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Abstract

A set S of vertices in a graph G is a resolving set if for every pair of
vertices u, v ∈ V (G) there is a vertex x ∈ S such that the distances
d(x, v) 6= d(x, u). We define a new parameter res(G), the size of the
smallest subset S of V (G) that is not a resolving set but every superset
of S resolves G. We also demonstrate that for every triple (a, b, c), a ≤
(b + 1) ≤ c, there is a graph G in which a is the metric dimension of G,
b = res(G), and c is the resolving number.

1 Introduction

Throughout this paper we will consider all graphs to be simple, undirected, and
connected unless otherwise noted. For a graph G we denote its set of vertices by
V (G). The distance between two vertices u, v ∈ V (G) is the length of the shortest
path between them, denoted d(u, v). The order of a graph |V (G)| is shortened to
n(G). The complement of a set S is denoted S̄. Given a set S ⊆ V (G) and vertex
u ∈ S̄, the set S ∪ {u} is shortened to Su. We will also use standard notation
from [14].

Recently the resolving number has been a topic of interest ([4], [5]). This extremal
parameter can be compared to the extremal number of a graph G, introduced by
Mantel [9] and again by Turán [13]. A graph H is G-saturated if it contains no
subgraph isomorphic to G but the addition of any edge to H results in such a
subgraph. The extremal number of G is the least number of edges on a fixed number
of vertices that ensures a subgraph isomorphic to G . Therefore, we can think of the
extremal number as one greater than the largest G-saturated graph. Subsequently,
Erdős, Hajnal, and Moon [3] defined the saturation number of a graph to be the
size of the smallest G-saturated graph on a particular set of vertices. We extend the
comparison with the following definition.
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On a path graph the distance of a vertex v to one specific endpoint u uniquely
determines v. However, it is not the case in general that distance from single vertex
is sufficient to locate a vertex, and often multiple vertices are necessary. Although
introduced in [10] and [7], we use the following definitions from [2].

Definition 1.1. Given a graph G, a subset of vertices W = {w1, w2, . . . , wk}, and
a vertex u, the distance vector is r(u|W ) = (d(u,w1), d(u,w2), . . . , d(u,wk)). If
r(ui|W ) is unique for all ui in a set U , then the set W resolves the set U . The set
W is a resolving set for, and resolves, the graph G if W resolves V (G).

They further define a metric basis (respectively upper basis) as a smallest (largest)
minimal resolving set for G, with cardinality called metric dimension (upper dimen-
sion) and denoted dim(G) (dim+(G)). Beyond these two extremal parameters, a
third has been studied.

Definition 1.2. The resolving number res(G) of a connected graph G is the smallest
integer k such that every subset S ⊆ V (G) of size k is a resolving set for G.

As an example, the path graph Pn of order n > 3 has upper dimension and
resolving number 2, and the family of path graphs comprises all graphs with metric
dimension 1 ([10]).

Definition 1.3. A set S ⊆ V (G) that does not resolve G is a nearly resolving set if
Su resolves G for every vertex u ∈ S̄. The size of a smallest nearly resolving set is
the nearly resolving number, denoted res(G).

Other work on extremal properties of resolving sets can be found in [6], in which
the authors determine the maximum order of a graph with fixed metric dimension
and diameter. We end this section with some obvious bounds on the nearly resolving
number.

Remark 1. If G is a connected graph, then dim(G) ≤ (res(G) + 1) ≤ res(G).

Proof. If res(G) = k, then there is a resolving set S of G of size k+ 1. Since dim(G)
is the smallest resolving set of G, dim(G) ≤ k+1. Similarly, since every set of res(G)
vertices is a resolving set, k must be strictly smaller than res(G).

We outline some properties of nearly resolving sets and calculate some values in
Section 2. As a particular case, grid graphs are addressed in Section 3. Finally,
a realizable triple is established in Section 4 and the nearly resolving number is
compared to the upper dimension.

