s solitaire were given in [10].

In [5], it is conjectured that if G is a connected graph, then Fs(G) ≥ α(G)−1. How-
ever, it can be checked using [4] that K1,3(0; 2, 2, 2) violates this conjecture, because
Fs(K1,3(0; 2, 2, 2)) = 5 = α(K1,3(0; 2, 2, 2)) − 2. This example is far from unique.
In fact, the diameter four trees provide an infinite class of counterexamples to the
above conjecture. For this reason, we are motivated to find Fs(K1,n(c; a1, . . . , an)).

We begin with some observations about the maximum independent set A for G =
K1,n(c; a1, . . . , an). First note that A will contain each of the Yi where ai ≥ 2. If
c = 0, then x ∈ A. If c = 1, then either x or x1 will be in A. In this case, we choose
that x1 ∈ A for the purpose of the fool’s solitaire problem. If c ≥ 2, then X ⊂ A. If
ai = 1 and c = 0, then yi,1 ∈ A, but yi /∈ A. However, if ai = 1 and c ≥ 1, then we
have a choice whether to include yi,1 or yi into A. In any case, α(G) = s+c+1 when
c = 0 and α(G) = s+ c when c ≥ 1. These cases will be instrumental in proving the
following theorem.

Theorem 4.1 Consider the diameter four tree G = K1,n(c; a1, . . . , an), where ai ≥ 2
for 1 ≤ i ≤ n− �, ai = 1 for n− � + 1 ≤ i ≤ n, and n ≥ 2.

(i) If c = 0 and � = 0, then Fs(G) = s+ c− ⌊
n
3

⌋
.

(ii) If c ≥ 1 and � = 0, then Fs(G) = s + c− ⌊
n+1
3

⌋
.

(iii) If � ≥ 1, then Fs(G) = s+ c− ⌊
n−2m+1

3

⌋
, where m = min{�, ⌊n

2

⌋}.
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Proof. (i) First, consider the case where c = 0 and � = 0. As noted above, the
maximum independent set is T = Y1 ∪ · · · ∪ Yn ∪ {x}. The dual of this configuration
is T ′ = {y1, . . . , yn}. This has n ≥ 2 pegs, none of which are adjacent. Hence, we
can not obtain the upper bound of α(G) = s+ c+ 1 pegs. Thus some pegs must be
removed from the maximum independent set to obtain the fool’s solitaire solution.
Equivalently, some pegs must be added to the dual of the maximum independent set
in order to obtain a solvable configuration. We will determine the minimum number
of pegs that need to be added to the dual.

Up to automorphism, there are two places where we can add a peg to the dual,
namely to x or to one of the Yi. If we add a peg to x, then we can remove one
peg from N with the move x·−→y1 ·y1,1. Hence this will not solve the dual. Adding an
additional peg to Y2 will remove an additional three pegs from N using the moves
y2,1·−→y2 ·x, y3·−→x ·y1, y1,1·−→y1 ·x, and x·−→y4 ·y4,1. However, if a peg is added to Y1 rather
than x, then we can remove two pegs using the moves y1,1·−→y1 ·x and x·−→y2 ·y2,1. Adding
an additional peg to Y3 will remove an additional three pegs using a similar sequence
as above. Thus, it is more efficient to add a peg to one of the Yi than it is to add
a peg to x. Similarly, adding two or more pegs to a single Yi is not advantageous,
as this would deny us to ability to jump its corresponding support vertex. Further,
considering an alternate independent set that includes yi would result in a dual that
includes the vertices in Yi. Hence, this is not advantageous for the same reasons as
above.

Thus, if n = 3t + r, where t, r ∈ Z and 0 ≤ r ≤ 2, then we must add at least t + 1
pegs to the dual. Equivalently, the fool’s solitaire number is at most s+ c− t, where
t =

⌊
n
3

⌋
. To show equality, it is sufficient to provide the dual of the fool’s solitaire

solution and the sequence of moves that will reduce this to a single peg. We claim that
T ′ = {y1, . . . , yn, y1,1, y3i,1 : i ≤ t}. Begin with the moves y1,1·−→y1 ·x and x·−→y2 ·y2,1. For
i = 1, . . . , t− 1, make the sequence of jumps y3i,1·−→y3i·x, y3i+1·−→x ·y3i−1, y3i−1,1· −→

y3i−1·x,
and x· −→

y3i+2·y3i+2,1. If r = 0, then we replace x· −→
y3t−1·y3t−1,1 with y3t−1·−→x ·y3t−2 and

make the additional jumps y3t,1·−→y3t·x and y3t−2·−→x ·y3t. If r = 1, then we make the
additional jumps y3t,1·−→y3t·x, y3t+1·−→x ·y3t−1, and y3t−1,1· −→

y3t−1·x. If r = 2, then we make
the additional jumps y3t,1·−→y3t·x, y3t+1·−→x ·y3t−1, y3t−1,1· −→

y3t−1·x, and x· −→
y3t+2·y3t+2,1. Thus

Fs(G) = s+ c− t, where t =
⌊
n
3

⌋
and c = 0.

(ii) By a similar argument, if c ≥ 1 and � = 0, then T ′ = {y1, . . . , yn, x, y3i−1,1 : i ≤ t}.
If n ≡ 2 (mod 3), then we also include yn,1. In any case, we begin by making the
jump x·−→y1 ·y1,1. The current configuration of pegs is the same as in the previous case
after the first two moves had been made. It follows that Fs(K1,n(c; a1, . . . , an)) =
s + c− ⌊

n+1
3

⌋
, where c ≥ 1.

(iii) We now consider the case where � ≥ 1. If c = 0, then the maximum independent
set is Y1 ∪ · · · ∪ Yn ∪ {x}. As before, the dual of this configuration has no adjacent
pegs. Hence, it is necessary to add at least one peg to the dual. We claim that
adding x to the dual is the best choice. The reason is that we want to replace yi
with yi,1 in the dual for all i ≥ m = min{�, 	n

2

}. If x is in the fool’s solitaire

solution, then this is not possible because the fool’s solitaire solution must be an
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independent set. Further, this will allow us to “exchange” pegs in Yi with pegs in
N , where i ≥ n−m. Since x will be in the dual of our fool’s solitaire solution, the
method described here will also work when c ≥ 1. Thus in both cases we claim that
T ′ = {y1, . . . , yn−m, yn−m+1,1, . . . , yn,1, x, ym+3i−1,1 : i = 1, . . . , 	n−2m

3

}. If n−2m > 0

and n− 2m ≡ 2 (mod 3), then we also include yn−m,1 in the dual. We remove pegs
from the dual using the moves yi·−→x ·yn−m+i and yn−m+i,1· −→

yn−m+i·x for i = 1, . . . , m.
Note that this is the same as the initial configuration in the case where c ≥ 1 and
� = 0. Thus, Fs(G) = s+ c− 	n−2m+1

3

.

We note that for trees of diameter four, the difference between α(G) and Fs(G)
can be arbitrarily large. However, Fs(G) > 5α(G)/6 for all such trees. This is
obtained by considering the ratio Fs(G)/α(G), where G = K1,n(0; 2, . . . , 2) and n
is sufficiently large. To what extent this bound holds for all connected graphs is
unknown.

5 Open Problems

We end our discussion by giving several open problems.
(i) What are the conditions for the solvability of trees with diameter five?
(ii) Can Theorem 3.3 be generalized to describe all graphs?
(iii) Which graphs have Fs(G) < α(G)− 1?
(iv) Is there a nontrivial lower bound for Fs(G)?
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