2 Properties of nearly resolving sets

2.1 Relation to the resolving number

Garijo, Gonzalez, and Márquez ([4]) prove that no integer a ≥ 4 is realizable as the
resolving number of an infinite family of graphs. Their argument uses the order and
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diameter of graphs with a resolving number a. We begin this section by addressing
whether this holds for all nearly resolving sets.

Theorem 2.1. For any integer a ≥ 1 there is an infinite family of graphs G with
res(G) = a for all G ∈ G.

Proof. Let Br(x, y), x > 1, y > 0 be the broom graph of length x with y bristles.
That is, Br(x, y) consists of a path {v1, . . . , vx} with v1 adjacent to the vertices
{u1, . . . , uy}. Given a ≥ 1, we claim that res(Br(x, a)) = a for all x > 1.

First, note that when y = 1 the result is simply an infinite family of paths, each
with nearly resolving number 1. This is clear since any vertex that is not an endpoint
fails to resolve its neighbors, but any pair of vertices resolves the path. When y > 1
the set S = {ui}a−1i=1 ∪ {v1}, representing all bristles but one along with their shared
neighbor, does not resolve the set {v0, v2} and is therefore not a resolving set of
G. However, all other pairs of vertices are resolved by S. Consider the sets Sw for
any w ∈ {v0, v2, . . . , vx}. Regardless of the choice of w, the set Sw resolves the set
{v0, v2}, and therefore Sw is a resolving set of G. So, S nearly resolves G. Note that
any resolving set of the graph must include at least (a−1) bristles, and if it does not
include all a of them, then it must also include at least one vertex from {v2, . . . , vx}.
Therefore, any set smaller than S has a proper superset that is not a resolving set.
Hence S is a smallest nearly resolving set for the graph.

Since |S| = a and x is arbitrary, we have found an infinite family of graphs with
nearly resolving number a.

Since one less than the resolving number of a graph G indicates the largest set of
vertices that is not a resolving set of G, and is therefore the largest nearly resolving
set, it is natural to consider graphs for which res(G) = res(G) − 1. The randomly
k-dimensional graphs, those graphs for which dim(G) = res(G) = k for some integer
k, also have this property, (see [8] for more on these graphs). This is because any
graph G with res(G) < res(G) − 1 contains a set of vertices S of size res(G) such
that any superset Sv resolves G. Since |Sv| = res(G) + 1, we cannot have res(G) <
dim(G) − 1 = res(G) − 1. So, all randomly k-dimensional graphs have resolving
number precisely one greater than their nearly resolving number. In [4] this family
was shown to consist entirely of the complete graphs Kn and odd cycles C2k+1.

There are, in fact, graphs that are not randomly k-dimensional with equal resolv-
ing number and nearly resolving number. This family include even cycles, which have
metric dimension 2 but resolving number 3. In order to determine more members of
this family of graphs, we require a theorem regarding blocks and cut vertices.

Definition 2.2. A vertex v in a connected graph G is a cut vertex if its removal
results in at least two connected components. A graph is biconnected if it contains
no cut vertex, and a block in G is a maximal biconnected subgraph of G.

Theorem 2.3. If the graph G contains a cut vertex v and at least one non-path block
(that is, a block not isomorphic to a path) containing v, then the set of vertices in all
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connected components of G \ {v} other than that containing this block, along with v
itself, does not resolve the graph G.

Proof. Consider such a graph G. Let S be v along with all vertices in the components
of G \ {v} other than the component containing the block. Since this component
contains only one vertex from S, and its metric dimension is at least 2, there must
be a pair of vertices in G that is not resolved by S. So, S is not a resolving set
of G.

This leads us to the following corollary.

Corollary 2.4. Let G be a graph with cut vertices and at least 2 non-path blocks.
Denote by B0 a smallest non-path block, and B1 a largest. Then, res(G) > n(G) −
n(B0) + 1, and res(G) ≥ n(G)− n(B1) + 1.

Proof. From Theorem 2.3 any resolving set includes non-cut vertices from all non-
path blocks. The set consisting of all vertices in G except for those in B0, but
including a cut vertex of G in B0, is not sufficient to resolve all vertices in G, and
hence res(G) > n(G)− n(B0) + 1. Similarly, any nearly resolving set of G must not
only contain non-cut vertices from all non-path blocks, but the addition of any new
vertex is sufficient to resolve G. Therefore, at most one block can be excluded from
any nearly resolving set. Hence, res(G) ≥ n(G)− n(B1) + 1.

We continue by examining graphs with cut vertices that join a larger number of
connected components.

Theorem 2.5. If there is a vertex v in a connected graph G such that the graph
G \ {v} has at least 3 connected components {G1, G2, G3, . . .}, then res(G) − 1 ≥
n(G)− n(Gi ∪ Gj), where Gi and Gj are the two smallest connected components in
G \ {v}. Also, res(G) ≥ n(G) − n(Gk ∪ Gm), where Gk and Gm are the largest two
components.

Proof. Let v be a cut vertex of G such that G \ {v} has at least 3 connected compo-
nents. Let S be the set of vertices from all but precisely two of these components,
say Ga and Gb, along with the vertex v. If the subgraph of G induced by v and the
vertices in Ga and Gb is a path, then it is not resolved by S since only one vertex
in the path is in S and it is neither terminal vertex. If this induced subgraph is not
a path, then it has metric dimension greater than 1 and is therefore not resolved
by the set S. Because res(G) and res(G) − 1 are the sizes of the least and greatest
nearly resolving sets of G, respectively, we can choose which connected components
contribute vertices to S based on their orders.
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2.2 The nearly resolving numbers of some graph families

As mentioned in Section 2.1, the randomly k-dimensional graphs Kn and C2k+1 have
nearly resolving numbers n − 2 and 1, respectively. In this section we determine
the nearly resolving numbers of some other families and characterize all graphs with
nearly resolving number 1.

Proposition 2.6. The nearly resolving numbers of paths and even cycles are res(Pn)
= 1, res(C2k) = 2 for n ≥ 3, k ≥ 3.

Proof. Although dim(Pn) = 1 ([10]), not every singleton subset of the vertices of
Pn resolves the graph. However, every non-terminal vertex of the path is a nearly
resolving set, since the addition of any vertex to a singleton set is a set of size 2, and
res(Pn) = 2. On an even cycle (v0, v1, . . . v2k−1), let {vi} be a set consisting of any
one vertex. Since the set {vi, vi+k}, with addition modulo (2k), does not resolve the
graph, we know that res(C2k) > 1. Let S = {v0, vk}. Although S does not resolve
the graph, any superset does. Therefore, res(Pn) = 1 and res(C2k) = 2.

Next we turn our attention to the wheel graph on n vertices, Wn. As a family of
arbitrarily large graphs with diameter 2 they make for an interesting subject in the
study of resolving sets. First we identify and reprove certain required and forbidden
structures of resolving sets on wheel graphs, first identified in [1].

Theorem 2.7 (Buczkowski, Chartrand, Poisson, Zhang, 2003). Let Wn be the wheel
graph with (n − 1)-cycle (v0, v1, . . . vn−2) and center vertex u. If S is a resolving
set for Wn and T = V (Wn) \ S, then the following structures are not present. All
arithmetic is modulo (n− 1).

1. Two disjoint sets of the form {vi, vi+1, vi+2} ⊆ T .

2. A set of the form {vi, vi+1, vi+2, vi+3} ⊆ T .

3. A set of the form {vi−2, vi−1, vi+1, vi+2} ⊆ T with vi ∈ S.

Proof. Let us consider these structures in turn. Firstly, if {vi, vi+1, vi+2},
{vj, vj+1, vj+2} ⊆ T are disjoint sets, then the vertices vi+1 and vj+1 are not dis-
ambiguated by S. This is because every vertex in S is distance 2 from both ver-
tices, except u if it is in S, and it is adjacent to both vertices. So, S does not
disambiguate this pair. Similarly, if {vi, vi+1, vi+2, vi+3} ⊆ T , then no vertex in
S, except for possibly u, has distance other than 2 to vi+1 and vi+2. Finally, if
{vi−2, vi−1, vi+1, vi+2} ⊆ T , vi ∈ S, then the pair {vi−1, vi+1} is not disambiguated
by S.

We restate the following theorem from [1] and [11].

Theorem 2.8 (Sooryanarayana, Shanmukha, 2002; Buczkowski, Chartrand, Pois-
son, Zhang, 2003). The wheel Wn has metric dimension 3 when n = 4, 7 and dim(Wn)
= b2n+2

5
c otherwise.
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Theorem 2.7 is now used to determine the remaining relevant parameters.

Theorem 2.9. For all n ≥ 7, the resolving number of the wheel Wn is (n− 3). The
nearly resolving number is (n− 4) when 7 ≤ n ≤ 10, and is (n− 6) for n ≥ 11.

Proof. A largest set of vertices in Wn, n ≥ 6 that excludes a forbidden structure from
Theorem 2.7 is V (Wn) \ {v0, v1, v2, v3}. This gives us that res(Wn) = (n − 3). Any
nearly resolving set must exclude exactly one forbidden structure from Theorem 2.7,
and include every remaining vertex in the wheel. Otherwise, the addition of any
unaccounted for vertex to the set may not obviate the forbidden structure. This
includes the center vertex u which, although not especially useful in disambiguating
pairs of vertices in Wn, must be included in any nearly resolving set lest it be included
in a superset that does not resolve the graph. When 7 ≤ n ≤ 10 only the forbidden
structures that include 4 vertices from the set T are possible, and hence res(Wn) =
(n−4) and is realized by the set S = V (Wn)\{v0, v1, v2, v3}. When n ≥ 11 the value
res(Wn) = (n − 6) is realized by S = V (Wn) \ {v0, v1, v2, v5, v6, v7}. Note that in
either case, the addition of any vertex to the set eliminates the forbidden structure
and yields a resolving set for Wn.

For smaller wheels we simply employ case analysis.

Since W4 = K4 we know from Section 2.1 that res(W4) = 2. The set S consisting
of the center vertex and one vertex from the outer cycle of W6 does not resolve the
pair of vertices at distance two from the latter, and since any set consisting of the
center vertex and two vertices on the outer cycle resolves the graph it is evident that
the set S is a nearly resolving set. Similarly, the center vertex and one vertex v on
the outer cycle of W7 fail to resolve any pair of vertices at distance 2 from v, and the
singleton set {v} has a proper superset consisting of a pair of opposite vertices on
the outer cycle. This set of size 2 is also not a resolving set of W7, and so a smallest
resolving set consists of a pair of vertices adjacent on the outer cycle.

Consider now any set S of 2 vertices in W5. If S contains the center vertex, then
no superset of size 2 resolves the pair of remaining shared neighbors along the cycle.
If instead S contains two opposite vertices on the outer cycle, then the same superset
arises. Finally, any pair of adjacent vertices along the outer cycle is itself a resolving
set. So, res(W5) > 2, and it is easy to see that any size 3 set of vertices that does
not resolve W5 is a nearly resolving set.

Hence, the nearly resolving number of small wheels are as follows: res(W4) =
res(W6) = res(W7) = 2, res(W5) = 3.

We now proceed to characterize all connected graphs with nearly resolving number
1. We begin by demonstrating a restriction on the degree of a single vertex that alone
resolves a graph G. We then set forth a construction for a family of graphs that have
such a vertex. Finally, we demonstrate that this family, along with all path graphs,
completely characterizes all such graphs.

Consider a graph G with |S| = res(G) = 1 that is neither a path nor an odd cycle,
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and let {v} be a nearly resolving set. Since this implies that dim(G) = 2 we need
the following theorem from [12].

Theorem 2.10 (Sudhakara, Kumar, 2009). If {v, u} is a resolving set in G, then
neither u nor v has degree greater than 3.

We continue by examining the possible degrees of the vertex v in G. Let u be any
other vertex in G.

Lemma 2.11. The vertex v has degree at most 2.

Proof. First note that by Theorem 2.10 the degree of v is at most 3. Say that v has
exactly three neighbors: {u1, u2, u3}. If these vertices are mutually non-adjacent,
then the set {v, u1} does not disambiguate the set {u2, u3}, since v is adjacent to
both and u1 is at distance 2 from each of them. So, without loss of generality we may
assume that u1 is adjacent to u2. If u1 is also adjacent to u3, then we have the same
problem, since both v and u1 are adjacent to both of the other vertices. Therefore,
there must be exactly one edge among the neighbors of v. If the vertices {v, u1, u2}
form a triangle and u3 is not adjacent to either u1 or u2, then the set {v, u3} fails
to disambiguate {u1, u2}, as both are adjacent to v and at distance 2 from u3. We
therefore have a contradiction and v has at most 2 neighbors.

The next lemma provides a lower bound for the degree of v.

Lemma 2.12. The vertex v has degree at least 2.

Proof. Since v has exactly one neighbor u, and G is not a path, then the set {v, u}
fails to resolve any pair of vertices in G equidistant from u.

By Lemmas 2.11 and 2.12 the vertex v has degree exactly 2. We now proceed to
completely characterize the graphs with nearly resolving number 1. We begin with
a construction.

Construction 2.13. By a monument graph we will mean an odd cycle

{x′, xk, xk−1, . . . , x1, v, y1, . . . , yk, y′}

with possible edges of the form xiyi, and a path that includes the edge x′y′, (Fig. 1).

Theorem 2.14. A graph G has a nearly resolving number of 1 if and only if G is
either a path or a monument graph.

Proof. As above we let S = {v} be a nearly resolving set of a graph G. If G is a
tree, then either G is a path or by Theorem 2.5 S cannot be a nearly resolving set
of G. So, we may assume that G contains a cycle. If v is not on a cycle and u is a
cut vertex adjacent to a non-path block of G, then Su is not a resolving set of G.
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Figure 1: A monument graph from Construction 2.13

Therefore, since deg(v) = 2, v is on exactly one chordless cycle, say C. If n(C) is
even, then the set Su, where u is the vertex opposite v in C, is not a resolving set
for G. Therefore, v is on an odd chordless cycle. Now consider the vertices x, y at
maximum distance along C from v. If any vertex other than x, y has a neighbor in
G \C, then let w be such a vertex on C closest to v. Let b be the neighbor of w not
on C. If a is the vertex on C adjacent to w with distance d(v, a) = d(v, w) + 1, then
the set Sw fails to resolve {a, b}. Therefore, no vertex on C \ {x, y} has a neighbor
in G outside of C.

If x (or y) has degree greater than 3, then Sx (Sy) does not disambiguate its
neighbors at maximum distance from v. Therefore, the vertices x and y each have
at most one neighbor in G not in C. If either vertex is a cut vertex terminating in a
non-path tree, then, similarly, any leaf vertex added to S results in a non-resolving
set of G. If instead the edge {x, y} is on another chordless cycle C ′, then this cycle
must be of even length. Otherwise, the addition of the vertex on the even cycle
C ∪ C ′ opposite v does not generate a resolving set. This process of adding even
cycles can be continued. Let x′, y′ be the vertices on the resulting cycle at maximum
distance from v. Each of these vertices can terminate a path of arbitrary length,
with terminal vertices a and b, respectively.

Let G be a monument graph from Construction 2.13, and let v be as labeled in
Fig. 1. Let Pa be the shortest path from v to a, and Pb be the shortest path from
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Figure 2: (a) The grid graph G5 and (b) the graph G′5 from Theorem 3.2, with
highlighted nearly resolving sets

v to b. Since G is not a path the set S = {v} is not a resolving set. Let u,w be
distinct vertices in V (G) \ {v}. Without loss of generality we may assume that u is
on Pa. We claim that the ordered pair (d(v, w), d(u,w)) = (α, β) uniquely identifies
any vertex w in G. We may assume that α 6= 0 6= β. There are at most two vertices
in G at distance α from v, at most one on Pa and at most on Pb. First consider the
case in which α < d(v, u). If β+α = d(v, u), then w is on Pa. Otherwise, w is on Pb.
Next, assume that α > d(v, u). If α − β = d(v, u), then again w is on the path Pa.
Otherwise, w is on Pb. Therefore, for any vertex u ∈ V (G) \ {v} the set Su = {v, u}
is a resolving set for G. Hence, res(G) = 1 if and only if G is a path or a monument
graph.

3 Resolving parameters of grid graphs

Definition 3.1. By the grid graph G(m,n) we mean the Cartesian product Pm�Pn,
(see Fig. 2). This graph is sometimes referred to as a 2-dimensional grid graph.
Since G(m,n) and G(n,m) are isomorphic, we will assume without any loss of gen-
erality that in the graph G(m,n), m ≤ n. We label the vertices in G(m,n) as
{(x, y) : 1 ≤ x ≤ m, 1 ≤ y ≤ n}. If m = n, then we denote the graph Gm.

In [4] the authors determine dim(G) and dim+(G) where G is a grid graph. In
particular, dim(G(m,n)) = 2 for m,n ≥ 2.

Theorem 3.2. If G(m,n) is a grid graph with 3 ≤ m ≤ n, then res(G(m,n)) =
m. In addition, let G′(m,n) = G(m,n) with the addition of vertices u, v1, v2, v3, w
adjoined via the path {(1, 1), u, v1, v2, v3, w, (m, 1)}, (see Fig. 2). Then res(G′) = 2.

Proof. Consider G = G(m,n) and let S be a non-resolving set of vertices in G with
|S| < m. There is some pair of vertices {(x, y), (x′, y′)} in G that S does not resolve.
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We may assume that y′ ≥ y with no loss of generality. Consider first the case for
which |x′ − x| ≤ |y′ − y|. Note that since G is bipartite every vertex disambiguates
any pair of vertices in different partite sets. Therefore d((x, y), (x′, y′)) = 2k for some
integer k. Let a = (y + k) and b = (y′ − k). The vertices (x, a) and (x′, b) are equal
distance from both (x, y) and (x′, y′). If x ≤ x′, then let U = {(i, a), (j, b) : 1 ≤ i ≤
x, x′ ≤ j ≤ m}, otherwise let U = {(i, a), (j, b) : x ≤ i ≤ m, 1 ≤ j ≤ x′}. Thus,
U is the set of vertices from (x, a) to one edge of the grid and from (x′, b) to the
opposite edge. Note that every vertex in U has a shortest path to (x, y) and (x′, y′)
through (x, a) or (x′, b), and hence no vertex in U resolves the pair. Also, note that
|b−a| = |x′−x|, and hence we can consider the vertices (x, a) and (x′, b) to be corners
of a G|b−a| subgraph of G(m,n). Let D be the vertices in this subgraph along the
diagonal between (x, a) and (x′, b). Since each vertex in D is distance k from (x, y)
and (x′, y′), and since |U ∪D| = m, there is at least one vertex u ∈ (U ∪D) not in
S. Since Su is not a resolving set of G, the set S is not a nearly resolving set of G.

Next we consider the case where |y′ − y| < |x′ − x|. We proceed the same as
above with the following changes. We let a = (x + k), b = (x′ − k) if x ≤ x′, and
a = (x − k), b = (x′ + k) otherwise. Consider the vertices (a, y) and (b, y′), each at
distance k from (x, y) and (x′, y′). We also let U = {(a, i), (b, j) : 1 ≤ i ≤ y, y′ ≤ j ≤
n}. This yields the set U ∪D of order n ≥ m that does not disambiguate the pair
{(x, y), (x′, y′)}. Again, there is at least one vertex u ∈ (U ∪D) not in S, and Su is
not a resolving set of G.

Now we let S = {(x, 2)}mx=1. Note that S does not disambiguate any pair in
{(x, 1), (x, 3)}mx=1. In fact, it is easy to see that no other pairs of vertices fail to be
resolved by S. However, Su for any vertex u /∈ S clearly disambiguates every set of
vertices in G since d(u, (x, 1)) 6= d(u, (x, 3)) for all 1 ≤ x ≤ m. Therefore, S is a
nearly resolving set of size m for G.

The argument easily extends to the graph G′(m,n). It is not a monument graph,
hence res(G′(m,n)) ≥ 2, and {u,w} is a nearly resolving set.

4 Realizability

In [4] the authors mention that it would be interesting to study the realization of
triples (a, b, c) of integers as the metric dimension, the upper dimension, and the
resolving number. We now study a similar triple involving the nearly resolving
number.

4.1 Metric dimension, nearly resolving number, and resolving number

In this section we characterize the triples (a, b, c) such that there is a graph G with
dim(G) = a, res(G) = b, and res(G) = c.

Given the bounds in Remark 1 we will only consider triples (a, b, c) such that
a ≤ (b+ 1) ≤ c. Also, in [10] it is shown that the only graphs with metric dimension
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1 are paths. So (1, 1, 2) is the only realizable triple in which a = 1. For triples in
which a > 1 we require a new construction.

Construction 4.1. For integers 2 ≤ a < b < c define the graph P(a,b,c) in the
following way. Let V = {v0, . . . , va} be the vertices of a complete graph on (a + 1)
vertices. Let V ′ = {va+1, va+2, . . . , vb−1} be a path, with va adjacent to va+1, if a <
b + 1, otherwise let V ′ be empty. Define U = {u0, . . . , uc−b+1} to be a path in which
ub(c−b+1)/2c = vb−1. Thus, P(a,b,c) is a clique attached to a tree as in Fig. 3.

If 2 ≤ a = (b+ 1) ≤ c, then we let V ′ = {va, . . . , vc} and exclude U .

Figure 3: The graph P(4,9,14) from Construction 4.1

We now demonstrate that this graph in Construction 4.1 realizes nearly all triples.

Lemma 4.2. For 2 ≤ a < b < c or 2 ≤ a = (b + 1) < c the graph P(a,b,c) has the
properties dim(P(a,b,c)) = a, res(P(a,b,c)) = b, res(P(a,b,c)) = c.

Proof. First consider a < b and note that the set S = {v0, . . . , va−2, u0} is a resolving
set for P(a,b,c). Any resolving set S ′ must contain at least one vertex in U and at least
(a− 1) vertices in V since V \ {va} share the same closed neighborhood. Therefore,
S realizes dim(P(a,b,c)) = a. It is easy to see that the set V (P(a,b,c)) \ {v0, v1} is not a
resolving set, and therefore res(P(a,b,c)) = c.
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First notice that the set V ∪ V ′ is a nearly resolving set in P(a,b,c). Now, suppose
there is another nearly resolving set S. The set S must include at least one vertex
in U and at least (a − 1) vertices in V . Consider a vertex w ∈ V ′ not in S. Since
Sw must be a resolving set for the graph, S must already contain (a − 1) vertices
from V and a vertex u ∈ U . If u is the center vertex of the path U , then Sw does
not disambiguate the neighbors of u in U unless S is already a resolving set. If the
center vertex of this path is not already in S, then its addition does not create a
resolving set. Thus V ′ ⊆ S. In addition, if v ∈ V is not in S, then in order for Sv to
be a resolving set S contains (a−2) vertices from V , all of V ′, and therefore all of U .
So, |S| ≥ |P(a,b,c)|−3. However, V ∪V ′, which contains b vertices, is a smaller nearly
resolving set. Hence S contains V ′ and V and the graph P(a,b,c) realizes (a, b, c).

Now, we assume that a = (b + 1). Again, it is clear that res(P(a,b,c)) = c is one
less than the order of the graph. Since any resolving set must contain either (a− 1)
vertices in V and one other in V ′, or a vertices in V , we see that dim(P(a,b,c)) = a.
The set {v0, v1, . . . , va−1} is a smallest nearly resolving set, with size a− 1 = b.

We next turn our attention to the exigent case.

Lemma 4.3. The graph Br(c− b+ 1, a) realizes the triple (a, b, c) when b = a.

Proof. In Theorem 2.1 it was demonstrated that res(Br(c − b + 1, a)) = a = b.
Since no set that excludes more than one bristle is a resolving set, we see that
res(Br(c− b + 1, a) = (c− b + 1) + (a)− 1 = c. Also, since a smallest resolving set
of the graph consists of the a bristles dim(Br(c− b+ 1, a)) = a.

Lemmas 4.2 and 4.3 bring us to the main theorem of this section.

Theorem 4.4. Any triple (a, b, c) in which 2 ≤ a ≤ (b + 1) ≤ c is realizable as the
metric dimension, nearly resolving number, and resolving number of a graph.

4.2 Upper dimension and the nearly resolving number

It is obvious for any connected graph G that dim(G) ≤ dim+(G) < res(G) and that
dim(G) ≤ res(G) + 1 ≤ res(G). However, it is not clear how the upper dimension
and the nearly resolving number relate. In this section we demonstrate that the two
parameters can differ by an arbitrary number and neither is necessarily greater than
the other.

First, we recount a theorem from [4].

Theorem 4.5. There is a graph Hm with upper dimension dim+(Hm) = 2m−2 and
dim(Hm) = 2.

This graph Hm is a grid graph Gm modified by the addition of a triangle attached
to a single vertex of degree 2, (Fig. 4). We modify the graph G′m from Def. 3.1 in
the same way, with a triangle attached at vertex v3.
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Figure 4: The modified grid H5 with highlighted resolving set and H ′5 with the same
set of vertices highlighted

First note that dim(H ′m) = dim(Hm) = 2 and dim+(H ′m) ≥ dim+(Hm). This
is because the largest minimal resolving set of Hm outlined in [4] and highlighted
in Fig. 4 is also a minimal resolving set of H ′m. As demonstrated in Section 3 the
nearly resolving number of G′m is 2, and it is easy to see that res(H ′m) ≤ 4 by possibly
including one or both vertices of the new triangle in any nearly resolving set. Hence,
we have the following theorem.

Theorem 4.6. For any k ≥ 0 there is a graph G with dim+(G)− res(G) ≥ k.

Proof. For any integer j ≥ 2 there is a modified grid graph Hm with dim+(Hm) = j.
Thus dim+(H ′m) ≥ j, res(H ′m) = 2. Given k we let j = (k + 4) and choose G to be
the appropriate modified grid graph.

The construction showing the inverse is a simple one.

Theorem 4.7. For any k ≥ 0 there is a graph G with res(G)− dim+(G) = k.

Proof. Let k ≥ 0 be given, and let G be the graph consisting of three paths of length
k, a vertex v, and one endpoint of each path adjoined to v. By Theorem 2.5 we know
that res(G) ≥ (k + 2), and since the vertices in one of the three paths along with v
form a nearly resolving set we get that res(G) = (k+2). Since any resolving set with
more than two vertices is not minimal, dim+(G) = 2 and res(G)−dim+(G) = k.

5 Conclusion

In this manuscript we have examined a new graph parameter related to resolving
sets, the nearly resolving number. This parameter is related to the resolving number
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of a graph in a way similar to the relationship between saturation and extremal
numbers of graphs. We determined a number of properties of the new parameter,
and related it to existing parameters. All graphs with nearly resolving number 1
were characterized.

A number of questions related to the nearly resolving number remain. It would
be interesting to determine for which triples (a, b, c) there is a graph G in which
dim(G) = a, dim+(G) = b, res(G) = c. Other potential directions for research
include characterizing all graphs with nearly resolving number 2, and relating this
parameter to the girth and circumference.

We thank the referees for their helpful comments and advice.
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